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Theory of the nonmetal-metal transition in rare-earth compounds.
II. Electrical resistivity and dynamical conductivity
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The electrical resistivity and the dynamical conductivity of rare-earth compounds which show the
nonmetal-metal transition with increasing temperature are presented. The calculation is based on
the physical picture that the hybridization gap vanishes continuously by the spin-field fluctuation
with increasing temperature. The electrical resistivity has different temperature dependence below
and above the transition temperature. The electrical resistivity at 0 K is infinite. Below the transi-
tion temperature, the electrical resistivity lowers abruptly with increasing temperature. The Ar-
rhenius plot of the resistivity versus inverse temperature is not linear. Above the transition tempera-
ture, the electrical resistivity decreases rapidly at first and then slowly with increasing temperature.
Near 0 K, the dynamical conductivity has an energy absorption edge and a sharp peak at a finite fre-
quency (near twice the hybridization), which is a semiconducting profile. With increasing ternpera-
ture, the maximum of the conductivity at the finite frequency lowers, and the dynamical conductivi-

ty near the zero frequency grows rapidly. At very high temperatures above the transition tempera-
ture, the dynamical conductivity has the maximum at the zero frequency and is a decreasing func-
tion of frequency, which is a metallic profile.

I. INTRODUCTION

In the preceding paper' (hereafter referred to as I) we
have described a theory of the nonmetal-metal transition
with increasing temperature in rare-earth compounds
described by the nondegenerate periodic Anderson model.
The essential point of the theory is that the hybridization
gap vanishes continuously by virtue of the spin-field fluc-
tuation with increasing temperature. Characteristic pa-
rameters of the system are the intra-atomic Coulomb
repulsion between f electrons and the hybridization be-
tween s and f electrons. In the intermediate region where
these two parameters are of the comparative order of mag-
nitudes, the spin-field fluctuation grows in proportion to
the square root of temperature at very low temperature
compared with the width of the uncorrelated s electron
band. The spin-field fluctuation makes the hybridization
gap decrease rapidly and vanish at the transition tempera-
ture.

In this paper we investigate temperature dependence of
the electrical resistivity and the dynamical conductivity
based on the above picture. In contrast to previous
theories on the electrical conductivity, our theory takes
into account both the temperature dependence of the den-
sity of states and that of the Fermi-Dirac distribution
function. In the present theory, the ground state is as-
sumed to be insulating (semiconducting). ' Also an as-
sumption of the mobility gap is unnecessary.

In Sec. II we shall describe the expression of the electric
current operator in the periodic Anderson model described
in I. We derive the general expression of the electrical
conductivity (the Kubo formula5) in the functional in-
tegral representation. In Sec. III we shall introduce ap-
proximations: the static approximation and the single-site
coherent-potential approximation (CPA). In Sec. IV we

shall introduce simple assumptions on the parameters in
the model Hamiltonian. We assume the elliptic model
density of states for the uncorrelated s electron band. In
Sec. V we show the results of the numerical calculation us-
ing the same parameters described in I. Finally we discuss
the qualitative comparison of our results with experi-
ments.

II. GrENERAL FORMULA
OF THE ELECTRICAL CONDUCTIVITY

A. The electric current in the model Hamiltonian

Jp =eve (2.1)

The velocity operator is the derivative of a position opera-
tor of electron r with respect to time t. The position
operator in the second quantized representation is given by

g Rmcr(cm~cmo +fmcrfmu) (2.2)

where R is the lattice vector, c and f are the an-
nihilation operators of s and f electrons. We obtain the
general expression of the velocity operator from the
Heisenberg equation of motion:

A model Hamiltonian of rare-earth compounds is the
periodic Anderson model' which is an array of "Ander-
son impurities. " The detailed form of the Hamiltonian H
is given by Eqs. (2.1)—(2.9) in I. The total electric current
operator J& is the product of charge e and a velocity
operator of electron v&,
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Here e - and (E are uncorrelated band energies for the
ckcr f ka

s and f electrons, respectively, and V- is the hybridiza-
k

tion between s and f electrons.

B. The general formula for the electrical conductivity:
the Kubo formula

The electrical conductivity tensor o„,(to) under an exter-
nal electric field with frequency co is exactly given by the
Kubo formula in terms of the double-time Green's func-
tion Q&„(cu):

t

function and the Fourier coefficient of the thermodynamic
Green's function are related by the analytic continuation '

Qp, (cu) =Q„„(cu+i0+) . (2.14)

Q„.(.) = &Q„'.(.) &FA, (2.15)

Then the electrical conductivity can be calculated from
the thermodynamic Green's function. In the following,
we calculate the thermodynamic Green's function.

Equation (2.10) can be expressed in the functional in-
tegral representation [see Eqs. (A15)—(A19) in I]

[Q„„(cu)—Q„„(0)],

ldll

Q„„(to)=I dte'"'Q„„(t),

Qp. (t) = . &(t)« [&p(t),J.(0)]» .
iv,

tril~(CO) =— (2.4)

(2.5)

(2.6)

Here V, is the crystal volume, B(t) is the Heaviside unit
step function, and « » is the grand canonical ensemble

average with respect to the total Hamiltonian H:

«F » =Tr(e ~HF)/Tre (2.7)

& TQ„(r)J„s(P)&

&S(O)&
(2.16)

Here subscript FA means the functional average with the
distribution function of fictitious random fields, and &

denotes the grand canonical ensemble average with respect
to the unperturbed Hamiltonian Ho.

&F & =Tr(e F)/Tre (2.17)

All operators are expressed in the interaction representa-
tion. For example, the total electric current is

The current operator is written in the Heisenberg represen-
tation Jq(r) =e 'J„e (2.18)

R„„=(o ')„„. (2.9)

C. The functional integral representation
of the thermodynamic Careen's function

In order to calculate the double-time Careen's function,
we introduce the corresponding thermodynamic Green's
function '

Q„„(r)= — « TQ„(r)J„(0)»,
V,

J ( ) lHJ —rH

(2.10)

(2.11)

where T is the time ordering operator for fermions. We
expand the thermodynamic Green's function in Fourier
series with respect to ~

Q„„(r)= —g Q„(icosi )e (2.12)

cog= ~ A. =0~+1,+2, . . .2&k
(2.13)

J (t) e!HtJ e
—lHl

P P

The electrical resistivity tensor R& is given by the inverse
of the conductivity tensor

From the above, the procedure of calculating the electrical
conductivity is summarized as follows. First, we calculate
the Green's function Q&„(r) of particles moving in a ran-
dom potential field. Second, we calculate the thermo-
dynamic Green's function Q&„(r) by use of the functional
integral of the random field. Third, we obtain the
double-time Careen's function through the analytic con-
tinuation, then the electrical conductivity by use of the
Kubo formula. The procedure holds for the calculation of
the general admittance as wel1 as the conductivity.

D. The thermodynamic Green's function
in the model Hamiltonian

Before the calculation of the right-hand side of Eq.
(2.16), we make assumptions on the velocity operator
given by Eq. (2.3) for the sake of simplicity. The f elec-
tron in a rare-earth atom is confined within a narrow
space, then the k dependence of the band energy e isf ko.
weaker than that of e - . We also assume that the k

c ko.
dependence of the hybridization V- is weak in compar-

k
ison with e . Then the electric current operator is givencko
by

The Fourier transformation of the double-time Careen's
J„=eg u~(k)c-„c

k, o.

(2.19)
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BE
u„(k)=

P
(2.20)

thermodynamic Csreen's function of electrons moving in a
random field in terms of the two-particle Careen's function
of the s electron,

Substituting Eq. (2.19) into Eq. (2.16), we can express the
I

2

u„(k)u (k)G"' . . . , (r, 0;r,0),
k, o k ', cr'

(2.21)

(2.22)

Here rearrangement is done to the time-ordering product of fermion operators.
The two-particle Green's function of the s electron moving in a random field can be factorized into the product of the

one-particle Green's function as follows. We rewrite Eq. (2.22) by use of the Fourier transformation

IIU = 1 —ik. R —ik' Ri+Jk-R +ik' R.
(rr0rrr0) = g e Goiter, cia', cmacj a (, rr0'rrr0) rcko, ck 'o';cko, ck 'o' ' ' ' ~2 i,j,1, rn

(2.23)

&T,...( ).....'.(-) .,s(p)&
Gciacio';c, macjcr (,rr0'r'rr0) =

&~(p)&
(2.24)

In Appendix A we show that the two-particle Green's
function of the electron moving in a one-body potential
field can be decoupled exactly into the difference of prod-
ucts of two one-particle Careen's functions. Applying Eq.
(A2) in Appendix A to Eq. (2.24), and dropping out the r
independent term that does not contribute to the electrical
conductivity, which is easily seen from Eq. (2.4), we obtain

the two-particle Green's function, the static approxima-
tion decomposes the r dependence of Eq. (2.25) into a sim-
ple form, and the single-site CPA makes it easy to take the
average of Eq. (2.25) with respect to the random field. In
the following we show the procedure.

A. The static approximation
II U

Gcicr, cia', cmcr, cjcr'(r»rr0)

= —G,";,j (r,0)G,'i ~, (O, r) . (2.25)

In I we showed that in the static approximation

u; (r)=u; =const, (3.1)

The above result, Eqs. (2.21)—(2.25), gives the expres-
sions of the thermodynamic Green's function of the s elec-
tron moving in a random field in terms of the one-particle
Green's functions of the s electron moving in a random
field. In order to proceed further, we have to introduce
approximations, which is the purpose of the next section.

III. APPROXIMATIGNS

We calculate the two-particle Green's function and the
electrical conductivity with the static approximation and
the single-site CPA described in I. In the calculation of

the one-particle Green's function of the electron moving in
a random field depends on the difference ~—~':

1 —Ek) (7 —'r )

Gaio, bjcr'(+re ) P Gaicr, bj cr'( run )

:—G,'; ij (r—r '),
2n+1

vr, n =0, + 1, +2, . . . . (3.2)

Then the product of the one-particle Green's function in
the right-hand side of Eq. (2.25) becomes

U U 1
Gcicrcjo'( r0)G,clcr', cmcr(

i~~a 1—
U ~ Ug ~A„n —n'Gcia, cj a'( ~n )Gclcr , cma ( ~n )''

n, n'
(3.3)

Then we obtain from Eqs. (2.15), (2.21), (2.23), (2.25), and (3.3)

Q„,( )=r—g e Q„(icup),
A.

2

Q„,(icoi„)= g g u„(k)u (k'
+c k, o k ', o'

II
)
—g &q „„G- — - —(icu„,icu„),cko., ck 'o';ck 'o', cko

n, n'

(3.4)

(3.5)

—i k R t i k '- R 1+i k . R ~+i k ' R J U ~ UG
k k ~ .. i, i, (icunricun') =

2 g e '& Gaia j (icuca)Gc'ia'n, cma(icon') &Fri (3.6)
lr J,1, re

In the next section we calculate the right-hand side of Eq. (3.6) according to the single-site CPA.
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B. The single-site CPA

In the static approximation and the single-site CPA, the functional integral becomes a simple product of the integrals
with respect to the single-site variables as described in I. %'e show in Appendix 8 the procedure for calculating the aver-
age of the product of the one-particle Green s function of an electron moving in a random potential field within the
single-site CPA. Substituting Eqs. (88) and (89) into Eq. (3.6), we obtain

r

G - -, , -, , - (ico„,ico„)=5 G„(k,ico„)G„(k',ico„)ckcr, ck 'o', ck 'o', eko

+ Gfg ( k, leo&& )6&f ( k, leo&&') I (Eco&& & leo&& )Gfg ( k &leo&&')Ggf ( k &Leo&& ) (3.7)

)&'(leo„, leo» )
I (ico„,i co„)=

1 —y(i co„,i co„):-(ico„,i co„)
(3.8)

:-(ico„&ico„)=—g Gff( p&i co)Gff(p i&c„o) .n~ n

P

(3.9)

Here the function I depends only on i'„and im„. The k independence of I arises from the k independence of:-, which
is a result of the single-site CPA. The second term of the right-hand side in Eq. (3.7) is the so-called vertex correction.

C. The thermodynamic and double-time Careen's functions

Substituting Eq. (3.7) into Eq. (3.5), we obtain

2
1

r

Q„(icog) = g —g 5g „,„gu„(k)u (k)G„(k,ico„)G„(k,ico„)y p, n —&& p

+ g &u( k) Gf (k& c„o) G (f kt c„o)—I (Eco„,&co„)n ~ n& n

k

&& g u, (k '
)Gf, (k ', ico„)G,f(k ', ico„)

k '

(3.10)

By virtue of the time-reversal symmetry

e(k)=e( —k), u„(k)= —v„(—k), (3.11)

the one-particle Green's function is an even function of k, then the second term in the large parentheses of Eq. (3.10)

identically vanishes after k summation. Then the thermodynamic Green's function reduces to
2

Qp&, (l cog) = g g up( k )u~( k )
V,

g G„(kico„+, icog)G„(k, ico„) . (3.12)

Transforming the summation with respect to n into a contour integral in the complex plane, and performing the ana-
lytic continuation ico~~m + iO+, we obtain the double-time Green s function

Q„„(co)=Q„,(co+i 0+ )

g g v„(k)u, (k) J dz'( f(z)G„(k,z+co+iO+—)Im[G„(k,z+i0+)]
~v,

k

f(z+co)Im[6„(k,z+ co—+i 0+ )]6„(k,z —i 0+ )], (3.13)

where Im means the imaginary part and f(z ) is the Fermi-Dirac distribution function

f(z) =( i"+el)-' .

D. The electrical conductivity

In the formula of the electrical conductivity given by Eq. (2.4), it is the real part that contributes to the energy absorp-
tion. From Eq. (3.13) we obtain
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Reer& (co)= ——Img& (co)

2 oo

g vz(k)u„(k) f dz —[f(z) f(—z+co)]Im[G„(k,z+co+iO+)]Im[G, ,(k,z+iO+)] .
~v,

k, o

(3.15)

This is the general formula for the electrical conductivity of the s electron in the periodic Anderson model under the stat-
ic approximation and the single-site CPA. Especially, in the limit of co tending to zero, we obtain the static conductivity

g up(k)u, (k) f dz
~V,

k, o

I Im[G„(k,z+iO+)]J (3.16)

which is the same form as Velicky's formula' for random
alloys.

V- = V for all k .
k

(4.2)

IV. A MODEL BAND

A. Model band parameters

In order to carry out the k summation in Eqs. (3.15)
and (3.16), we have to set the model band parameterse, e -, and V . As described in I, we neglect the k

c ko' f ka' k

dependence of e - and V-, which is suitable for rare-f ko. k '

earth compounds:

p (e)= —g&(e —e -„) .p 1

k

We introduce a function A& (e) given by

(4.3)

A„,(e)=—g u„(k)v„(k)5(e—e -„) .
k

(4.4)

Under these assumptions, the k dependence of the one-
particle Green's function arises from e . The uncorre-cko
lated density of states p (e) of the s electron is

e - =sf for all kf ko
(4.1) Then Eq. (3.15) becomes

2 OO oo

Recrp (co) = g f dz [f(z) f(z+co—)] f —deA„, (e)I m[G„(e,z+ +coiO )+]I m[G„(e, +ziO+)] .
m.Q 00

(4.5)

Here 0 is a volume per site A= V, /X, and the one-
particle Green's function of the s electron is'

G„(e,z)=[F (z) —Z]

F (z) =z —
~

V
~

/[z Ef —X (z)]
(4.6)

where Z=e —p, ef ——ef —p, and p is the chemical poten-
tial.

The conductivity at 0 K shows characteristic properties
of the interband transition specified by the solution z; of
the equation (the condition of zero-momentum transfer)

F (z+co) F(z) =0 . —
The lower and upper bounds of m that the conductivity is
nonzero at 0 K are determined as follows. The lower
bound coL& is given by the minimum of the band gap be-
tween hybridized subbands in energy-momentum space:
coLB ——2

~

V
~

. The conductivity at 0 K is zero for co & co„B
and contains a factor (co —4~ V~ )

'~ for co~cotB. The
singularity at ~LB comes from the simultaneous condition
of zero-momentum transfer and the equality of group
velocity [F' (z+co) F' (z) =0]. This is—the so-called Van
Hove singularity. The upper bound ~U~ is determined by
the condition that the one real solution z; at least should
lie within the interval between —co and 0, and the value
F (z;) + p should lie within the uncorrelated s-electron
band. The upper bound depends on the model band pa-
rameters.

B. A model density of states

We assume the elliptic model density of states intro-
duced in I

0 (2/vr )( 1 e)'—
p (e)= .

0, otherwise

—1&a&1 (4.7)

where the half band width is taken to be unity. In addi-
tion, we assume the following form of the diagonal ele-
ment of A„„(e):

&„„(e)= (1—~ )' (4.8)
3(x

which reproduces the correct expansion near the band
edges e - =+a.k +1.

c ko.
Substituting Eq. (4.8) into Eq. (4.5), we obtain the diag-

onal element of the real part of the dynamical conductivi-
ty

2e ~ 1
Reer(co) = f dz [f(z) f(z+co)]H—(z, co) .—

mQ

(4.9)

Here a factor 2 arises from the summation with respect to
the spin variable in the paramagnetic state, and the
function H(z, co) that contains a factor Im[G„(z+co)]
X Im [G«(z ) ] is given by
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[G„(z)—G„(z+co)]
H(z, co ) =—1m[ G«(z ) ]Im[G„(z+ co ) ]—2ReCC

[G„(z)—G„(z+co)]'
G„(z)G„(z+co)—4

(4.10)

G„(z)=2(+(z)—[[+(z)]'—1 j' ), (4.11)

where G„(z) is the diagonal element of the one-particle
Green's function in the site representation. ' The diagonal
element of the static conductivity is also given by

r

Reo(0) = I dz
m.Q

(4.12)

H(z) =—
I Im[G„(z)] ] 1—

G„(z)G„(z)—4

(4.13)

V. NUMERICAL CALCULATION

We make assumptions on the parameters as described in
I. The electron number per site is assumed to be two in-
cluding the spin degeneracy

X, /%=2 . (S.l)

In this case the electronic state is insulating at 0 K. For
the sake of simplicity, we assume the electron-hole sym-
metry

I

thermal excitation of electrons. At the same time, howev-
er, the spin-field fluctuation scatters the s electron because
it breaks translational invariance of the electron system.
The effect of the s-electron scattering due to the spin-field
fluctuation partially cancels the decrease of the electrical
resistivity due to thermal excitation of electrons.

Above T, the temperature dependence of the electrical
resistivity is relatively weak in comparison with that below
T, . The electrical resistivity decreases rapidly at the ini-
tial stage then slowly with increasing temperature above
T, . This rapid and slow decrease of the electrical resistivi-
ty corresponds to the rapid and slow increase of the densi-
ty of states of the s electron at the chemical potential. '

The electrical resistivity continuously decreases below and
above T, because of the temperature dependence of the
Fermi-Dirac distribution function.

In Fig. 1 we also show the plot of the electrical resistivi-
ty versus inverse temperature. %'e can easily see that the
graph is lower convex below T, and upper convex above
T, . Even below T, 1inearity of the logarithm of the elec-
trical resistivity versus inverse temperature, which is seen
in the usual intrinsic semiconductors, does not hold.

eg ———U/2 . (S.2) B. Temperature dependence of the dynamical conductivity

In this case the chemical potential does not depend on
temperature, so we take the origin of the energy to the
chemical potential

(S.3)

The electrical resistivity is the inverse of the electrical
conductivity at the zero frequency. We can get a clearer
insight into the nonmetal-metal transition with the study
of the dynamical conductivity. Because the real part of
the dynamical conductivity (RPDC) directly relates to the

Under these assumptions we show the numerical results
for the hybridization V=0.3 and the Coulomb repulsion
U=0.6 in units of the halfwidth of the uncorrelated s elec-
tron band. The combination of these two parameters is a
typical case. The paramagnetic state near the boundary of
the formation of the local moment is realized at 0 K. And
the hybridization gap vanishes at sufficiently low tempera-
ture in comparison with the width of the uncorrelated s-
electron band.

50 100 150

A. Temperature dependence of the electrical resistivity

We show the temperature dependence of the electrical
resistivity in Fig. 1. We depict the transition temperature
T, by an arrow where the hybridization gap vanishes. The
transition temperature is 0.0255 in units of the halfwidth
of the uncorrelated s-electron band. The temperature
dependence of the electrical resistivity is quite different
below and above T, .

Below T, the electron system is a paramagnetic semi-
conductor. At 0 K, the electrical resistivity is infinite be-
cause the conductivity is zero, which is easily seen from
Eq. (3.16). With increasing temperature, the electrical
resistivity lowers with an order of magnitude. The electri-
cal resistivity decreases more slowly than that of the usual
intrinsic semiconductors" with the constant energy gap.
It can be interpreted as follows: The spin-field fluctuation
makes the hybridization gap decrease and accelerates

l3

C)
O

Ch

lh
EP

1'

0.05
( I ~ I ( ( I I

0.1 0.15

T

FICx. 1. Temperature dependence of the electrical resistivity.
Temperature is measured in units of the halfwidth of the un-
correlated s-electron band.
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energy absorption of the electron system.
We show the temperature dependence of the RPDC in

Fig. 2. The density of states is shown in Fig. 4
((g ) =0.01—0.1) in I. We first explain the RPDC below
T, . At 0 K, the RPDC is nonzero between the frequencies
~LB=2~ V~ and ~„,=(1+4~ V~')'". ~he RIDC has a
Van Hove —type singularity at ~LB. At very low tempera-
ture (T=0.00786), the RPDC still has a "semiconduct-
ing" profile. The RPDC is small at the zero frequency. It
grows rapidly at the corresponding frequency of the hy-
bridization gap. The sharp maximum of the RPDC near
co=2

~

V
~

comes from the singular peak at 0 K. At high
frequency, the RPDC declines with the Drude tail and
vanishes at the frequency equal to the energy difference
between the top of the upper band and the bottom of the
lower band. With increasing temperature (T=0.0157,
0.0236), the profile of the RPDC changes drastically. The
most salient feature is that the maximum of the RPDC
near the frequency co=2

~
V~ decreases rapidly and that

the RPDC near the zero frequency grows gradually, be-
cause growth of the imaginary part of the self-energy with
increasing temperature yields the spread of the bands, i.e.,
the decrease of the hybridization gap. The Drude tail at
high frequency, however, does not change appreciably be-
cause the density of states near the top of the upper band
and the bottom of the lower band does not depend on tem-
perature strongly compared with that of the hybridization
gap. The RPDC at the zero frequency is finite even below
T, . It arises from the temperature dependence of the
Fermi-Dirac distribution function. This corresponds to
the rapid decrease of the electrical resistivity below T, in
Fig. 1 with increasing temperature. We notice that if we
approximate the Fermi-Dirac distribution function to the
step function, then the RPDC has a sharp absorption edge
and the RPDC at the zero frequency remains zero below

C'

Next we refer to the RPDC above T, . With increasing
temperature, the RPDC near the zero frequency grows.
The frequency where the RPDC is a maximum remains
nonzero even above T, (T=0.0314—0.0550)„ then shifts to
zero with further increasing temperature (T=0.0629—
0.0782). The RPDC at high temperature has a maximum
at the zero frequency, and decreases with a Drude tail.
This overall behavior corresponds to the intraband energy
absorption of metals.

In conclusion, we note that the profile of the RPDC
changes from. a sefniconducting one well below T; to a
metallic one well above T, . The change is smooth and
continuous with increasing temperature.

0.0786
7'08

JQ

D8

0.5

frequency

'f.O

FIG. 2. Temperature dependence of the real part of the
dynamical conductivity. Frequency and temperature are mea-
sured in units of the halfwidth of the uncorrelated s-electron
band.

ty. Experimental results of the electrical resistivity in
Sm86 are as follows. ' ' The electrical resistivity at
room temperature is about 500 pQ cm, and Sm86 is a poor
met@1. With decreasing temperature, the resistivity in-
creases appreciably. With further decreasing temperature
(about 50—6 K), the resistivity increases gradually at first
and then rapidly 4 orders of magnitude. Below 6 K, the
resistivity saturates and does not depend on temperature.
These results are compared with our result. We first com-
pare our result with experiment above 6 K. Our result
qualitatively agrees well with experimental result. Name-
ly, in our theory, with decreasing temperature
(T=0.1 —T, ), the resistivity increases slowly at first, then
increases at slightly above T„and at last abruptly with or-
ders of magnitude below T, . Second, the saturation of the
resistivity at very low temperature can be naturally under-
stood if we consider the effect of impurities contained
within samples. " Third, the Arrhenius plot of the electri-
cal resistivity versus inverse temperature is not a straight
line below T, . Such a tendency has been seen in the exper-
imental results. ' Our theory also can be applied to the
nonmetal-metal transition in SmS under pressure. '

We next discuss the temperature dependence of the
dynamical conductivity. Recent experiments ' show that
the RPDC at 4 K has a deep minimum at the zero fre-
quency and the RPDC at room temperature has no dip at
the zero frequency. These experimental results qualita-
tively agree well with our results.

C. Comparison with experiment

We compare our result with experiment. We first dis-
cuss the temperature dependence of the electrical resistivi-
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APPENDIX A: THE TWQ-PARTICLE GREEN'S FUNCTIQN QF AN ELECTRQN
MQVING IN A QNE-BQI3Y PQTENTIAL FIELD

The two-particle Green s function of an electron moving in a one-body potential field is defined by

(T, ;( )P ( )y ( )&, ( )&(P))
Gaipl;yrn 5j +1(&,+2~+3r+4) ~

~~(P))
(Al)
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where the operators a, p, y, and 5 denote c or f, and the subscripts i, j, I, and m denote both the site and spin variables.
Substituting the series expansion of S()t3) given by Eq. (A13) in I into (Al), and using the Bloch —de Dominicis theorem
with the diagram technique, we can exactly express the right-hand side of (Al) into the difference of the products of the
one-particle Green s functions of an electron moving in a one-body potential field:

II U U U U U

Gaipl, ;ym, 5j (ylty2(&3~+4) Gai, ym (y)~ y3 )Gpl, 5j (y2~ y4 ) Gai5j ,(ylry4)Gpl, ym(&2~+3) r

where G"; pf(y, y' ) is the exact one-particle Green's function of an electron moving in a one-body potential field. ' We
show the diagrams of the two-particle Green s functions of the f and s electrons in Fig. 3.

APPENDIX 8: THE AVERAGE OF THE PRODUCT OF THE ONE-PARTICLE
GREEN'S FUNCTIONS WITH RESPECT TO THE RANDOM-FIELD VARIABLES

We calculate the average of the product of the one-particle Green s functions with respect to the random-field variables
in the single-site CPA:

&[G'p(z()l [G"5(Z2)li &FA (81)

where the operators a, p, y, and 5 denote c or f, and the subscripts i, j, I, and m denote the site and spin variables. We
also derive Ward s relations. In order to simplify the notation, we denote the average ( ) FA to the simple notation ( ) in
the following.

From the series expansion of the one-particle Green s function given by Eq. (4.3) in I, we obtain

&[G"p( )];,[G", ( )]

[gaP(Z) )]tj + g [gaf(Z) )](ttvtt [gfP(Z) )]tt + g [gaf(Z) )]tttvtt [gff (Z) )]ttb Ub [gfP(Z) )]bj +
a a, b

X [g y(5Z )2] im+ g [gyf(Z2)]lsUs [gf5(Z2) lsm + g [gyf(Z2)llsVs[gff (Z2)]st Vt [gf5(Z2 )]tm +
s, t

(82)

We expand the right-hand side of Eq. (82) term by term, and replace the average of the powers of the random-field
variables by the cummulant average. ' In order to maintain the internal consistency within the single-site CPA, we drop
the terms that connect over two sites or more in the one-particle Green's function and the vertex part. Such terms appear
greater than or equal to fourth order in v. Introducing the proper self-energy X(z) of the f electron, and taking the par-
tial summations, we can recollect the one-particle Green's function:

[G ( )],J=&[G" ( )],J&

=[gap(z)]ij+ y [gaf(z)lta&(z)[gfp(z)laj+ y[gaf(z)]la&(z)[gff(z)lab&(z)[gfp(z)]b, +
a, b

X(z) = (v )s+ (U )s [Gff(z)]„+.(v ), [ [Gff(z)]«] +
=(vI1 —U[Gff(z)]« I '), ,

where ( ), denotes the cumulant average. By use of these expressions, we obtain from Eq. (82)

([G"p( )];,[G" ( )l

=[GaP(z))]tj[Gy5«2)lim+ g [Gfa(Z) )]ia[G5f(Z2)l.my«)»2)[Gjy(Z2)lla[GPf(z»laj

+ g [Gfa(z) )];,[Gsf(z2)]amy(z), z2)[Gff(z) )] b[Gff(z2)]bay(z), Z2)[Gfy(z2)]lb[Gpf(z) )]bj+. . . . .
a, b

G V
Gfis fA ' f~ fj T']

~ 2 s +3 ~

[ tf (Zt ) ]j) [ ff ( ZR)]tt~

&[G„(Zt)]'j [G„(Zp)]t

E V
Gci, cl; crfl cj ~T], T2 ' 7-3, T4

FIG. 3. Diagrams corresponding to the two-particle Green's
function of f' and s electrons moving in a one-body potential
field.

FIG. 4. Diagrams corresponding to the two-particle Green's
function of f and s electrons. All the double lines denote the
averaged Green's functions with respect to the random-field
variables.
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Here we introduce an effective interaction vertex function y(z, ,z2):

r( Zl~ Z2) &v &c+ & v &c[Gff(Z1 )laa + & v &c[Gff(Z2)]aa

+ & v'&, [Gff(z, )]..[Gff(z, )]..+ &v'&, [ [Gff(z, )]..I'+ & "&,I [Gff(z2)]..}'+ .

=
& v I 1 v—[Gff(z1)]„] 'v

I 1 —v[Gff(z2)]„ I

(86)

Diagrams for the f and s electrons are depicted in Fig. 4. By use of the Fourier transformation with respect to the site
variable

[G t3(z)]j=—g e ' 'G t3(k, z)5lJ
)

k, k'

we obtain

& [G'p(z1)] J[G1s(z2)]1m &
=

2 g e ' ' ' ' ' 'K(k1, k2,'k3 k4 z1 z2),+2
k ), k 2' k 3, k 4

K(k1, k2;k3 k4pz1yz2)

1
=Gait(k1, Z1)Grs(k2, Z2)6- - 5- - +z(z1,Z2) —5( —k1+ k2+ k3 —k4)Gf (k1,z1)Gsf(k2, Z2)Gfr(k4, Z2)G@(k3,Z1)k), k3 k~, k4 2V

1 1+ g y(Z1, Z2) —5( —k1+ k2+ k5 —k6)y'(Z1, Z2) 5( —ks+ k6 —k4+ k3)
N

ks k

X Gfa( k1tz1)Gs f(k &z2)G2ff (k5&z1)Gff ( k6&z2)Gfr( k4&z2)GPf( k3tz1)+ (89)

Here we notice that the Green s function in Eqs. (87)—(89) should be regarded as a matrix with respect to spin variables.
We notice the relation between the self-energy given by Eq. (84) and the effective interaction vertex function given by

Eq. (86). These two quantities are not independent, but satisfy the identities called Ward s relations. For example, we
obtain

X(z1)—X(z2)
1 (z1,z2) =

[Gff(z»]- —[Gff (Z2 )l

BX(z)

B[Gff (z)]„
These relations indicate the internal consistency of the single-site CPA in the vertex corrections. ' '

(810)

(811)
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