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We have studied the dispersion relation for surface plasmons on a randomly rough surface, going
beyond the lowest-order approximation in the surface profile function. This improvement is re-

quired because an analysis of the expansion for the surface-plasmon dispersion relation in powers of
the surface profile function shows that it contains an infinite subset of terms that are all of the same
order of magnitude as the lowest-order contribution, which is the only one that has been considered
in previous theoretical determinations of this dispersion relation. The indicated subset of terms is
summed to yield a nonlinear integral equation for the surface-plasmon proper self-energy, in terms
of which the dispersion relation is expressed. This integral equation has been solved numerically
and the surface-plasmon spectral density constructed. The splitting of the surface-plasmon disper-
sion curve into two branches by the surface roughness, which was predicted theoretically by the
lowest-order perturbation theory calculation, and which has been observed experimentally, is
preserved in the results of the present calculation. However, both the magnitude of the splitting and
the damping of the surface plasmon obtained from the present calculations are larger, for the same
corrugation strength, than the same quantities obtained from the lowest-order perturbation calcula-
tion, for most surface-plasmon wave vectors.

I. INTRODUCTION

Recent theoretical' and experimental ' studies have
shown that the dispersion curve for surface plasmons
propagating across a randomly rough dielectric surface
consists of two branches, in contrast with the dispersion
curve for surface plasmons on a flat surface which con-
sists of a single, dispersionless branch.

This result was obtained theoretically in calculations in
which the effects of the surface roughness were taken into
account in only the lowest approximation in the surface
profile function. In this paper we study the dispersion re-
lation for surface plasmons on a randomly rough surface,
going beyond this lowest-order approximation. This work
was prompted by the fact that an examination of the
higher-order terms in the expansion of the surface-
plasmon dispersion relation in powers of the surface pro-
file function revealed an infinite subset of terms that are
all of the same order of magnitude as the lowest-order
contribution, the only one considered in the previous
theoretical determinations of this dispersion relation. '

As in our earlier studies of this problem ' we work
from the outset in the electrostatic approximation, and use
the Rayleigh method in solving Laplace's equation for
the electrostatic potential in the dielectric medium and in
the vacuum above it and satisfying the boundary condi-
tions at the rough interface between them. However, in
contrast with these earlier studies we use the extinction-
theorem form of Green's theorem to eliminate the electro-
static potential in the dielectric medium. This leads to a
single integral equation, for the Fourier transform of the
potential in the vacuum, instead of the pair of coupled in-
tegral equations for the Fourier transforms of the poten-
tials in both regions. The fact that we need to work with
only a single integral equation greatly simplifies working

to all orders in the surface profile function. The
remainder of the analysis presented here is concerned with
the transformation of this integral equation into an alge-
braic equation for the average of the Fourier transform of
the electrostatic potential in the vacuum region over the
ensemble of realizations of the surface profile, with the
solvability condition for this equation, which yields the
surface-plasmon dispersion relation, and with the solution
of the dispersion relation.

We will find that the more refined treatment of the
dispersion relation for surface plasmons on a randomly
rough surface presented here leaves largely unchanged the
qualitative results obtained in Refs. 1—3, but it does
change them quantitatively.

The outline of this paper is as follows. We begin by
characterizing a randomly rough surface in Sec. II. In
Sec. III we obtain the integral equation for the Fourier
transform of the electrostatic potential in the vacuum re-
gion above the dielectric medium that is valid to all orders
in the surface-roughness profile function. This equation is
solved to lowest nonzero order in the surface-roughness
profile function in Sec. IV, and yields the surface-plasmon
dispersion relation already obtained in Refs. 1—3. More
importantly, this solution defines for us the subset of
terms in the expansion of the dispersion relation to all or-
ders in the surface profile function that are all of the same
order as the one obtained in this small-roughness calcula-
tion. This subset of higher-order terms is summed in Sec.
V to yield a nonlinear integral equation for the surface-
plasmon proper self-energy, which is the principal in-
gredient in the surface-plasmon dispersion relation. In
Sec. VI this integral equation is solved numerically, and
the proper self-energy so obtained is used in a calculation
of the surface-plasmon spectral density, whose peaks
occur at the frequencies of surface plasmons on a random-
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ly rough surface. A brief discussion of the results ob-
tained, and of extensions of the work reported here, in Sec.
VII, concludes this paper.

(g(xll)) =0,

(g(xll)g(XII)) =5 8 (
f XII

—
XII f ),

(2.1a)

(2.1b)

II. CHARACTERIZATION OF A
RANDOMLY ROUGH SURFACE

The physical system we consider is depicted in Fig. 1.
It consists of vacuum in the region x3) g(xll), and a
dielectric medium characterized by an isotropic,
frequency-dependent dielectric constant e(co) in the region
x3 &g(xll). Here we have used the notation that

x~~
——x~x&+x2x2, where x& and x2 are unit vectors along

the x& and x2 directions.
The surface profile function g(x

I
I) is a stationary sto-

chastic process described by the statistical properties

VQCUU ITl

xq = f(x„)
'/~/~/I~1////~///rill?

dielectric: q(u)

FIG. 1. Vacuum/dielectric system considered in this paper.

where the angular brackets denote an average over the en-
semble of realizations of the surface profile, and 6 is the
mean-square departure of the surface from flatness,
5 =(g (xll)). We will make the additional assumption
that g(xll) is a Gaussianly distributed random variable.
This means that the average of the product of an odd
number of factors of g(xll) with the same or different ar-
guments vanishes, while the average of the product of an
even number of factors of g(x II) is given by the sum of the
products of the averages of g(xll)'s paired two-by-two in
all possible ways, e.g.,

(g( ll)g(xll)g(xll)g(xll )) =(g( ll)g( ll))(g( ll)g( II ))

+ (g(xll)g(xll) ) (g(xll)g(xll ) ) + (g(x ll)g(xll ) ) (g(xll)g(xll) ) . (2.2)

The average of each pair of g( x II) s on the right-hand side of this equation, called a contraction, is given by Eq. (2.1b).
In what follows it will also be necessary to introduce the Fourier transform of the surface profile function g( x II),

(kll)= f d xlle
'

ll "lip(XII)

We find from Eqs. (2. 1) and (2.3) that

(g(kll)) =0,
Q(kII)g(kll)) =6 g(kll)(2m) 6(kll+kll),

where

(2.3)

(2.4a)

(2.4b)

g(kll)= f d xlle II IIW(f xll f) (2.5)

It follows from the assumption that g(x II) is a Gaussianly distributed random variable that the average of the product of
an odd number of g(kll) I with the same or different arguments vanishes, while the average of the product of an even
number of {g(kll)I with the same or different arguments is given by the sum of products of the averages of g(kll)'s
paired two-by-two in all possible ways, e.g.,

) = (g(kll ~(k

+ ~~(kll)~(kll) ~ (~( ll)~( II ) ~+ ~~(kll )~(kll) ~ ~~( (2.6)

where each contraction is given by Eq. (2.4b).

p'2$~(x
f
~)=0, x3)lg(xll)

V2$~(x
f
co)=0, x3 &g(xll)

(3.1a)

(3.1b)

III. THE EXTERNAL POTENTIAL

We seek the solution of I aplace's equation for the po-
tential in each of the regions x3 & g( x

I
I),

subject to the boundary conditions,

P~(x
f
co) f, )

——cb~(x
f
co)

f (
(3.2a)

a
y (x f~) =e(~) y~(x f~)

a

3
——g( li) =g(

l
f)

(3.2b)
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at the interface x 3
——g( x

~

~), and the conditions For this purpose we apply Green's theorem,

(x
~

co) ) „=0 (3.3) f d'x(uV'v —vV'u)= f dS u
' —v

Bn Bn
(3.6)

at infinity, where the upper (lower) signs go together. In
Eq. (2.4b) 8/Bn is the derivative taken along the normal to
the interface x3 ——g( x

~
~) at each point,

ap "ii) ap'=1+ +
n 'BX

$ BX2

aux~, )
X

BX( BX)

a a+
BX2 BX2 BX3

(3.4)

when the normal is directed from the dielectric into vacu-
um.

The solution of Eq. (3.1a) in the region x3 &g(x~~)
that satisfies the boundary condition at infinity can be
written in the form

to the volume V defined by the region x3 & g(x~~) occupied
by the dielectric. The surface X bounding this volume
consists of the interface x3 ——g(x~~) that we denote by S,
and a hemispherical cap of infinite radius in the lower
halfspace that we denote by S' "'. Since we are con-
cerned with potentials P~(x

~

co) that vanish exponentially
as x3~ —oo [Eq. (3.3)] the contribution to the right-hand
side of Eq. (3.6) from the integral over S~ ' vanishes.
The derivative BIBn on the right-hand side of Eq. (3.6) is
along the normal to the surface X directed outward from
the volume V.

At this point we introduce the Careen's function
G ( x; x') that is the solution of the equation

V G(x;x')= —4m5(x —x'), (3.7)

2

( f~ f 4(k
(2m. )

x3 )g(xi'),„(3.5)

subject to vanishing boundary conditions at infinity. A
convenient representation for this function is

&II 2w '
q II.( II II]

—
tll I 3 3 IG(x;x J= e e

(2m. ) qadi

where kll ——xlk1+x2k2 A similar expression can be
written for the potential in the region x3 &g(x~~);„, and
the results used in the boundary conditions (3.2), accord-
ing to the Rayleigh hypothesis.

We will proceed differently here by eliminating the po-
tential in the region x3 & g(x~~) altogether, and working
with the potential P~(x

~

co) alone.

(3.8)

We multiply Eq. (3.7) from the left by P~(x
~

co) and
subtract from the result the equation obtained by multi-

plying Eq. (3.1b) from the left by G(x;x'). This differ-
ence is then integrated over the volume V, and use is made
of Eq. (3.6). The result can be written as

~v(x)P~(x
~

co)= — f dS' , G(x;x') P (x'
~

co) —G(x;x'), P (x'
~

~)
Bn n

(3.9)

where

Ov(x)= f d x'5(x —x') (3.10)

is unity if xH V and vanishes if x 6 V. In writing Eq. (3.9) we have used the symmetry of the Areen's function,

G ( x; x') =G ( x'; x). The normal derivative on the right-hand side of Eq. (3.9) is given by Eq. (3.4).
We now use the boundary conditions (3.2) and the assumption that x3 & g( x

~ ~

),„ to rewrite Eq. (3.9) as

'fds , G(x;x') P (x'
i
co) — G(x;x'), P (x'

i
co), xz &g( ii),„.

Bn' e(co
' Bn'

(3.11)

This is the boundary condition on P~(x
~

co) that we will now use to determine the coefficient function 3 (k~~, co) in Eq.
(3.5).

For this purpose it is convenient to go from integration over dS in Eq. (3.11) to integration over d x
t~

with the aid of
the relation

dS=d xll 1+
BX2

(3.12)

The boundary condition (3.11) thus becomes

f d x~~ [n' V'G(x;x')](5 (x'~co) — G(x;x')[n' 7'P (x'~co], x3)g(x~~),„ (3.13)

where
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(3.14)

When we substitute Eqs. (3.5) and (3.8) into Eq. (3.13) we obtain

~ll 2
I~ ~~ I~ I~ II+ II~ /[~

4vr (2~)2 qll

&& g(p ~)e II II II II, n'.
g qll+ p

d'PII i p x —p g-(x )

(2~) e(co)

1+ 3 qll+ e~ ~II
.=0, x3) g(xll) (3.15)

To proceed farther we introduce the representation

II

(2'�)'
where

I(a
/ Qll)= f d xlle " "e

) ~(QII)+ f d x lie
' ll' "

Il(e
' " ll' 1)

=(2~) 5(QII)+aJ(a
I Qll)

It follows from Eqs. (3.16) and (3.17) that

(3.16)

(3.17)

f II g ( [Q )
'~ll "II P ]j

r}xp (2~)

When the results given by Eqs. (3.16)—(3.18) are used in Eq. (3.15) we obtain

d q 1
e II II —3 qII, co qII 1+

(2~) 2q
I

e(co )

+ e 2~ pII~~ ~ &II pll qll pll
zq x e II 3 dPII

(2~) 2ql
I

(2' )

(3.18)

'qll+qll 3 + 'Pll &llx3 ~' 'qll+qllx3) ('Pll Pllx&)e(co)

x3 & g(xll),„. (3.19)

On equating to zero the qII-th Fourier coefficient in this equation we obtain finally the integral equation satisfied by
3 (qll, co):

e(co)+ 1
d2

e(co ) —1
qll~~ +

(2m )
(3.20)

IV. SMALL-ROUGHNESS LIMIT

Before proceeding to a detailed investigation of Eq. (3.20) we first examine it in the small-roughness limit to show that
it yields the result of earlier studies of the present problem, ' and to motivate the work that follows.

The small-roughness limit is obtained by retaining only the lowest nonvanishing term in the expansion of J(a
~ Ql ) in

powers of g(xll):

f d x le ~~(xll)+ 2 a~ xll)+ 6a ~ xll +

=p"'(Qll)+ —,ap'"(Qll)+ —,a'Q' '(Qll)+ (4.1)
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2

g(n+1)(Q ) f I I g(n)(Q p g(p (4.3b)

Thus, in the small-roughness limit Eq. (3.20) becomes

f d pll

y(~) (2~)'

(4.4)

where

g(&~(Q ) f d2„e ' ~
II "lip&(x ) (4.2)

The coefficients Ig'"'(Qll)I can be calculated recursively
according to

(4.3a)

y'( )(& (qll, ))

(2~) (2m)

(4.9)

With the use of Eq. (2.4b) in Eq. (4.9) we immediately
obtain the dispersion relation for surface plasmons on a
randomly rough surface in the form

d2pily'(~) =&' f (2'�)
(4.10)

where we have introduced the notation

e(co)+ 1

e(co) —1
(4.5)

This is just the dispersion relation that is obtained by
combining Eqs. (4.127) and (4.129) of Ref. 3, and retain-
ing only terms of 0(5 ). If we rewrite Eq. (4.10) as

~f =(f) . (4.6)

The complementary operator Q =1 Pprojects out t—he
fluctuating part of anything it acts on. We apply the
operator P to both sides of Eq. (4.4) to obtain

Because g(xi() is a random function so is the solution
& (qll, ~) of Eq. (4.4). Just as g(xll) is defined by its mo-
ments, viz. by Eqs. (2.1) and the assumption that it is a
Gaussianly distributed random variable, so A(qll, co) can
be defined by its moments. Of these a particularly impor-
tant one is (A (qll, co)) which, through Eq. (3.5), deter-
mines the average potential in the region x3 & g(xll), „de-
picted in Fig. 1. It is to the determination of this function
that we now turn.

To this end we introduce the smoothing operator P that
averages everything it acts on over the ensemble of reali-
zations of the surface profile,

&& g(
I qll

—
Pll I

)
1/2

(4.1 1)

then we see that to every solution of the equation

y(~) =0, (4.12)

which is the dispersion relation for surface plasmons on a
planar surface, correspond two solutions of the dispersion
relation for surface plasmons on a randomly rough sur-
face. This is the roughness-induced splitting of the
surface-plasmon dispersion curve mentioned in the Intro-
duction.

In all that follows we will assume that the correlation
function 8'(

1

x
ll 1

) has the Gaussian form

d p~IPA (qll, co) =
y(co) (2~)'

(4.7)

W(1 xll1) =e (4.13)

(4.14)

where the quantity a is called the transverse correlation
length, so that g (kll) is given by

k~&2/4
g(kll) ~a e

In writing this equation we have used the identity
3 =(P+Q)A, and th«esult that Pg qll pll) 0 ~ Eq
(2.4a)]. We next apply the operator Q to both sides of Eq.
(4.4) and find

Equation (4.11) then takes the form

y(~) =+(&/a)~2f (g),
where

(4.15)

fy(~) (2m )'

Xg(pll —Qll)P&(Q(l, ~), (4 g)

f(g)= —e ~ ~ f du u e " ~& [3IO(u) —2I&(u)
0

' 1/2
+ I2(u)], (4.16)

where we have neglected a term Qg(plI —Qll)Q& (Qll, ~) as
of second order in g( x

l
l), and have again used the fact that

pg(pll —Qll)=0. We now substitute Eq. (4.8) into Eq.
(4.7) with the result that

with g=qlla and I„(x) a modified Bessel function of the
first kind. The function f (g) has been evaluated, and Eq.
(4.15) solved, in Ref. 2. More important from the stand-

point of the present work is the result obtained there that
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/2f (g) is of order unity over a broad range of g (from
$-0. 1 to g-4). This means, from Eq. (4.15), that at res-
onance y(co) is of 0(5/a), or equivalently (5/a)/y(co) is
of 0(1). It should be emphasized that this result is in-

dependent of our assumption that W( xII ~

) has the
Gaussian form (4.13). The choice of any other correlation
function that decreases significantly from unity with in-
creasing

~ xII ~

over a characteristic distance a will yield a
result of the form given by Eq. (4.15). Of course the coef-
ficient of (5/a) will have a different dependence on g from
the one given by Eq. (4.16), but it will still be of order uni-

ty over a broad range of g. An example of this is present-
ed in Ref. 2. We will see in the next section that if we re-
tain terms of all order in the surface profile function in
obtaining the surface-plasmon dispersion relation from
Eq. (3.20), we will encounter an infinite subset of terms, of
which the nth is proportional to (5/a)"/y(co)", and hence
is of the same order of magnitude at resonance as the
lowest-order term that gives rise to Eq. (4.4). It is there-
fore incorrect to retain only the lowest-order term in

(5/a)/y(co) from this infinite subset of terms: Since all
the rest are of the same order of magnitude they must all
be taken into account in obtaining the dispersion relation.
It is to this that the next section is devoted.

V. SURFACE-PLASMON DISPERSION RELATION
TO LEADING ORDER IN 5/y(co)

We now return to Eq. (3.20) with the aim of obtaining
from it the equation satisfied by (A(qII, co)) that is not
limited by the retention of only the first term in the ex-

pan»on of J(~
I Qll) in pow«s of ~(xll) given by Eq

(4.1). For this it is convenient to rewrite Eq. (3.20) in the
form

d p
A(qII, ro) —f K(qII, pII f

io)A(pII, co)=0, (5.1)
(2~)

where the kernel of this equation can be expanded in
powers of g(xII) according to

n! y(~)
(1—

n=1
(5.2)

In the nonzero averages to which it contributes g'"'( k I) is of 0 (5 ), according to Eqs. (4.2), (2.4b), and (2.7), and the as-
sumption that g( x II) is a Gaussianly distributed random variable. Consequently, K'"'(qII, pI I

~

co) has the order of magni-
tude 5"/y(co) -5"

If we now apply the operators P and Q to Eq. (5.1) in turn and extract from the results the equation satisfied by
P~(qII, ~) we find that it is

d2
(&(qII, )) —f, (M(qII', pII ~

))((&(pII, )) =0,
(2ir)

where M(qII, pII ~

co) is the solution of the integral equation,

I"
~~)+ f (2ir)

(5.3)

(5.4)

If we solve Eq. (5.4) by iteration and average the resulting series term-by-term, it is clear from the definition (5.2) and
the order estimate that follows that all the terms in (M( q I,.p II ~

co) ) of 0((5/a)"/y"(co)) and hence of 0 (1) are obtained
w«ep ace K(qll'pI I

~) in Eq. (5.4) by K (ql pll I
~). The «suiting app«»mation to M(qll pll ~) will be denoted

by M' '( q II., p II ~

co), because it is of zero net order in 5. It satisfies the equation

M"'(qII pII ~~)=K"'(qII pI I~)+ f 2
(5.5)

where

(5.6)

We now proceed to solve Eq. (5.5) by iteration and average the resulting series term-by-term with the aid of Eqs. (2.4b)
and the assumption that g(xII) is a Gaussianly distributed random variable. Only terms containing K"'(qII, pII ~

ro) an
even number of times survive averaging due to the latter assumption.

The second-order contribution to (M' '(qII, pII ~

co)) is given by
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d2 (1)

d2 (1) (1)
=(2m) 5(qll —pll)

2 - - &II

y(~) (2~)' y(~)

The fourth-order contribution consists of two terms:

(5.7)

d2 (1) d2 (2) d2 (3)

qll& P II P II & P II P II ~ P II P II & P II

(2 )2g(- -
)

&II & II & II (1 (2)
)

y(~) (2 )2 (2 )2

(1) (2)

x 1
-. Pll +pll —

qll

I

-( ) -( )

Pll +Pll qll

(1) (2)
Pll +Pll —

qfl .-(() 1
-()).-

()) -(2)
+Pll

(1) (2) ( ) ( )

y(~) y(~) y(~)

d2 (1) d2 (2)

+ qll P II y(~) (2~)' (2~)'
(1) (2) (1)

(1 ~(».~(»)(1 ~(().~
)

&II
'll y( ) ( ) ( )

(1) 2 (2) (1)
&&~ g( I qll

—
pll I

)~ g(
I pll

—
pll I

) . (5.8)

In these two results we see two features that are in fact
genera properties o (M' '(qll, pll I

co) & (and more gen-

y of (M q II p II I
~) &). The first is the presence of the

factor (2') 5(qll —
pl ) m each term. This arises from the

fact that the averaging process restores infinitesimal
translational invariance to our system. The second is the
presence of the factor qll/y(~) in each term. This arises
from the structure of the kernel K(qll, pll I

co), and of its
lowest-order approximation K"'( qll, pll I

co), and from the
aforementioned restoration of translational invariance. In
what follows we will therefore write (M(qll pll I

~) & as

y(co)

When the result given by Eq. (5.9) is substituted into Eq.
(5.3), the dispersion relation for surface plasmons on a
randomly rough surface becomes

Thus, the second-order contribution to X( )(qll, ~) ob-
tained from Eq. (5.7) can be represented by Fig. 2, while
the two fourth-order contributions are represented by
Figs. 3(a) and 3(b). The rules for constructing these dia-
grams, and all diagrams of higher order in g(xll) contri-
buting to X' '(qll, co) are as follows. On a horizontal solid
line mark off 2n dots (vertices) (for a diagram of 2nth or-
der). Label the portion of this horizontal line to the left of
the leftmost vertex by the wave vector qll, and label the
portion to the right of the rightmost vertex also by qll.
Join the 2n vertices pairwise by dashed lines in all possible
ways (subject to a restriction to be mentioned below). La-
bel the portions of the horizontal solid line between con-
secutive vertices, and the dashed lines, by wave vectors

1= X(q, co) .&II=
y(~)

(5.10) /
I

L

Thus, in what follows we will focus our attention on the
function X(qll, co), in particular on the approximation to
it, X' '( q

I I

~) that ~~ obtained when K ( q
I I

p
placed by K"'(qll, pll I

co). The terms in the series for
X(qll, co) can be represented by diagrams, and it will
prove convenient to do so.

qlI

FICi. 2. Diagrammatic representation of the second-order
contribution to X' '( q ~l, co) arising from Eq. (5.7).
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r
/ /

~( I) ~ ~(I)
P II II

+ P II I I

P P
I I I I

/

(Il
II

(b)
FIT&. 3. Diagrammatic representation of the two fourth-order

contributions to X {q ~~co) arising from Eq. (5.8).

subject to the rule that the sum of the wave vectors enter-
ing a vertex must equal the sum of the wave vectors leav-
ing the vertex. (For this purpose it is convenient to as-
sume that all solid and dashed lines are directed from left
to right. ) With a horizontal solid line labeled by a wave
vector pii we associate a factor pii/y(cc)). However, no
factors

q~
/y(co) are to be associated with the incoming

and outgoing lines labeled by the wave vector q~~. With a
dashed line labeled by a wave vector q~~ we associate a
factor 5 g(

~ q
~

~

). With each vertex, bordered by hor-
izontal straight line segments labeled by wave vectors pI~
and p~~, we associate a factor (1 —

p~~ p ~). For convenience
in what follows we adopt the convention of labeling the
last horizontal solid line entering the rightmost dot from
the left by pj~, and the dashed line entering this dot by

qll pll Finally, the free wave vectors
to be integrated with volume elements
d p~~/(2 ),d p', I /(2 ), . . . , p ti ly.

There is one restriction that must be imposed on the
preceding rules. It is already observed in Figs. 3(a) and
3(b). This is that in pairing vertices with dashed lines no
pairing is allowed that gives rise to a diagram that can be
separated into two pieces by cutting a single, horizontal
line (that must necessarily be labeled by the wave vector

FKs. 5. The diagrammatic depiction of the Dyson equation
(5.12).

q
~

~) Thus, only proper diagrams are to be considered, and
X~0 ( q

~
~, co) therefore has the nature of a, proper sel f-

energy. This restriction comes about due to the presence
of the operator Q in the kernel of Eq. (5.5) and conse-
quently in expressions such as those given by Eqs. (5.7)
and (5.8). An alternative way of understanding this result
is through adding a source term (2m ) 5( q~~

—q P')q~~ /y(co)
to the right-hand side of Eq. (5.1). In this case
(A( q ([

co) ) can be renamed (6 ( q((', q [( (
6)) ) and is found

to satisfy the Dyson equation

0 0

+ 60 q~I, P~i A3 X P~i CO

(2m )

(5.11)

0 0
hi h 6 (q((, q(( (

)=(2 )'5(q() —q(()q) /y( ) pl y
the role of the unperturbed propagator and &( q ~~,

co) is the
corresponding self-energy. The diagrams of sixth order in
g(x ~() contributing to X' '(q

~~, co) are depicted in Fig. 4.
From the results depicted in Figs. 2—4 we see that the

interactions depicted by the dashed lines contribute self-
energy insertions to the "bare propagators" depicted by
the horizontal solid line segments, labeled, e.g. , by
p~~/y(co). A self-energy insertion is a portion of a dia-
gram that can be excised from it by cutting two horizontal
solid lines. We can simplify the subsequent analysis by
considering only diagrams with no self-energy insertions
(skeleton diagrams) provided that the horizontal solid
lines in these diagrams are replaced by doubled solid lines.
With such a doubled solid line labeled by a wave vector

q
~~

we associate a factor 6 ( q ~~, co) that is the solution of
the Dyson equation

(b)
l L

{e)

)~
r

c c

FIG. 4. Diagrammatic representation of the ten sixth-order
contributions to X ( q

~

~co).

FIG. .6. Skeleton diagrams of (a) second-, (b) fourth-, and (c)
sixth-order contributing to X' '( q ~~co}.
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/
/

L

+y(~) y(~)
that is depicted graphically in Fig. 5. The remaining rules
for calculating a contribution to X' '( q

I
I,co) are un-

changed.

FICx. 7. Diagrammatic depiction of the (a} first-, (b} third-,
and (c) fifth-order contributions to the vertex function

The lowest-order skeleton diagrams contributing to
X' '(qll, ~) are depicted in Fig. 6. From these diagrams
we see that the interactions depicted by the dashed lines
also renormalize the left-hand vertex. (One could equally
well take the point of view that they renormalize the
right-hand vertex or even that they renormalize both the
right-hand and left-hand vertices. The subsequent
analysis is simplified, however, if it is assumed that only
one of the vertices is renormalized, and we choose it to be
the left-hand vertex. ) This vertex renormalization can be
taken into account by introducing the vertex function

qll p II I
~) whos~ lowest-orde«ontributions are depict-

ed diagrammatically in Fig. 7. The rules for obtaining a
contribution to the verte~ funct'on I"(qll'pll I

co) ar as fol-
lows. Qn a horizontal solid-line segment mark off 2n +1
dots (vertices) for a vertex function of (2n+1)th order.
Label the line entering the leftmost vertex by qll, and the
line leaving the rightmost vertex by pll. Draw a dashed
line labeled by qll

—
pll leaving any vertex and pair the

remaining 2n vertices by dashed lines in all possible ways,
provided that the resulting diagrams are proper diagrams
and contain no self-energy insertions. Wave vectors are
conserved at each vertex as before, and a horizontal solid-
line segment labeled by p II' is represented by G(p tI'co)
while a dashed line labeled by p ll' is represented by
6 g(

~ p II' ). Each vertex is depicted by (1—pll pIrl),
where p ll' and p ll

label the solid lines entering and leav-

ing it. The solid lines labeled by qll an pll and t e
dashed line labeled by qll

—
pll make no contribution to

qll'pll I
co) however. All free wave vectors are then in-

tegrated over.
The first-order contribution to I (qll, pll I

~) depicted in
Fig. 7(a) is simply (1 —

(((II pll). The third-order contribu-
tion depicted in Fig. 7(b) is given by

P II 1
(()

1
.(() Pll+ P II

d2 ()) (~ ~(1) ~
)

w221T )
I PII+P II

(P II+ P II '~
II

i Pll+P II

)G(pll+p II qll' »'«
i qll (5.13)

The infinite-order perturbation series for X '(qll, co) can now be summed formally to yield the highly nonlinear in-
tegral equation for X( '( q

I l, co):

(2m. )

I (2' ) y(~)/Pll —&' '(Pll, co)
(5.14)

VI. NUMERICAL RESULTS

In this section we describe the numerical solution of the integral equation (5.14). The manner of solution was dictated
by the manner in which we elected to present our results. We have chosen to construct the surface-plasmon spectral den-
sity

p( q
I I,co ) = . [G ( q

I I,co+i 0) —G ( q
I
I, co —i 0)]

2&l

&II (Ill&r"(qll ~)+yr(~)
i +Iqll~ qll' )+y (

(6.1)
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where we have used Eq. (5.12) and the definitions

y(co+i 0) =yg (u)+i y1(co),

X' '(qll, co+io)='Xg'(qll, co) l'Xy '(qll, co) .

(6.2a)

(6.2b)

Equation (6.2a) follows from the definition of y(co), Eq. (4.5), and the result that e(co+i 0) =ez(co)+i@a(co) T.he spectral
density p( q llano) for a given value of q ll

has peaks at the values of co for which the dispersion relation (5.10) has a solution
when co is replaced by co+i 0.

To solve Eq. (5.14) for X' '( q
l leo +i 0) we have to make some approximation for the vertex function I ( q ll,'p ll ~

co). ~e
have chosen to approximate it by the lowest-order approximation, viz. (1 —

qll p l). This is because, in the absence of an
exact evaluation of the third-order contribution to 1 ( q ll', pl l ~

co) given by Eq. (5.13), estimates of it in the limit that both

q~~ and p~~ are small compared with a ', and in the limit that both are large compared with a ', in the approximation
qll ~ 1s «placed by gll/y(~) sho w that 1t is small compa«d w1th (1 —q

I
p

limits are

(5'/u')
z [(aqll —ap

l
) (1+—,

' cos6)+ —,(aqll )(apll )(1—coso)(5+2 coso)], aqll, apll « 1
4y'(~)

«qllPII~ (g/ ) (1 —cosO)(1+2 cos 0), aq l, Qpll » 1

(6.3a)

(6.3b)

where we have set qll.pll=cos8. In fact, it is the former result that is the more significant one because of the

factor exp( ——,
' a q ll

——,a p ll) appearing in the integrand of Eq. (5.14) through the presence of the surface structure fac-

tor g(
~ qll

—
pll ~). Although the smallness of «qll'pll I

m) [compa«d w1th (1 —qll'pll)1 'n these two limits does not
guarantee its relative smallness for all qll and pll, it is suggestive of it, and in what follows we will assume that this is the
case.

The integral equation for X' '(ql cia +i0) in this approximation thus takes the form

2 2 2 2 QQ —] 4a~a 5 — 'q~~~/4 "d q
—&/4 p~~ do (1—cosO) e~+10 7

41r y(co+1 0)—pl lX ( pl l, co+1 0)
(6.4)

y( co ) = 1 —2co /co& (6.5)

The zero of this function, which is the frequency of a sur-
face plasmon at a planar vacuum-metal interface, is given
by the well-known expression

co~p =co~/~2 . (6.6)

where we have used Eq. (4.14), and have measured the az-
imuthal angle 0 from the direction of q ~~.

It is also necessary to make a choice for the form of the
dielectric constant e(co). In the present work we used the
free-electron metal form, e(co) =1—(co~/n ), where co~ is
the plasmon frequency for the conduction electrons in the
bulk of the metal. For this choice of e'(co) the function
y(co) takes the form

Equation (6.4) was solved by iteration. To start the
iteration X' '(pll, co+iO) was assumed to be identically
zero in the integrand on the right-hand side of Eq. (6.4).
The angular integration was carried out analytically and
the integration over p~~ was carried out numerically, by
Simpson's rule, to yield a first approximation to
X' '(qll, co+iO) that is clearly a function of qll only
through its magnitude. This result was then substituted
into the right-hand side of Eq. (6.6) and the process re-
peated until a converged result for X' '( qll, co+i 0) was ob-
tained. Since at every stage of the iterative solution
X(0)(qll M+io) depends on qll only through its magnl
tude, we carried out the angular integration analytically to
obtain Eq. (6.4) in the more convenient form

Oo 2 —x 2/4
S' '(g, co+i 0) = e ~ f dx (, [3IO( —,gx) —4I, ( ,' gx)+I2( —,

' gx)], —
4a 0 y(co+i0) xS' '(x, co—+i 0)

wllel'e we llave set g=uqll, aIld

X' '(qll, a)+i 0)=aS' '(g, co+iO) . (6.8)

In the calculations based on Eq. (6.7) the positive infini-
tesimal imaginary part of ~ that we have denoted by +i 0

I

was represented by + ig, where g was taken to be
~sp.

he resu t that X' '(qll, co+i 0) is a function of qll on y
through its magnitude is a reflection of the fact that, with
the form of the two-point correlation function given by
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Eq. (2.1b), averaging the electrostatic scalar potential over
the ensemble of realizations of the surface profile function
restores isotropy in the plane x3 ——0 to the system we are
studying.

Two results for the dimensionless surface-plasmon spec-
tral density p(g, ra) =ap(q~~, ro) are shown in Fig. 8, togeth-
er with the result obtained in the lowest-order approxima-
tion, S( )(g, ro+iO)=0, of Refs. 1—3. The value of g
chosen in these calculations, viz. /=1, is the result for
which the maximum splitting of the surface-plasmon
dispersion curve in the latter approximation occurs. It is
seen that the spectral density obtained on the basis of the

self-consistent result for S' '(g, co+i 0) resembles the result
obtained in the lowest-order approximation in displaying
two peaks, signifying the roughness-induced splitting of
the surface-plasmon dispersion curve into two branches.
However, the magnitude of the splitting, as measured by
the distance between the centers of the two peaks, is signi-
ficantly increased in the results based on the self-
consistent calculation of S' '(g, ra+i 0) over the splitting
obtained in the lowest-order approximation. To obtain a
splitting of 0. 15—0.2 eV in the surface-plasmon disper-
sion curve for Ag, as has been observed experimentally by
Kotz et al. a value of 5/a -=O.OS is required for g= 1 on
the basis of the present results.

At the same time, each of the two peaks in the spectral
density is significantly broadened in comparison with the
peaks obtained in the lowest-order approximation.
Indeed, in the latter approximation the peaks are rigorous-
ly 6 functions. The widths they display in Figs. 8, and
their finite amplitudes, are due to the replacement of
co+i 0 by co+i' in the numerical calculations, where g is
small but finite. The widths of the peaks in the spectral
density in the present work are due to the attenuation of
the surface plasmon as it propagates along a randomly
rough surface by its roughness-induced multiple scattering
into the surface plasmons, which removes energy from the
incident beam. In addition, the spectral density acquires a
significant nonzero value in the frequency range between
the two peaks, where it is zero in the lowest-order approx-
imation. This, too, is in qualitative agreement with the
experimental results.

Finally, in Fig. 9 we have plotted the frequencies of the
two peaks in the spectral density as functions of g, togeth-
er with the dispersion curves obtained in the lowest order
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FIG. 8. Spectral density of surface plasmons on a randomly
rough surface calculated self-consistently (solid line), and in the
lowest-order approximation in the surface profile function
(dashed line), at g'=1, for two values of 8/a: (a) 8/a =0.02; (b)
5/a =0.05.

FIG. 9. Frequencies of surface plasmons on a randomly
rough surface as obtained from the positions of the peaks in the
spectral density Eq. {6.1) (solid line), and from the lowest order
approximation in the surface profile function (dashed line), for
6/a =0.05.



for 5/a =0.05. It is seen that the splitting of the disper-
sion curve obtained in the present calculations exceeds
that calculated in the lowest-order approximation for
0.3 (g (2.

VII. DISCUSSIQN

Although the results of the present self-consistent cal-
culation of the proper self-energy of a surface plasmon on
a randomly rough surface and those of the lowest-order
approximation may not differ significantly for frequencies
far from resonance, where y(co) is no longer of O(5/a),
but instead is of O(5 /a ), there are significant differ-
ences between them in the resonance region, i.e., for fre-
quencies in the vicinity of the peaks in the spectral densi-
ty. These differences are manifested iI. a slightly larger
splitting between the two branches of the surface-plasmon
dispersion curve, and a much larger damping of the sur-
face plasmon, for a given value of the corrugation
strength 5/a and dimensionless wave vector g =q

~ ~

a. The
results of the present calculations show, for the first time,
the necessity of including contributions of the form of
[(5/a)/y(co)]" for all n in calculations of resonant proper-
ties of surface plasmons on randomly rough surfaces.

Surface plasmons at a planar metal/vacuum interface
are comparatively unusual among surface excitations in
having a dispersion curve that is dispersionless, i.e., in-
dependent of both the magnitude and direction of the
two-dimensional wave vector characterizing their propa-
gation across the interface. It is this feature of their
dispersion curve that is ultimately responsible for its split-
ting into two branches at a randomly rough
metal/vacuum interface, ' and consequently for the result
that y(co) is of O(5/a) at resonance, which underlies the
present work. Surface excitations whose dispersion curves
are wave-vector dependent do not display roughness-
induced splittings. The summation of higher-order terms
in the determination of the corresponding self-energies, of
the kind carried out in this paper, is therefore not expect-
ed to have dramatic consequences for the frequencies of
thcsc cxcltatlons. Thc sltuatl OIl with Icspcct to thc ll fc-
times of such excitations may be quite different, however.
The results of the present work, which show that B self-
consistent calculation of the self-energy of B surface
plasmon ylclds B slgIllflcBIlt increase of its 11TlaglnBIy part
over the value obtained from the lowest-ordcr-
perturbation theoretic calculation, suggests that a similar
result may be obtained for dispersi. ve surface excitations Bs
well.

It would therefore be of considerable interest to reexam-
ine the determinations of the dispersion curve for surface
polaritons on a randomly rough surface by Krctschmann
and Kroger, Maradudin and Zierau, and Toigo et OI. ,

'

from this point of view. A first step in this direction has
been taken by Hailer, " but in this work approximations
were made in deriving the nonlinear integral equation for
the surface-polariton self-energy, and additional work on
this problem remains to be done.

At the same time the propagation of Rayleigh-surface
acoustic waves' ' and of shear horizontal surface acous-
tic waves' ' across randomly rough surfaces has been
studied theoretically, as well as the energy levels of elec-
trons in a thin film with one randomly rough surface, '

and magnetic surface excitations on a randomly rough
surface, ' ' plasmons in a randomly rough sphere, ' elec-
tronic energy levels ln randomly rough spheres ' and
polaritons in randomly rough cylinders. In each of these
calculations only the contribution to the corresponding
self-energy of lowest nonzero order in the surface profile
g(x~~) was kept. It seems likely that a recalculation of
these self-energies in the resonance region by the kind of
infinite-order perturbation calculation presented here
would lead to rather smaller mean-free paths for the cor-
responding surface excitations than are predicted by the
existing calculations.

A worthwhile topic for further study in the context of
such calculations is the extent to which vertex corrections
can be incorporated into them. It seems clear that
I (q~~., p~~ ~

co) is a function of q~~ and p~~ only through the
magnitudes of these wave vectors and of the cosine of the
angle between them, and this result may serve as the basis
for a systematic approximation scheme for the inclusion
of vcrtcx corrections.

Finally, wc note that recent calculations of the disper-
sion curves of surface plasmons on deterministic, periodi-
cally corrugated surfaces ' revealed an infinite number
of branches in these curves, disposed essentially symmetri-
cally about the (dispersionless) dispersion curve for
plasmons on B fIBt surface. To obtain such B multiplicity
of branches in the present calculation it is necessary
to retatn the htgher-order terms, K (

qadi,

pii ~

co),
E (q~~, p~~ ~

co), . . . in the expansion (5.2) of the kerIlel in
the integral equation (5.1). Such a calculation has not
been carried out yct.
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