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Surface-orientation dependence on the segregation energies of impurities
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We present the influence of the surface orientation on the band contribution to the segregation en-

ergy, within the tight-binding model, for fcc crystals. These results confirm that nondense surfaces
favor the segregation, as experimentally observed. "Complex-energy-plane integration" for occu-

pancy numbers, or energies, is also discussed.

I. INTRODUCTION

Concentration profiles can be obtained by different
techniques such as Auger-electron spectroscopy (AES),
ion spectroscopy, neutral retrodiffusion spectroscopy, x-
ray photoelectron spectroscopy (XPS), secondary-ion mass
spectroscopy (SIMS), and field-ion microscopy (FIM),
each having its specific depth resolution. AES and XPS
show integrated signals over several layers whose indivi-
dual contribution cannot always be deconvoluted in an ob-
vious and unique way. SIMS has the problem of different
cross sections for sputtering different elements. Atom-
probe FIM is able to count the individual atoms on each
face of the tip atomic layer by atomic layer by field eva-
poration. Some of these techniques show a face orienta-
tion dependence of the surface segregation. ' Ng et al. '

fit a bond model and a macroscopic elastic strain model to
their experimentally obtained concentration profiles.

In a recent paper, the authors extended the theory of
the electronic structure of a substitutional impurity versus
the position to the surface which allows determination of
the band contribution to the segregation enthalpy. Self-
consistency for the perfect semi-infinite medium, as well
as for the impurity potential (of finite spatial ranges as-
sumed to be localized on one side in the applications) was
imposed. The results for the segregation of impurities of
the first transition-metal series in semi-infinite nickel
bounded by a (111) surface were reported. In order to
bring this problem into tractable form, the recursion
methods for computing local Green's functions of Hay-
dock et al. and complex-energy-plane contour integration
for quantities such as the total number of electrons on a
site or the segregation energy were used. This technique
was already known to Kohn and Sham. It was
rediscovered independently by Daniel, and used by
Koenig. The full extensions to quantities such as
charges, magnetic moments, spin-wave stiffness constant,
and energies were done by one of the authors until 1975,
and later by others. ' Working on dilute impurities in
bulk by Korringa-Kohn-Rostoker (KKR) techniques, '

Zeller, Deutz, and Dederichs realized that they could use
this technique to reduce their computation time by a fac-
tor of about 100 instead of integrating, as is usually done,
over the density of states for real energies. Others also
realized the usefulness of this trick, ' which introduces
nothing new to physics, but makes possible precise and

tractable applications.
We apply the method developed in Ref. 3 to (001) and

(110) fcc surfaces; we have to build symmetry-adapted lo-
cal orbitals, to the local symmetry broken by the surface
plane, and to determine the corresponding independent
Green's-function matrix elements (Sec. III). In con-
clusion, we show that the results confirm the experimental
trend that segregation is favored in almost all of the cases
toward open nondense surfaces.

II. COMPLEX-ENERGY-PLANE
CONTOUR INTEGRATION

Often, one has to compute occupation numbers, ener-
gies, etc., for fermions,

3 = I r(E)f(E)dE, (2.1)

E
r(E)dE . (2.2)

The spectral density has some analytical continuation in
the complex-energy plane, called R(z). The singularities
of R (z) consist of poles (bound states) and branch cuts
(continuum spectrum), all on the real axis for Hermitian
Hamiltonians H and having the conjugation property

R(z*)=R*(z) . (2.3)

Thus

r(E)= lim
g—+0

1
[R (E +i e) R(E i@)],——

2&l
(2.4)

and (2.1) becomes a contour integral

I R (z)dz,1

2m.i
(2.&)

where C& is a contour around the real axis from Ez+i e to
EF i@, turning at ——oo (regularly, since the spectrum has
a lower bound) (Fig. 1). Via the Cauchy theorem, this

where r represents some spectral density, and f the Fermi
function. The contour integrals related to these quantities
are well-known in the temperature-dependent Green's-
function method, ' ' and the remainder of this section
can be considered as the limiting case for vanishing tem-
perature; indeed, since f becomes a step function: 1 (0)
below (above) the Fermi energy EF..
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FIG. 1. Complex contour path for integration of (2.1).

path can be deformed into any path not crossing the
singularities; among them, the most convenient is C2, a
Bromwitch line from EF—i oo to Ez+i oo, closed by a
half-circle at infinity [Re(z) &EFj. This is the path which
avoids, at best, the singularities on the real axis (branch
cuts for continuous spectrum, poles for bound states).

Owing to the symmetry (2.3), 2 becomes

1 co

R z dz+ — ReA EI;+iy dy . 2.6
2ni h. c.

The contributions of the half-circle (h.c.) and the fastness
of convergence of the second term depend on the asymp-
totic form of R (z); R (z) may be expanded into a Laurent
series at infinity,

(2.7)

(moment expansion).
In the case of diagonal elements of Green's-function

matrix, a=1, and the contribution of the first term of
(2.6) (residue at infinity) is —,po (po ——1 for local orbital di-
agonal contribution). In the case of the energy, we obtain

a similar result; if G(z) is the continuation of the density
of states r (E), zG(z) —1 is a good candidate for the band
energy En(E), the second moment pt (center of gravity of
the band) playing the role of po. &f the expansion (2.7)
starts with a) 2, the contribution of the half-circle van-
ishes (Jordan's lemma' ). The asymptotic form (2.7) may
also be used to impose rigorous bounds on the precision of
the second term of (2.7). We mention that the sampling
on y should be made with the bandwidth as scale in (2.6);
Gaussian integration may then be used.

III. SYMMETRY-ADAPTED ORBITAI.S
FOR fcc (001) AND (110)SURFACES

As in Ref. 3, for the (111) semi-infinite medium, we
built symmetry-adapted orbitals induced by the broken
mirror symmetry for (001) and (110) surfaces. The residu-
al point-group symmetry is, respectively, C4„and D2. In
Table I, we report the corresponding orbitals. The selec-
tion rules for the Green's-function matrix elements of the
ideal semi-infinite medium localized on a site are, respec-
tively, with the convention of Table I,

0 0 0 0 0
81 611~ g2 622 ~33~ 84 644~ gs 655

and otherwise 0 for (001) surfaces,

0 0 0
g 1 +11 g2 622 g3 633

(3.1)

0 0 0 0$4=644 Ss =655 86=G45 =Gs4

and otherwise 0 for (110) surfaces.
We built them as continued fractions with the recursion

method. We mention that in the case of opened surfaces,
the argument invoked in Ref. 3 is that for the prolonga-
tion of a and b, the energy support of the spectrum
cannot be further identified with the bulk one. In the case
of opened surfaces, a surface-state continuum not strictly
overlapping with the bulk one, is superimposed near the
surface. We chose the best energy segment, in the sense of
Pettifor. ' We apply this formalism to Ni with the same
convention as in Ref. 3 and the same set of parameters.

In Figs. 2 and 3, we report the corresponding spectral

Table I. fcc (001) and (110) surface-adapted d harmonics [a={15/4~) ~ ]. All irreducible representations are one dimensional, ex-
cept I"' (which is two dimensional).

Bulk symmetry Bulk Op Label

fcc (001) surface
bounded semi-

infinite C4, Comments

fcc (110) surface
bounded-semi-

infinite D2 Comments

waxy

Ayz

o.xy

ayz

p4

I 5

——(x —y )
2

2

{yz —zx)a
2

{yz +zx)
2

I 2

(x 2 y2)
2

{3z~—r )
12

(x 2 y2)
2

{3z —r )
12

p2 cxxy

(3z —r )
V'12
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FIG. 2. Spectral densities ( n lmg;), i—=1, 2, 3, and 4 [(a), (b), (c), and (d)] and total density of states (e) vs the plane position rel-
ative to the surface (001) (first plane); the bulk is represented the sixth plane on up.

densities. We recover the surface state in the middle of
the band for the (001) and (110) mainly on the first plane.
This position corresponds to a dip of density of states for
the bulk. These surface states appear only for the orbitals
pointing out of the surface; the others [Figs. 2(c) and 2(a)]
do not exhibit this surface state. The interorbital term g6
for the (110) surface falls rapidly down with the distance
to the surface. %'e also observe, in some cases, a peak on
the top of the band which may not be physical, but related
to the termination of continued-fraction coefficients. '

These matrix elements are needed for the determination
of the phase shift induced by the perturbing potential of
the substitutional impurity located at site R,

1 E
Ed(R) =ZEF ——I rl(E,R)dE,

(3.4)

This determinant factorizes according to the irreducible
components f(3.1) and Table I].

With the auxiliary hypothesis that the extension of the
potential is limited to its own site, only diagonal matrix
elements survive; if we suppose further that these values
are equal, the calculation becomes parameter-free, if
completed with Friedel's sum rule.

The dissolution Ed and segregation E, energies within
the hypothesis of paper, retain only one-electron contri-
butions, which are given by

Z (R,z) =Tr in[1 —V (R )Go(z) ] . (3.2) E,(R) =Ed(R) Ed( oo ), —

i)(E)=argdet[1 —Vz(R)G (E+ie)] . (3.3)

The physical phase shift, rl(E), being in fact the ima-
ginary part of it as z~E+ie, the infinity being located in the bulk, far from the surface;

E~ is the Fermi energy of the system. We present in
Table II the results for the self-consistent potentials and
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Fl+. 3. Spectral densities ( n Img;), i= 1—, 2, 3, 4, 5, and 6 [{a),(b), (c), (d), {e), and (f), respectively] and total density of states (g)
vs the plane position relative to the surface {110)(first plane); the bulk is represented from the sixth plane on up.

the segregation energy for (001) and (110) surfaces.
The comparison of the segregation energies obtained

with Pettifor and Beer prescription' to the same quanti-
ties with the bulk termination (Ref. 3) shows that (i) there
is no qualitative difference in the tendency to segregation
(sign of the segregation energies), and also shows (ii)
minor quantitative modifications for the (110) surface, but
more significant variations for the (001) surface.

IV. APPLICATION TO SEGREGATION
ON DIFFERENT Ni FACES

Our results show clearly a strong surface dependence to
the surface-plane crystallographic orientation. It can even
happen that the solute segregates on some faces, but not
on others. This result cannot be obtained in the ideal solu-
tion model. ' lt appears that the more the surface is not
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TABLE II. {a) Impurity-perturbing potentials and (b) segregation energies vs position in fcc (001) or (110) surface-bounded semi-

infinite Ni (in Ry).

purity
Plan

Surface (001)
1

2
3
4
5

0.087 065
0.125 252
0.207 322
0.155 682
0.119986

Cr

0.058 341
0.065 539
0.089 193
0.080058
0.067 117

0.041 785
0.040 990
0.051 478
0.050 190
0.043 765

Fe

(a)
0.028 824
0.025 896
0.030 843
0.031 658
0.028 317

Co

0.015 946 0.000000
0.013480 0.000 000
0.015 380 0.000 000
0.016281 0.000 000
0.014 805 0.000000

—0.024 758
—0.018 618
—0.019459
—0.021 321
—0.019 873

ZIl

—0.080 553
—0.051 412
—0.050 277
—0.056 915
—0.054 967

Surface (110)
1

2
3
4
5

0.059 993
0.091 252
0.163 859
0.116367
0.124 192

0.041 325
0.056 219
0.075 359
0.067 711
0.068 097

0.030 955
0.039 179
0.045 299
0.044 583
0.043 981

0.022 586
0.025 964
0.027 934
0.029 113
0.028 312

0.013 316 0.000 000 —0.022 944 —0.078 699
0.013415 0.000 000 —0.017204 —0.047 788
0.014093 0.000 000 —0.017756 —0.045 994
0.015 515 0.000 000 —0.022 208 —0.064 560
0.014 772 0.000 000 —0.019734 —0.054 141

Surface (001)
1

2
3
4
5

Surface (110)
1

2
3
4
5

—0.153 319
0.007 566
0.156 592
0.085 869
0.008 490

—0.268 414
—0.078 878
—0.094 598
—0.000 597

0.018 814

—0.065 894
—0.011 562

0.100054
0.066 746
0.007 013

—0.163 926
0.049 675
0.040 619
0.011 118
0.011473

—0.021 301
—0.020 244

0.049 078
0.044 384
0.003 698

—0.095 691
—0.026 455

0.009 911
0.010441
0.004 841

(b)
—0.000 107
—0.020 324

0.017253
0.025 295
0.000 621

—0.049 249
—0.016981
—0.004 531

0.007 811
—0.000 405

0.007 467 0.000 000
—0.012 615 0.000 000

0.002 812 0.000 000
0.011 199 0.000 000

—0.000 741 0.000 000

—0.014 596 0.000 000
—0.012 029 0.000 000
—0.007 712 0.000 000

0.005 796 0.000 000
—0.001 112 0.000 000

—0.043 385
0.013914
0.007 210

—0.010943
0.002 005

—0.026 630
0.025 977
0.022 689

—0.020 524
—0.003 405

—0.244 189
0.038 896
0.052 868

—0.012 832
0.004 642

—0.227 870
0.071 285
0.093 287

—0.089 869
0.012 862

dense, the more the segregation is favored; this fact can be
correlated to the existence of surface states below the Fer-
mi level. Only noble-metal impurities do not comply to
this rule in our pure tight-binding model without lattice
strain.

We can summarize the following results for the Ni host.
(i) A strong segregation for vanadium and chromium

solutes exists, which is enhanced on open surfaces. We
found no experimental results for vanadium. In the case
of chromium, our results agree with the results of Mosser
and Werckmann, who studied the (001) surface only.

(ii) Iron and manganese exhibit a similar behavior;
segregation for the (110) and (001) surfaces, and none for
(111). The NiMn system has not been experimentally
studied; we dispose of extensive data on XiFe. We find a
small negative segregation energy for the plane (100).
This result may not be too significant due to the errors in-
troduced in our calculation by the termination for the con-
tinued fraction, and also due to the fact that we neglected
other contributions to the segregation energy (size effects).
But this result agrees with Brundle et al. ' and Greco
et al. results. The slight enrichment in Ni that Wandelt
and Erlt found on a polycrystalline sample may confirm
our result, that segregation occurs for some faces only.

(iii) We find a cobalt segregation on the (110) surface,
and none for (001) and (111). We found no experimental
results for this system.

(iv) We obtain a strong surface segregation for zinc and
copper for the three faces studied. There are no experi-
mental results available for XiZn; XiCu is in agreement
with the experimentals results (see Ref. 3), but contradicts
result of the (111) surface of Wandelt and Brundle and
Ng, Tsong, and MacLane'; we found a stronger segrega-
tion for this surface as we did for the (001) one.

Our formalism also permits us to obtain concentration
profiles. The concentration profile is surface orientation
dependent. It is very difficult to obtain experimental con-
centration profiles. In the case of the three orientations,
(001), (110), and (111), we found a strong segregation of
Cu on the surface plane and a Cu depletion on the next
two planes. This agrees with the experimental results of
Ng et aI. ' and Webber et a/. Ng et a/. ' found that the
Cu enrichmer~t on the surface plane as well as the Cu de-
pletion on the next layers should be in the order of
(110)&(001)&(111). Our model fulfills the general con-
centration profile curve, but not the exact face orientation
order shown above.

V. CONCLUSION

In this paper we have detailed the complex-energy-plane
integration method which allows us to calculate directly
integrated quantities in the most economical and accurate
way (densities of states, total, number of electrons, band
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energies, magnetization, etc.).
We determined the band contribution to the segregation

energy of an impurity in a semi-infinite medium within
the tight-binding model. This microscopic model is com-
pletely parameter free and gives qualitative and quite
quantitative results, which agree with the available experi-
mental data. It has been shown for d impurities in semi-
infinite Ni host, that the segregation is surface-orientation
dependent; for some impurities we may observe segrega-

tion for certain faces and not for others. For transition
impurity, the more the surface is open the more the segre-
gation is favored. The concentration profiles are also
surface-orientation dependent, and in all cases they
present an oscillatory character. Our calculation neglects
the lattice strain induced by the impurity, which needs to
be introduced when solvent and atom sizes differ too
much. A more complete study must take all these contri-
butions into account.
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