
PHYSICAL REVIEW B VOLUME 28, NUMBER 10 15 NOVEMBER 1983

Excited Wannier excitons in half-space geometry
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The two-body problem of an electron-hole pair near a crystal surface is solved within the frame-
work of the adiabatic approximation which is valid for small reduced-mass to total-mass ratios.
Wave functions and eigenenergies associated with the relative motion are calculated as a function of
center-of-mass depth for states derived from n =2 excitons. Only optically allowed states are stud-

ied, namely the two 2s2p, admixtures which become two nondegenerate states near the surface.
The computations are based on discretization in space with the use of the finite-element method.

I. INTRODUCTION

Great interest has been devoted to the influence of a
crystal surface on Wannier excitons. ' ' The predom-
inant intrinsic surface effect conventionally described by
the exciton-free layer is due to the short-range forces act-
ing on the electron and the hole. ' So far it has not been
possible to perform an accurate theoretical treatment of
the relevant two-body problem, but some insight is gained
by applying the adiabatic approximation ' or studying a
one-dimensional model. ' '

In contrast to the above-mentioned works the present
paper deals with the influence of a surface on higher-lying
exciton states, specifically those derived from the n =2
bulk exciton state. Unlike n =1 states, the n =2 and
higher states are sensitive to the reduction of spatial sym-
metry near a surface. This leads to level splitting in the
adiabatic approximation. A further complication of
higher exciton states is that the variational calculation
used for n = 1 excitons ' is inadequate.

In the search for alternative computational methods it
turned out to be extremely difficult (if not impossible) to
avoid the brute-force method based on discretization in
space. Thus the author was unable to find a suitable series
expansion based on nonlocalized basis functions fulfilling
the appropriate boundary conditions. With discretization
in space it was advantageous to use the finite-element

method' rather than simple difference equations derived
from the wave equation. Methods based on discretization
in space, particularly the finite-element method, are rarely
used in quantum mechanics but are quite common when
solving engineering problems in heat conduction, dif-
fusion, fluid flow, electromagnetism, etc. The present
treatment of the n =2 excitons applies the adiabatic ap-
proximation ' and focuses on eigenenergies and eigen-
functions associated with the relative motion. These
quantities can be used in a polariton model because they
define the resonance frequency and oscillator strength as
functions of depth below the surface. ""'

II. EXCITON NEAR A SURFACE

Let us consider a semi-infinite crystal at z)0. The
electron-hole wave function 0'(r„r/, ) and the exciton en-

ergy E (relative to the band gap) are determined by

2

V, — V„— +V, —E 4=0.
2m, '

2mh 4~a
~
r, —r/,

Here m, and m~ are the effective masses of electron and
hole, respectively, e is the dielectric constant, and V, is a
potential due to the surface at z =0. As in Ref. 7 the fol-
lowing two intrinsic contributions to V, are considered.
(a) The image charge forces leading to

p e2
V, =

6 +cp 4&6 4ze 4zg [(x,—x/, ) +(y, —y/, ) +(z, +z/, ) ]'

and (b) short-range forces the effect of which can be
described by the boundary conditions

4 =g~ ( r;Z)G (R), (4)

4=0 for z, &0,
%=0 forz„&O.

(3)

where r =(x,y, z) and R=(X,Y,Z) are relative and center-
of-mass coordinates, respectively, and gz and G are solu-
tions to

With a general mass ratio Eq. (l) is too complicated to
handle. We therefore apply the adiabatic approximation
valid in the limit p/M «1, where p and M are the re-
duced mass and total exciton mass, respectively. Then

+ V, (r;Z) —E~(Z) g~ (r;Z) =0
2p 4&ED'
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where r is~» 's chosen sufficientl y arge.

III. NUMERICAL METHOD

An approximate solution to E . (5'q. j' can be expressed as

gp(r;Z) = g Cp;(Z)u;(r, 8),

where (r, 8, ) areare spherical coordinates
'
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f(r;Z;Ep)= gC*;(Z,Ep)u;(r, 8) (16)

Here we have used that all eigenstates g~(r;Z) are nonde-
18generate. For rp~0 we may write

g~(0;Z)f( 0; Z;Ep)= g
p p 0

It is seen that dependence on Ep of f(0;Z;Ep) is
characterized by poles at the eigenstates unless

g~(0;Z) =0. f (0;Z;Ep) has a direct physical meaning in
case of optical excitonic reasonances. Then, in the limit
p/M~O, f(0;Z;Ep) is proportional to the excitonic sus-
ceptibility at the depth Z and at a frequency ( —Ep ) /A
below the gap frequency. In the determination of
f (r;Z;Ep) we write
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FIG. 2. Computed values of f (0;Z;Ep) for Z =6.3a~. Dots
are computed points while solid lines are drawn as guide for the
eye.

y C,*(Z,E,)M,*,(Z,E, ) =g,', (17)

where

M,'(Z, Ep)= f V'u; Vuj.lJ 0 0 2 1 J

e+ V —Ep- Ug VJ d P'

4ner (18)

—0.33+ &Qp & —0.14'.. A typical dependence on Ep
of f (0;Z;Ep) is shown in Fig. 2 (with Z =6.3az) where
two poles are clearly seen. Following the energies E~( )

of the poles to lower and higher values of Z one obtains
the full dependence of E&(z) as shown in Fig. 3. The en-
ergies of the two sublevels in the investigated range are
well represented by the expression

Q,*=f u;5(r rp)d r . —

Equation (17) represents linear equations with solutions
for all Z and Ep&E&(Z).

The exact matrix elements M;J were calculated analyti-
cally except for the contribution involving V, . For this
the approximation

f V, u;u. d r= V, ( —,
' r;+ —,

'
r~;Z) f u;u~d r (,20)

was used. The region bounded by 0 & r & Ar and 0 &!9& ~
was covered by a single-element function up given by

—
~ +0.26 exp( —Z/2a)

E~(z) /E„~ ——,
' + l. 1 exp( —Z /2a )

The two residues of f(0;Z;Ep) at Ep=E~(z) turned out
to be comparable and approximately independent of Z.
Thus the oscillator strength of the bulk n =2 excitonic
resonance is essentially evenly distributed on the two sub-
levels.

The findings shown in Figs. 2 and 3 agree well with
symmetry arguments: The 2p2s bulk level splits near a
surface into a doubly degenerate m =+1 level and two

Ar —r
Uo=

Ar
(21)

Inside this region the Coulomb potential is singular, but
the matrix elements involving the element Up are finite.

IV. RESULTS AND DISCUSSION

The calculations were performed with r „=16az,
Ar =0.3a&, 50=0.15 rad, r p

——0.3a» p/M =O. 1, and

e/ep ——8. It was checked that the solutions for f (0;Z;Ep)
were reasonably independent of the computational input
variables b,r, b, 8,r,„. Bulk solutions (calculated with
Z & r,„, b, r =0.3az, and 68=rr) revealed poles o

f ( 0; ao, Ep) for Ep —— E„and E„/4 (E—„ is the ex—citon
Rydberg) in agreement with the analytical result for hy-
drogen. The interest was focused on the n =2 level, so the
linear equations [{Eq. 17)] were solved for about 200 dif-
ferent values of (Z,Ep) in the range 0.5az & Z ~ 10a~ and
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FIG. 3. Energy shifts F~(Z) of the two m =0 sublevels de-
rived from the n =2 bulk exciton with p/M =0. l and e/Ep ——=8.
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nondegenerate 2s-2p, admixtures with finite values of
gz(0;Z). The energy shift would have an inverse cubic Z
dependence if image charge forces were dominant. The
fact that the shifts are proportional to exp( Z—lna~) indi-
cates that these are mainly due to cutoff forces (as is the
case also for n = 1 excitons in the hydrogen limit ).

V. CONCLUSION

technique in quantum mechanics. The method proved
very efficient in the solution of a problem with two in-
dependent spatial variables (r, g). It is under consideration
to extend the calculation to include Z as a third spatial in-
tegration variable in order to avoid the adiabatic approxi-
mation. In that case the polariton theory developed by
Stahl' should be used as a basis for the numerical treat-
ment.

The present study of exciton states in half-space
geometry revealed a well-defined splitting of the n =2 lev-
el. Among the applications of the result is the calculation
of normal incidence reflectance spectra based on a polari-
ton model including spatial dispersion. '

The results of the present work were obtained by the
finite-element method, an unconventional computational
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