PHYSICAL REVIEW B

VOLUME 28, NUMBER 10

15 NOVEMBER 1983

Excited Wannier excitons in half-space geometry

1. Balslev
Fysisk Institut, Odense Universitet, Campusvej 55, DK-5230 Odense M, Denmark
(Received 4 February 1983)

The two-body problem of an electron-hole pair near a crystal surface is solved within the frame-
work of the adiabatic approximation which is valid for small reduced-mass to total-mass ratios.
Wave functions and eigenenergies associated with the relative motion are calculated as a function of
center-of-mass depth for states derived from n =2 excitons. Only optically allowed states are stud-
ied, namely the two 2s2p, admixtures which become two nondegenerate states near the surface.
The computations are based on discretization in space with the use of the finite-element method.

I. INTRODUCTION

Great interest has been devoted to the influence of a
crystal surface on Wannier excitons.!™!* The predom-
inant intrinsic surface effect conventionally described by
the exciton-free layer? is due to the short-range forces act-
ing on the electron and the hole.>” So far it has not been
possible to perform an accurate theoretical treatment of
the relevant two-body problem, but some insight is gained
by applying the adiabatic approximation®’ or studying a
one-dimensional model.!* 14

In contrast to the above-mentioned works the present
paper deals with the influence of a surface on higher-lying
exciton states, specifically those derived from the n =2
bulk exciton state. Unlike n =1 states, the n» =2 and
higher states are sensitive to the reduction of spatial sym-
metry near a surface. This leads to level splitting in the
adiabatic approximation. A further complication of
higher exciton states is that the variational calculation
used for n =1 excitons®’ is inadequate.

In the search for alternative computational methods it
turned out to be extremely difficult (if not impossible) to
avoid the brute-force method based on discretization in
space. Thus the author was unable to find a suitable series
expansion based on nonlocalized basis functions fulfilling
the appropriate boundary conditions. With discretization
in space it was advantageous to use the finite-element
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method! rather than simple difference equations derived
from the wave equation. Methods based on discretization
in space, particularly the finite-element method, are rarely
used in quantum mechanics but are quite common when
solving engineering problems in heat conduction, dif-
fusion, fluid flow, electromagnetism, etc. The present
treatment of the n =2 excitons applies the adiabatic ap-
proximation®’ and focuses on eigenenergies and eigen-
functions associated with the relative motion. These
quantities can be used in a polariton model because they
define the resonance frequency and oscillator strength as
functions of depth below the surface.”!!:1416

II. EXCITON NEAR A SURFACE

Let us consider a semi-infinite crystal at z>0. The
electron-hole wave function ¥(71,,7}) and the exciton en-
ergy E (relative to the band gap) are determined by
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Here m, and m,, are the effective masses of electron and
hole, respectively, € is the dielectric constant, and V; is a
potential due to the surface at z =0. As in Ref. 7 the fol-
lowing two intrinsic contributions to V; are considered.
(a) The image charge forces leading to

ST e4ep 4me |4z, | 4z,

and (b) short-range forces the effect of which can be
described by the boundary conditions
¥=0 f <0,
of Ze = 3)
¥=0 for z, <0.

With a general mass ratio Eq. (1) is too complicated to
handle. We therefore apply the adiabatic approximation
valid in the limit u/M << 1, where u and M are the re-
duced mass and total exciton mass, respectively. Then

[(xe —x3) 4+ (ye —y1)*+ (2, +2,)]'

l , (2)

[
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V=g, .(T;Z)G(R), 4

where ¥'=(x,y,z) and ﬁ:(X, Y,Z) are relative and center-
of-mass coordinates, respectively, and g, ,, and G are solu-
tions to
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and

2
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G(R)=0. (6)
Here p counts the eigenenergies E,(Z) and m is the mag-
netic quantum number (with quantization along the z
axis). In the bulk (Z— «), p should be replaced by the
hydrogenic quantum numbers n,/. For simplicity the
present analysis will be restricted to m =0 states with
8p(T;Z)=g, o(T;Z). The relevant solutions to Eq. (5) are
those fulfilling the boundary conditions in relative space
given by

8 (132)=0 forz< —ZM/m, ,
8,(13Z)=0 forz>ZM/m, .

@)

Considering only closed-orbit excitons (E,(Z)<0), g
goes to zero exponentially for || going to infinity.
Therefore, in a numerical treatment it is appropriate to
use the boundary condition

8(T52)=0 for |T| > 7max » (8)

where 7,4 is chosen sufficiently large.

III. NUMERICAL METHOD
An approximate solution to Eq. (5) can be expressed as

8 (T3 Z)= 2 (Z);(r,0) , 9)

where (r,0,¢) are spherical coordinates in relative space,
C,,i(Z) are expansion coefficients, and v;(,0) are element
functions of the finite-element method. The following bi-

linear form of v;(7,0) has been chosen:
0 for |6—06;| >A0, |r—r;| >Ar

10

v(r,@)=1|r—r* 0—6* (19

otherwise
6;,—6 ’

r,-——-r*

where r;,6; are coordinates about which v;(7,6) are local-
ized, Ar and A6 are increments between neighboring
points, and r*,6* are corner coordinates r;+Ar,0;+A0
closest to 7,6. Figure 1 shows the typical choice of coor-
dinates 7;,0;. Note that the conditions (7) are incorporat-
ed by omitting points outside and on the zigzag curve
shown. With the use of form (10) one obtains
v;(r;,0;)=0;; and that C,;(Z) are approximate values of
gp at (r;,0; ). According to Ref. 15 the coefficients C, ;(Z)
can be calculated from the equations

2 {(Z)M;;(Z)=0 (11)
where
ﬁZ - - e2
M,_,(Z)— f 2# VU, VUJ+ [ — dmer
- Ep(z)l d’r
(12)

I. BALSLEV 28

-

_z.r%.h 0

FIG. 1. Domain in the x-z plane of relative space showing the
boundary and elementary points (r;,6;) used in the finite-element
method. Dots are elementary points, dashed inset is the limita-
tion of a single basis function v;(#,0), and solid lines indicate the
curves on which the approximate function f(T;Z;E,) of Eq.
(16) is zero.

Equation (11) is a generalized eigenvalue problem which
in case of closely lying eigenvalues is somewhat compli-
cated to handle. In the present treatment it was preferred
to solve the following modification of Eq. (5):

#_, el 8(r —rp)
——Vo—— 4V (T, Z)—E T, Z;E))=——"5—
2,& T 4y + S(r ) 0 f(r ()) 47rr(2,

(13)

where E; (as Z) is a free parameter and r, in the source
term 8(r —ry) is much smaller than the exciton Bohr ra-
dius ap.'” Expanding f(7;Z,E,) in -eigenfunctions
8,(T;Z) one obtains

8 (1:2) [ g,
4mri[E,(Z)

T52Z)8(r' —ro)dr'
—E]

f(TZE))=3, (14)
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Here we have used that all eigenstates g,(T;Z) are nonde-
generate. For r,—0 we may write

gX0;2)

f(0;Z;Eg) ~ E—E;(TEO .

p

(15)

It is seen that dependence on E, of f(6;Z;E0) is
characterized by poles at the eigenstates unless
gp(6;2)=0. f(0;Z;E,) has a direct physical meaning in
case of optical excitonic reasonances. Then, in the limit
u/M—0, f (6;2 ;Ep) is proportional to the excitonic sus-
ceptibility at the depth Z and at a frequency (—E)/#%
below the gap frequency. In the determination of
f(T;Z ;E,) we write

f(TZ;Ey)= 3, C*(Z,E)v;(r,0) (16)
i
and
2 CHZ,EOMH(Z,Eq) =05 , (17)
where
P R
M3(Z,Eq)= [ 20 VoV
+ |V,—E e vv; |d3r (18
ST rrer |1 )
and
Qf = fviS(r—ro)d3r. (19)

Equation (17) represents linear equations with solutions
for all Z and Ey+#E,(Z).

The exact matrix elements M,j were calculated analyti-
cally except for the contribution involving ¥;. For this
the approximation

[ Voo, dr = V(5T +3752) [ v, d’r (20)
was used. The region bounded by O<r <Arand O <8 <7
was covered by a single-element function v, given by

- s

0 Ar
Inside this region the Coulomb potential is singular, but
the matrix elements involving the element v, are finite.

(21)

IV. RESULTS AND DISCUSSION

The calculations were performed with 7., =16ap,
Ar =0.3ap, A0=0.15 rad, ry=0.3ap, u/M =0.1, and
€/€y=8. It was checked that the solutions for £ (0;Z;E)
were reasonably independent of the computational input
variables Ar,A0,7,.,. Bulk solutions (calculated with
Z >Fmax, Ar=0.3ag, and AO=m) revealed poles of
f(0; 0;E,) for Eo=—E, and —E, /4 (E, is the exciton
Rydberg) in agreement with the analytical result for hy-
drogen. The interest was focused on the n =2 level, so the
linear equations [(Eq. 17)] were solved for about 200 dif-
ferent values of (Z,E,) in the range 0.5a3 <Z < 10ap and
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FIG. 2. Computed values of f(0;Z;E,) for Z =6.3az. Dots
are computed points while solid lines are drawn as guide for the
eye.

—0.33E, <Ey< —0.14E,. A typical dependence on E,
of f(0;Z;E,) is shown in Fig. 2 (with Z =6.3ap) where
two poles are clearly seen. Following the energies E,(Z)
of the poles to lower and higher values of Z one obtains
the full dependence of E,(Z) as shown in Fig. 3. The en-
ergies of the two sublevels in the investigated range are
well represented by the expression

—++0.26exp(—Z /2a)
E,(Z)/E.,= ) (22)
—7+1.1exp(—Z /2a)

The two residues of f(0;Z;E,) at E,=E,(Z) turned out
to be comparable and approximately independent of Z.
Thus the oscillator strength of the bulk n =2 excitonic
resonance is essentially evenly distributed on the two sub-
levels.

The findings shown in Figs. 2 and 3 agree well with
symmetry arguments: The 2p2s bulk level splits near a
surface into a doubly degenerate m ==+1 level and two
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FIG. 3. Energy shifts E,(Z) of the two m =0 sublevels de-
rived from the n =2 bulk exciton with /M =0.1 and €/€,=38.
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nondegenerate 2s-2p, admixtures with finite values of
gp(ﬁ;Z). The energy shift would have an inverse cubic Z
dependence if image charge forces were dominant. The
fact that the shifts are proportional to exp(—Z /nag) indi-
cates that these are mainly due to cutoff forces (as is the
case also for n =1 excitons in the hydrogen limit?).

V. CONCLUSION

The present study of exciton states in half-space
geometry revealed a well-defined splitting of the n =2 lev-
el. Among the applications of the result is the calculation
of normal incidence reflectance spectra based on a polari-
ton model including spatial dispersion.!®

The results of the present work were obtained by the
finite-element method, an unconventional computational
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technique in quantum mechanics. The method proved
very efficient in the solution of a problem with two in-
dependent spatial variables (r,6). It is under consideration
to extend the calculation to include Z as a third spatial in-
tegration variable in order to avoid the adiabatic approxi-
mation. In that case the polariton theory developed by
Stahl'® should be used as a basis for the numerical treat-
ment.
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