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Theory of the nonmetal-metal transition in rare-earth compounds.
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A theory of the nonmetal-metal transition in rare-earth compounds which occurs with increasing
temperature is presented. An essential feature of the transition is that a hybridization gap (an ener-

gy gap due to the hybridization between localized and conduction electrons) decreases continuously
and vanishes at the transition temperature by virtue of the spin-field fluctuation that arises from the
Coulomb repulsion between localized electrons. The transition is examined by the calculation of the
electronic density of states for conduction and localized electrons in the periodic Anderson model.
Its calculation is done by the functional-integral method using the static and single-site coherent-
potential approximations. The one-particle Green s function at 0 K coincides with that obtained by
the Hartree-Fock approximation, and there appears the hybridization gap. In the case of two elec-
trons per site including spin degeneracy, the electronic state becomes insulating (or semiconducting).
Temperature dependence of the electronic density of states is calculated in the paramagnetic state.
With increasing temperature, the spin-field fluctuation grows in proportion to the square root of
temperature at very low temperature compared with the width of the unconelated conduction band.
The spin-field fluctuation makes the hybridization gap decrease continuously and vanish at the tran-
sition temperature. The insulating electronic state changes to a paramagnetic metal state.

I. INTRODUCTION

The present paper describes a theory of the nonmetal-
metal transition with increasing temperature in the nonde-
generate periodic Anderson model. The nonmetal-metal
transition is observed in homogeneously mixed-valence
materials, Sm compounds, especially SmB6 and SmS
under pressure. ' Experiments of the electrical resistivi-
ty, ' the dynamical conductivity, " the specific
heat, ' ' ' and the Hall coefficient ' ' show that these
materials are paramagnetic semiconductors with an energy
gap at low temperatures and "poor metals" with no energy
gap at high (room) temperatures. Especially the existence
of the energy gap at low temperature is confirmed by re-
cent tunneling experiments. "'

The electronic structure of the homogeneously mixed
valence materials is characterized by the coexistence of the
highly correlated atomiclike f levels and the wide sd bands
near or at the chemical potential. ' The coexistence of
two limiting states, i.e., atomic and itinerant states, pro-
vides a variety of unique electronic properties. At the
same time, however, it makes the theoretical calculation
very difficult. Whether the ground state of Sm86 and
SmS under pressure is metallic or nonmetallic has not yet
been clarified theoretically based on energy-band calcula-
tions. This is contrasted to the case of LaB6, ' where the
chemical potential lies in the wide sd bands below f levels.
The ground state of La86 is confirmed to be metallic both
in experiments and energy-band calculations.

Mott introduced an idea that the above Sm compounds
are semiconductors with a very small energy gap due to
the hyl::Adization (a hybridization gap). '9 A model that
realizes the hybridization gap at the absolute zero tem-

perature is the periodic Anderson model ' ' that is an ar-
ray of "Anderson impurities. " In fact, in the case of two
electrons per site, the existence of the hybridization gap at
0 K is shown theoretically on the basis of the Luttinger
theorem and the perturbation expansion theory.

Our interest lies in the finite temperature properties of
the periodic Anderson model, i.e., whether the hybridiza-
tion gap vanishes or survives at finite temperatures. Exist-
ing theories are grouped into two categories. One is the
perturbation expansion theory that is justified when the
Coulomb repulsion is much smaller than the hybridiza-
tion. The lowest-order calculation is the Hartree-Pock ap-
proximation ' and its extension to dynamics (random-
phase approximation). Higher-order calculation up to
fourth order is also done. Another is appropriate to the
opposite limit, i.e., decoupling approximation based on a
Hubbard-I type method, coherent-potential approxima-
tion (CPA) (Hubbard-III type calculation ) with replace-
ment of the Coulomb interaction by random binary alloy
potentials, ' and the Kondo lattice approximation. In
both of these categories, existing theories do not contain
the vanishing of the hybridization gap at finite tempera-
ture, namely, they do not show the nonmetal-metal transi-
tion with increasing temperature.

In this paper we investigate the finite-temperature prop-
erties of the periodic Anderson model by use of the func-
tional integral representation that not only repro-
duces known results in both solvable limits of the vanish-
ing hybridization and Coulomb repulsion, respectively, but
also provides smooth interpolation between these limits.
We find that the nonmetal-metal transition with increas-
ing temperature occurs in the intermediate region where
the hybridization and the Coulomb repulsion are of the
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comparative order of magnitudes. With increasing tem-
perature, the hybridization gap decreases continuously and
vanishes at the transition temperature by the spin-field
fluctuation that arises from the many-body effect of the
Coulomb interaction.

The organization of the present paper is as follows. In
Sec. II we shall present the model Hamiltonian, nondegen-
erate periodic Anderson model. In Sec. III we shall
present the exact expression of the one-particle Careen's
function in the functional integral representation that is
described in detail in Appendix A. In Sec. IV we describe
methods of approximation, such as the static, single-site
coherent potential, and further approximations needed for
numerical calculation. In Sec. V we introduce a model
band suitable for rare-earth compounds. In Sec. VI we
show results of the numerical calculation.

II. FORMULATION OF THE PROBLEM

A. Model Hamiltonian

The electronic states of rare-earth compounds can be
described by the nondegenerate periodic Anderson Hamil-
tonian

site spin directions in the same f orbital at site i, and U is
the Coulomb repulsion.

The parameters in this model Hamiltonian are the total
number of electrons N„energy parameters T,J, 8'&, tiJ,
and U. Besides these, we have to add another parameter,
temperature T or its inverse P= 1/T (kii ——1), to investi-
gate the electronic states at finite temperatures.

B. Unperturbed system

In order to study the unperturbed system, we transform
the representation of wave functions from the Wannier to
Bloch one. The corresponding transformation of the
operator a; is given by

ik. R,-
a; =N -ga-„e

k

(2.6)

k, o k, o.

(2.7)

where 1V is the total lattice site number. With this
transformation, the unperturbed Hamiltonian reads

Hp= ge-„c- c +g(V c f +V ft c )

0=IIo+a (2.1)
where

k, o.

E,J,o' ~ ~

t,J,o'

g+J

+ g Wjf; fj pN, —

o'
Hp g Tij CiaCja+ g tij (Ciafja+ fiaCj a)

(2.2)

—+ =Q —+ —Paku ako'

—ik (R;—R-)
T,Jecko.

i

(2.8)

HI ——g Unj;„nj;, . (2.3) (2.9)

Here the mode1 Hamiltonian H consists of the unper-
turbed Hamiltonian Ho and the perturbation one Hl. The
first and third terms in Eq. (2.2) are, respectively, the un-
correlated, free hopping terms of s and f electrons. The
operators c;a and fia are the annihilation operators for
electrons at site i with spin cr in the Wannier representa-
tion. They satisfy the ordinary anticommutation relations.
The parameters TJ and 8;J are the hopping integrals be-
tween i and j sites. The second term on the right-hand
side of Eq. (2.2) is the hybridization between s and f elec-
trons. The parameter t,J is a transfer integral between dif-
ferent sites i&j The la.st term in Eq. (2.2) is introduced
to measure the energy with respect to the chemical poten-
tial p that is determined later. The operator X is the
total —electron-number operator defined by

g, b(k, r r')5 „-,5 =——( T,a-„(r)b -„, , (r') ),
where the operators a and b represent c or f, and

rHO —vH()
a; (r) =e a;ae

(2.10)

The notation T, is the "time" ordering operator, and ( )
denotes the grand canonical ensemble average with the un-
perturbed Hamiltonian defined by

V-„= g tije
i (~j)

The unperturbed one-particle Careen's functions in the
Wannier and Bloch representations are defined, respective-
ly, by

ga,. bj(r r')6 = —(T—,a; (r)b&a (r')),

N =g (naia+ nfia) ~

E, o'
(2.4)

(3 ) =Tr(Ae ')/Tre (2.1 1)

~ —f .ncio =&so&io ~

nj; =f; f;
(2.5)

The perturbation Hamiltonian HI is the repulsive
Coulomb interaction between two f electrons with oppo-

where n„. and nf; are, respectively, the electron number
operators of s and f electrons:

1 ~ (
g.;,b, (r)= —pe ' ' g.,b(k, r) .

k

(2.12)

The equation of motion method leads to the following

In Eq. (2.10), we have used the invariance of Hp fol
translations and spin rotations. The two Green's functions
defined by Eq. (2.10) satisfy the relation
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exact expressions for the unperturbed one-particle Green's
functions:

g) ) (T, T');

g, , (T, T');

g, b(k, r —r )'=—ge " g, b(k, ico„),

co„= m, n =0 +1 +2, . . .2n +1

(2.13)

(2.14)

g (r r }'

g), (T, T');

gfy( k, l con )=
l CO~ —6eko

(ico„—e )(ico„e——)—
~

V-
~ckcr f kcr k

~ ~
~ 0

& s(p}&; ~+Co+Co+C0+--

gc,c ( k ~'con ) =
E CO~ —Ef ko

(ico„e-—)(ico„—e ) —
~

V-
~ckcr " f kc k

(2.15)

V

Q). g (T, T');

Gc,c (~, T') '

G i (r r'} ~
V

+ + + +
0

~ ~

+ vA/v + ~ +
~ ~
~ ~

gcf(k~'con) = 7.

(ico„—Z - )(ico„'7- ) —
i

—V-
icko " f ko. k

G), (~, ~');V

(c)

~ k +

k
gf, (k, ico„)=

Z(ico„—e - )(ico„e ——) —]
V-

(cko " f kcr k

We depict diagrams of these Green's functions in Fig. 1(a).

FIG. 1. (a) Diagrams of the unperturbed Careen's functions.
(b} A diagram corresponding to (S(P}).Dotted lines denote the
potential v; . (c) Diagrams corresponding to G,"b(~,~').

III. ONE-PARTICLE GREEN'S FUNCTION

A. Definition

An exact one-particle Green's function for the total

Hamiltonian H in the Heisenberg representation of the
operators A and B is defined by

Here Gz; z;(co) in Eq. (3.5) is the retarded Green's function
that is obtained from the analytic continuation of the
Fourier coefficient Gq; ~; (i co„):

Gg; g~ (r r')6~~ .=——(( T+c~(r)BJ~ (r') )),
where

(3.1) g ~ 1 —/AP~ (T—8)
Gw;, a;(r —r') =—pe "

Gz; ~;(ico„) .

A; (r)=e'Ha; e

and the notation (( )) denotes the grand canonical ensem-

ble average with the total Hamiltonian H (Appendix A).
The chemical potential p introduced in Eq. (2.2) should

be determined by the self-consistent equation that the total
number of electron X, is equal to the grand canonical en-

semble average of the total electron number operator

(3.2)

B. One-particle Green's function
in the functional integral method

diag(r r,+o '—=(Garo, b) o (r r ))'A'F) (3.6)

By virtue of the functional integral formulation in Ap-
pendix A, the one-particle Green's function defined by Eq.
(3.1) can be rewritten in the form [see Eq. (A15)]

By definition (3.1), the average number of electrons

((nz;~)) is given by the one-particle Green's function,

(T,a,.(r)b,t, (r )S(P) )
G,'; bj r, v') =— (3.7)

f (co) =(e~+ 1) (3.4)

pg; (co)= ——1m';g;(co) . (3.5)

=I d~f(~)p„; (~), (3.3)

where f (co) and p„;~(co) are the Fermi-Dirac distribution
function and the electronic density of states:

where the operators a and b are expressed in the interac-
tion representation. Superscript v denotes the one-particle
Gran's function moving in the random one-body poten-
tial field defined by Eq. (A14). Subscript FA means the
functional average with the distribution function of ficti-
tious random fields [see Eqs. (A16)—(A19)].

The denominator of Eq. (3.7) is given by the grand
canonical ensemble average of the series expansion (A13)
with respect to the unperturbed Hamiltonian Ho. By us-
ing the Bloch —de Dominicis theorem and recollecting the
series into exponential, we obtain '
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P P
(P) ) =exp —J «iTr[u(ri)g ff( —O)] ——, dridr~Tr[u(r, )g ff (r, —r2)u(r2)gff (r2 —ri)]

1
P

drid72d73Tl[v(rl)g ff(vi —&2)u(&2)g ff(12—73)U(7 3)g ff(13 ri)] (3.8)

where we have used the matrix form for the Green's func-
tions and random field,

g,b(r r') =—[g„bj(r r')—I,
u(r) = Iu;~(r) I,

(3.9)

(3.10)

and Tr means the trace with respect to both site and spin
variables. A diagram corresponding to Eq. (3.8) is depict-
ed in Fig. 1(b). In Fig. 1(b) dotted lines correspond to the
interaction vertex u; (r). Here we would like to point out
that (i) at the cross point of dotted and solid lines, summa-
tion with respect to both site and spin variables and in-
tegration with respect to r should be taken, (ii) a factor of
I/n {where n is the number of vertices) should be includ-

ed, and (iii) a factor ( —1) should be attached to each
closed loop of f electron lines. Equation (3.8) can be
rewritten into another form. Introducing the dimension-
less parameter A, , we obtain the formal expression '

P
(S(p) ) =exp —J 1AJ , dr Tr[u(r)Gpf"(r, r+O+)]

(3.11)

where 6 " is given by Eq. (3.7) with an alternation of u to
A, U.

The numerator of Eq. (3.7) can be calculated in a
manner similar to that of Eq. (3.8). Then we obtain the
perturbation series expansion of the one-particle Green's
function under the random field '

P6 (U, r'r) = g,b( r r')+ «ig, f(r ri)u(r—i)g fy(~i —r')
P I3

+ I dr iggf (r 7 i )u(vi ) dr2g ff (si %2jv(rp)g fb ('72 —T ) + (3.12)

Diagrams corresponding to Eq. (3.12) are depicted in Fig. 1(c). We expand Eq. (3.12) into Fourier series with respect to
Intr oduclng

6,"i,(r,r')= —g g 6,"b(n, n')e
II 8

—i~ (~—8)
g,b( rr') =—g g,b(ice„)e

(3.13)

(3.14)

u(r) = g u(v)e (3.15)

v=O, +1,+2, . . .2 7TV (3.16)

we obtain

6,"i(n,n')=g, i(n)5„„+g f{n)u(n —n')gfb(n')+g, f(n)gu(n m)gff(m)U(—m n )g fb(n )+ ' (3.17)

The function 6 ',b(r, r') is not a function of the difference
It arises from the ~ dependence of the random field

and makes the calculation difficult. In order to avoid this
difficulty we introduce approximations in the next section.

u(r) =u =const . (4.1)

The static approximation provides the smooth interpola-
tion between the weak coupling limit (U~O) and the
strong coupling limit. ' In this approximation, the

IV. APPRGXIMATIO) NS

A. Static spploximation

As described in Sec. III 8, the ~ dependence of the ran-
dom field makes further calculation difficult. We make
use of the static approximation that the ~ dependence of
the random field is neglected:

functional integral reduces to the normal one. The one-
particle Green's function given by Eq. (3.17) becomes di-
agonal with respect to n. We obtain

6 "i, (n, n') =6 b(n)5„„,
6 "b(n) =g, i, (n)+g,f(n)u@b(n)

+g,f (n)u g~~(n)u g~@(n)+

(4.2)

(4.3)

From the formal solution Gff(n) and the transformation
of variables

1/2
~TU

' I/2
m. U

l & Il 3l (4.4)

the average of the physical quantity with respect to the
random field variables g; and g;, which is given by Eqs.
(A14)—(A19) and (3.11),becomes the simplified form
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(f(g 1 (2i i / l~ 12~ ~ ) )FA

~f(gl, g2, ,'2)1, ri2, )

f ~dydee, e
(4.5)

+(kl k2 /1 92 ) +0++1 (4.6)

'Po= —g (g,'+21,'), (4.7)

l Ci) 0+
0'1 ————pe " Trln[1 —v g ff(n)], (4.8)

("4c = tkr+i1% (4.9)

Equations (3.6), (4.2), and (4.5)—(4.9) show that the one-
particle Green's function is given by the ensemble average
of the one-particle Green's function under the random po-
tential field, which is analogous to the theory of random
alloys. The distribution function of the random field
exp( —PW, however, is not a simple product of the distri-
bution functions containing only variables referring to a
single site, because the function 0'1 is not a simple sum of
the function containing only variables referring to a single
site, which can be seen from the Taylor-series expansion of
the right-hand side of Eq. (4.8). The situation makes fur-
ther calculation difficult, so we introduce approximations
in the following sections.

)& gin[1 Gf;f—;(ioJ„)[v —X (ioJ„)]J,

(4.14)

=Op+ l'g, (4.15)

where Ggf;(z) and X (z) are, respectively, the diagonal
element of the one-particle Csreen's function and the self-
energy of the f electron shown in the next section.

B. CPA

1. An approximation to the distribution function
of the random variables

In order to apply the single-site CPA, we assume that
the distribution function exp( —P%') can be approximated
to the simple product of the exponentials of the single-site
function 1b;(g;,2);) that depends only on g; and g;:

2. One particle Gr-een 's function and self energy-
The one-particle Green's function under the static ap-

proximation and the single-site CPA can be calculated in a
manner similar to that described in Ref. 34. We obtain

1 ik -(R, —R )
Gq; JJI(r r') =——Q e

k

e"P[—O'P(kl k2 . 211 2)2 ) l

=exp —Pg g;(g;, q;) (4.10)

X —g e " Ggg(k, ico„),
n

(4.16)

The function P; is determined by the following two steps.
First, we maximize ln(U(P)) [U(P) is given by Eq.
(A12)] with respect to 1b;. Then the function g; should
satisfy the self-consistent equation3

Gff(k, z) =
Z —6'

cka
(z —e )[z —e —X (z)]—

i
V-

~cko f ko k

ltJ (4 '9) = f H AJ.d'Jii4'J(kj 'J)J. )

X q'(gl, g2 'nl n2 )

(g )
W~Jlf~el I dyed I ayilfln

4;=0 m;=e

(4.11)

z —e —X (z)
G„(k,z) =

(z —& - )[z —e - —X (z)]—
i

V
c kyar f ko k

G,f(k,z) =
(z —e )[z e —X (z)]—(

V—cka f ko

(4.17)

Here the right-hand side of Eq. (4.11) means the average
of 4 over the fields at sites other than the ith site with the
distribution function pJ. Second, we apply the single-site
CPA to Eq. (4.11). Then the function @; is given by

Gy~ (k,z) =
(z —e - )[z —e - —X (z)]—

~

V-
~cko f ko k

(k ri) =40(k ri)+ el(.k ri)

40(k n)= U(4'+n'»

(4.12)

(4.13)

The above result shows that the one-particle Green's func-
tions of the perturbed system are given by an alternation
of e - to e - +X~(z) in each expression of the unper-

fkcr fko
turbed Green's functions. It is a natural result because the
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Coulomb repulsion only applies to f electrons. We notice
that the self-energy X (z) does not depend on k in the
single-site CPA.

The self-consistent equation for the self-energy is ob-
tained from the CPA condition that the average of the
scattering matrix is zero

given by

Q„=O and (8 g;/Bg )g p ——0

or

g,„&0,

(4.23)

(4.24)

or

X (z)=
1 —Gg ~ (z)[U, —X (z) I )PA

CT 1
Gf, f, (z) =

[Gf f (z)] ''—'u +X (z) FA

(4.18)

(4.19)

because the minimum of P; is not at zero. Which case ap-
pears depends on the band parameters.

The self-energy at 0 K reduces to that of HFA. At fi-
nite temperature, however, the self-energy deviates consid-
erably from that of HFA. It is shown in the following
sections.

where ( &Fz denotes the average with respect to the vari-
ables referring to a single site: C. Approximations for numerical calculation

at finite temperature

&f(k '9) &FA= py (g &)dg'dg e
(4.20) l. Reduction of random field variables

Now we can solve a set of the self-consistent equations
that consist of the electron-number conservation, the
Green's function, and the definition of the ensemble aver-
age with respect to the random field variables. With suit-
able assumptions on the band parameters e -, e -, V-,cka f kcr' k '

and U, the total number of electrons X„and temperature
T, we can obtain the chemical potential p, the Green's
function G(z), the self-energy X (z), and the single-site
function lfj;(g, g).

3. Absolute-zero temperature

At 0 K, p —+ ~, the average value in Eq. (4.20) is calcu-
lated with the steepest-descent method. Then Eq. (4.18)
reduces to

X (z, T=O)=u

where U,„is the solution of the self-consistent equation

evaluated under the condition p —mao. From the above
equations, we obtain

X (z, T =0)= UNy; (4.21)

g,„=O and (8 g;/Bg )g o&0 . (4.22)

The condition of the formation of the local moment is

It is nothing but the Hartree-Fock approximation
(HFA). ' The self-energy at 0 K is a real constant.

The electron numbers Xf; and X„are determined by
the self-consistent equation (3.2). The solution Kf; has
either one real root or many real roots. In the case of one
real root, either the paramagnetic or the ferromagnetic
state is stable. In the case of many real mots, the
paramagnetic state may be unstable and a spin-ordered
state can appear. Which case appears depends on the band
parameters and is classified from the distribution function
of the random field. In the paramagnetic state, the
minimum of the single-site function g; with respect to g is
at zero, namely

1 Gfl, ft(icoll )

P „1—Gftf;(iso„)[u' —X (iso„)]

un =trkex+&'Qex

The average with respect to the random field g is given by

I dye ppg)f (g)—f 0 FA= I d& ppg~
(4.25)

f(g) =—g ——g e " g in[1 Gf, f;(ico„)—
II cr

X [u X(ico„)]—[,
(4.26)

un =~rk+'9ex (4.27)

The Taylor-series expansion of Eq. (4.26) around
which is useful at low temperature, is given by

We reduce two random field variables (g, g) into one (g)
as follows. First, the integral with respect to q field is
done by the steepest-descent with each configuration g.
The field strength at the steepest descent path is given by
Bg;/By=0. The steepest-descent approximation breaks
spin rotational invariance, but the discrepancies of numer-
ical results between the full two-field calculation and the
steepest-descent approximation are small within the static
approximation. Second, we assume that the g depen-
dence of the g field is weak. Then we use g(g) at g,„
which yields an extremal value of P;: Bf;/Bg=O. Then

and g(g,„) are given by the solution of the self-
consistent equations

g,„=——g crR
U

a

i'll, „=—gRU
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P(g')=const+ g A~(g —g,„)~,
Nf =2

=—5 2+ go —geU ' m
Gf f(E „)

1 —Gfi fi(Econ )[urr Xrr(town )]

(4.28)

2. A fluctuating field approximation

The CPA condition given by Eq. (4.18) or (4.19) is a
nonlinear integral equation, so the numerical calculation is
laborious. We introduce an approximation that the fluc-
tuation of the random field is assumed to be small and
moments higher than third order are assumed to be
decomposed into the products of moments lower than
second order. We expand the right-hand side of Eq.
(4.19) in powers of

u [[GfEf;(z)] '+X (z) J

I dye Pgg—)g2

FA j ~ EEL@

We introduce approximations that hold at sufficiently
low temperatures. At very low temperatures (high P), the
main contribution to the integration is the small region
around zero. Then we have to leave only lower-order
terms in the expansion of g. In the paramagnetic state
(A2) 0), it is sufficient to leave a second-order term. We
obtain

and assume

(v' )FA=I (u' )FAI

(u +')FA—I(v )FAI (u )FA .

Recollecting the expansion, we obtain

Gfif;(z)= 1+ i H (z),
[Gf f (z)] +X (z)

IH. (z) =—g2 ~ [Gf;fi(z)] +X(z) +(ET( ~u)F )A
2 1/2

(4.29)

(4.30)

(g')„„=T/[24, (T=0)],
p, jk

A2(T =0)=—+ dao—DO

(4.33)

X Im[Gff(Eo+i 0+)] (4.34)

where A2 is given by Eq. (4.28). Next we assume that the
temperature dependence of A2 is weak at very low tern-
peratures and can be replaced by the value at 0 K:

(4.31)

In this approximation, the square root of the second mo-
ment, in other words, the fluctuation ( ( v ~ )FA)

' plays an
important role, so we may call the approximation a "fluc-
tuating field approximation. " Equations (4.30) and (4.31)
can be written into another form

Xcr(Z) ( Vrr )FA+ I ( ucr )FA [Xcr(Z)] l Gfi fi(

(4.32)

Considering ( v )FA and ( u ~ )FA as parameters, we can
calculate the Green's function and the self-energy from
Eqs. (4.30)—(4.32). The relation of parameters (v )FA and
( u )„A to temperature is given by the self-consistent
equation (4.25).

The physical Eneanings of Eqs. (4.33) and (4.34) are as fol-
lows. From Eq. (4.33), A2 should be positive in the
paramagnetic state. The spin-field fluctuation ((g )FA)'
increases in proportion to the square root of temperature.
And the growing rate of the fluctuation becomes larger as
Az becomes smaller. This means that if Az is small, the
spin-field fluctuation grows rapidly even with the slight
increase of temperature. On the other hand, the relation
between A2 and U is given by Eq. (4.34). The second term
of the right-hand side depends strongly on the band pa-
rameters. In the case of electron-hole symmetry as
described in Sec. VI, the second term does not depend on
U. So Az becomes small with increasing U. Thus, even in
the paramagnetic state, the spin-field fluctuation is very
effective to the physical quantities with suitable choice of
the band parameters.

3. Lowest-order approximations in a paramagnetic state

In the paramagnetic state, the Green's functions and the
self-energies with up and down spins are the same,

and g,„ is zero. Odd-order terms in the expansion of g,
Eq. (4.28), are identically zero because of g a~. And the
first-order moment of the random field identically van-
ishes: (g)FA=O. The relation between the second mo-
ment of the random field and temperature is given by

V. A MODEL BAND

=Ef for aH k
f kyar

a (5.1)

A. Model band parameters

In this section we assume the band parameters
e -, e -, and V- suitable to rare-earth compounds. In

c ko' f ka' k
rare-earth compounds the 4f electron is localized in one
atomic site. Then we neglect the k dependence of the un-
correlated f electron band
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And we also neglect the k dependence of the hybridization

p,
' (e)=—g&(e —e -„) .

k

(5.4)

Here p, (e) is the density of states of the uncorrelated s
electron, and its detailed form is given by the energy-band
calculation. A typical model density of states is given in
the next section.

For s and f electrons, Eq. (5.3) yields

G„„.(z)= f de p, (&)
(5.5)

F (z) —e

nc~
Gf;f;(z) =

z —ef —X (z)

[z —ef —X (z)]

F (z) =z—
z —ef —X (z)

n, =f dip, (e).

(5.6)

(5.7)

We notice here that Eqs. (5.5) and (5.6) are analytic at the
zero points of the equation z —ef —X (z) =0, provided V
is finite. Analyticity of Eq. (5.5) is seen from the Taylor-
series expansion

[F (z) —e] '= g [Fl[F (z)+p])",
n=0

V =V for all k.
k

Under these assumptions the diagonal element of the
Green's function with respect to the site variables is given
by [see Eq. (4.16)]

Gg; EEE(EErErr )=f d ep cc(E)Gg EE(E rECO„) r (5.3)

The model density of states we discuss here is the ellip-
tic model density of states:

p, (e')=.o (2/mD) [I—(e/D)2]'i2, D& F. &D—

0, otherwise (5.9)

where D is the halfwidth of the uncorrelated s electron
band. The total density of states is normalized to unity

f dip, (e)=1 . (5.10)

Substituting Eq. (5.9) into Eq. (5.5), we obtain
' 2 1/2F (z) F (z)

cicr(,
(5.1 1)

Here the square root is two-valued. The sign should be
taken such that density of states is non-negative, namely,
the imaginary part of the Green's function is negative in
the upper half-plane of the complex z plane.

The Green's function and the self-energy are given by
Eqs. (4.32) with (u )„A——0, (S.ll), and (5.6). We obtain
cubic equations for the self-energy and Green's function
after elementary but tedious calculations. The cubic equa-
tion for the self-energy is given by

with an assumption that moment of the model density of
states is finite say

f doe"p, (e)

Singular terms on the right-hand side of Eq. (5.6) cancel
out at the zero points of z —ef —X (z) =0. The analytic
properties mean absence of poles in Gci «(z) and Gfif;(z)
at the zero points of z —ef —X~(z)=0 and assure ex-
istence of the hybridization gap around z =ef + UXf;
at absolute zero temperature.

B. A model density of states

a&+a2X+a3X +a4X =0,
EEE

——[(g )FAI [—ef +(1+a V )z],
2

+2 = —
I &4'&FAI'I2ef. + (g'&FA —a'V'I + & g'&FAef. (4+a'V')z —(g'),„(2+a V )z

2
2 -2

a3 efrr{ ~frr+2& k &FAI + [3'Efrr+ (4 &FA(2 a V ) Iz 3efrrZ +—Z

aq ———(e~ +a V )+of (2—a V )z+( —1+a V )z

a=2/D .

(5.12)

With given parameters D, ef, V, and z, the coefficients
of the cubic equation are calculated. The cubic equation
has either three real roots or one real and two complex
roots. The CPA condition (4.32) with (u )„A=0 indi-
cates the equivalence of the nonzero imaginary part of the
Green's function and that of the self-energy. Then the
band edge is given by the condition that the discriminant
of the cubic equation for the self-energy (S.12) is equal to
zero. The resulting equation is, in general, a tenth-order
algebraic equation for z. We can also obtain the cubic

I

equation for the Green's function of f electron, but the de-
tailed expression is not written here.

VI. NUMERICAL CALCULATIGN

Essential parameters to describe the electronic states are
D, %„ef, V, U, and p. In order to clarify the physical
meanings of the calculation, we decrease the number of
parameters. First, we take the energy unit to half band-
width D. Second, the electron number per site is 2 includ-
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ing the spin degeneracy

N, /N =2 . (6.1)

ef = —U/2 . (6.2)

In this case the real part of the Green's function is an odd
function of the energy with respect to co=p, and the
imaginary one is an even function. From the assumptions
(6.1) and (6.2) and the electron-number conservation (3.2),
the chemical potential does not depend on temperature.
Then we move the origin of the energy so that the chemi-
cal potential is set equal to zero,

p=0. (6.3)

From the above assumptions, the parameters left are V, U,
and P.

The phase diagram at 0 K is depicted in Fig. 2. The
boundary of the formation of the local moment is drawn
from Eq. (4.23). In the lower region of the boundary
where the Coulomb repulsion is small and the hybridiza-
tion is large, a paramagnetic insulating (PI) phase is stable.
In this case, the single-site function f(g) has a single
minimum and is symmetric with respect to /=0. In the
upper region of the boundary where the Coulomb repul-
sion is large and the hybridization is small, the paramag-
netic state may be unstable and an ordered state of spin
can appear. It may probably be the antiferromagnetic in-

In this case, the electronic state at 0 K is insulating, name-
ly, the lower band below the hybridization gap around
z =6f + UK' is fully occupied and the upper band is
empty, because the total number of electrons (the s and f
electrons) in the lower band at 0 K is 2, irrespective of the
other parameters. Third, without loss of generality, we as-
surne electron-hole symmetry

sulating (AFI) state, which is consistent with other
theoretical investigations within the Hartree-Fock approxi-
mation. ' The single-site function has a double-
minimum structure (local moment case ) and is sym-
metric with respect to /=0.

In the following we investigate the paramagnetic phase.
The solution of Eq. (5.12) shows that when the spin-field
fluctuation is small, the paramagnetic insulating phase
with the hybridization gap appears. But with increasing
fiuctuation, the paramagnetic metal phase without the hy-
bridization gap appears. In Fig. 3 we show the phase dia-
gram of the paramagnetic insulator and metal (PM) in the
(g )FA —V plane. (In Figs. 3—6, the subscript FA is
omitted for brevity. ) The boundary line is a monotonical-
ly increasing function of V. So, with increasing V, the
large fluctuation is necessary for the nonmetal-metal tran-
sition, because the hybridization gap at 0 K increases.

We show the density of states for V =0.3 in Fig. 4. Be-
fore explaining the figure we notice the selected parame-
ter. %'e restrict our calculation in the paramagnetic
ground state. From Fig. 2 the large hybridization is
favorable to the paramagnetic phase. From Fig. 3 the
small hybridization is favorable to the nonmetal-metal
transition with the small fluctuation. So we choose the
typical value of V to 0.3. Figure 4(c) shows the density of
states in the insulating phase. At 0 II, (g )Fp, =0; the hy-
bridization gap appears around zero energy. Both the s
and f electron density of states increase abruptly near the
hybridization gap. The density of states for the f electron
has sharp peaks and decreases with the factor 1/~ . In
the case of two electrons per site, the lower bands for the s
and f electrons are fully occupied and the upper bands are
empty. The chemical potential lies in the center of the hy-
bridization gap. With increasing the fluctuation, the
bandwidth of s and f electrons increases and the hybridi-
zation gap decreases. The distance between peak positions
of the f electron increases, which is consistent with the
fluctuating field approximation. In Figs. 4(b) and 4(a) we
show the density of states in the metallic phase. With in-
creasing fluctuation, the hybridization gap disappears and

c 1.00
V)

CL
C) P I

1.0

E
O

O
0.5

0
0 0.5 1.0

0

hybridization

. FICi. 2. Phase diagram at 0 K in the electron-hole symmetric
case, showing the paramagnetic insulating (PI) phase and the an-
tiferromagnetic insulating (AFI) phase. Energies are measured
in units of the halfwidth of the uncorrelated s electron band.

hybridization

FIG. 3. Phase diagram at finite temperature in the paramag-
netic phase in Fig. 2, showing the insulating (PI) phase and the
metallic (PM) phase. The ordinate is the square of the spin-field
fluctuation.
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FIG. 5. Energy gap and density of states at the chemical po-
tential as a function of the square of the spin-field fluctuation.
Solid curve is energy gap, broken curve is density of states at the
chemical potential for the s electron, and dot-dashed curve is
that of the f electron.
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rises abruptly, then increases slowly, while that of the f
electron first rises, and then declines.

In Fig. 6 we show the relation between the square of the
fluctuation and temperature at V=0.3 drawn from Eqs.
(4.33) and (4.34). The fluctuation increases rapidly as a
function of temperature with increasing U in the paramag-
netic phase. The broken line in Fig. 6 is the square of the
fluctuation where the hybridization gap disappears. From
the cross points of broken and solid lines, we can obtain
the transition temperature T, where the hybridization gap
disappears. With increasing U, the transition temperature
is lowered in comparison with the bandwidth D. This is
depicted in Fig. 7. We draw the transition temperature as
a function of U with fixed V. We can see that for fixed V,

the transition temperature is lowered with increasing U,
which shows the importance of careful treatments of the
electronic correlations. And for fixed U, the transition
temperature is lowered with decreasing V, because the hy-
bridization gap decreases. The parameters of U and V
with zero T, give the phase boundary line in Fig. 2.

0 0
energy

0.10

FIG. 4. Density of states in the paramagnetic phase with in-
creasing spin-field fluctuation. Solid line denotes the density of
states for the s electron and dot-dashed line denotes that for the

f electron. (a) and (b) Metallic phase. (c) Insulating phase.
0.05

two bands merge into one band. This is the nonmetal-
metal transition.

In Fig. 5 we show the hybridization gap and the density
of states at the chemical potential as a function of the
square of the fluctuation. The hybridization gap decreases
with increasing (g )F&. Above the transition point, the
density of states of the s electron at the chemical potential

0—
0 0.05 0.1 0

temperature

FIG. 6. Square of the spin-field fluctuation as a function of
temperature. %'ith increasing U, the gradient becomes abrupt.
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O

CA
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0
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Coulomb repulsion

FIG. 7. Transition temperature as a function of the Coulomb
repulsion.

quantity in a physical system where the Coulomb interac-
tion is introduced to the unperturbed system. The formu-
las described below are the natural generalization of the
functional integral method for the free-energy calcula-
tion ' to that of any physical quantity.

Consider the grand canonical ensemble average of arbi-
trary function that consists of the product of the creation
and annihilation operators in the Heisenberg representa-
tion. The average is taken with the total Hamiltonian:

((T,FIA(ri)A(12) A (r„+i)A (r„+p) . .
J }) . (Al)

Here (( )} denotes the grand canonical ensemble average

with the total Hamiltonian H of the system, and is defined

by

((F)}=Tr(Fe ~ )/Tre (A2)

In conclusion we summarize the numerical result. At
0 K, the paramagnetic insulator phase is stable in the U- V
plane in Fig. 2. With increasing spin-field fluctuation, the
hybridization gap decreases, and the electronic state
changes its phase to the paramagnetic metal state. The
square of the spin-field fluctuation increases in proportion
to temperature. The spin-field fluctuation grows rapidly
both with increasing temperature and with increasing U in
the paramagnetic region.

where A (r) and A (r) are the operators in the Heisenberg
representation

A(r)=e' ae

g t( ) e1Ha te —TH

In order to calculate (Al), we introduce the interaction
representation. %'e decompose the total Hamiltonian
into the unperturbed and perturbation parts
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Corresponding to this decomposition, we formally decom-

pose the exponential function of H into the exponential

function of Hp and the other parts:

APPENDIX A: A GENERAL THEORY
OF THE FUNCTIONAL INTEGRAL

METHOD

In this appendix we describe a general formulation of
the functional integral method, by which we can calculate
the grand canonical ensemble average of any physical

The formal solution of U(p, O) is given by

P
U(P)—:U(P, O) = T,exp —I dr Hr(v. }

Then the quantity defined by (Al) becomes

(A5)

(A6)

(T,FIa(r, )a(r2) . . a (r„+,)a (r„+p) IU(P) }
((T,F[A (r, )A(rz) . 3 (r„+i)& (r„+2) ' ' '

I }}=— (A7)

Here the operators on the right-hand side are given by the interaction representation

Ho —Ho rH( t —gHoa(r)=e 'ae ', a (r)=e a e (A8)

(A9)

and ( ) is the grand canonical ensemble average with the unperturbed Hamiltonian.

In the usual Feynman diagram method, U(p) in Eq. (A6) is directly expanded in the power series of Hl, and the series

is substituted into Eq. (A7). The grand canonical ensemble average of the product of the operators is factorized by use of
the Bloch —de Dominicis theorem. After resummation of the series, the numerator of Eq. (A7) is factorized into the sum

of linked graphs and ( U(P) }.Then Eq. (A7) becomes a linked cluster expansion:

((T FIR(r, )A(& ) . A (r„,)A (r„+2) . .
$ }}=(TF[ ( a) r(ia~) r. a (r„+i)a (r, +2) I U(P) }q;„~,d .

In this method higher-order calculations are difficult, be-
cause the number of diagrams shows a catastrophic in-
crease with increasing order of the expansion. Here we
describe the functional integral method which allows us
another approximation based on physical intuition.

An essential point of the functional integral method is

to rewrite U(p}, given by Eq. (A6), by use of (i) transfor-
mation of the interaction term to a quadratic form and (ii)
an operator identity

A 2 I d —ex ~+2~nAx (A10)

Here, the transformation of the Coulomb interaction
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term to a quadratic form is not unique and leads to con-
troversies as reviewed in the literature. ' ' ' If the
physical quantity is calculated exactly, the final result is
independent of the transformation for the interacting
term. %'hen an approximation is made, the final result
may be different depending on the choice of the transfor-
mation. The choice of the transformation and approxima-
tion depends on the physical situation of the problem.
The first controversy is the one-field (a spin-field)
scheme ' versus the two-field (spin- and charge-field)
scheme. The diagram analysis shows that the one-field
scheme with use of a fermion operator identity n~; =-n~;~
leads to unphysical contributions resulting from spurious
interaction of equal spins. ' The two-field scheme we
use here is free from the spurious contributions. The
second controversy is concerned with rotational invariance
of the spin-field term. There are two types of transforma-
tion for the interacting term: Ising-type ' ' and
Heisenberg-type transformations. ' ' The most simple
transformation of Ising type is given by

HJ = ——(nfl, —nfl, ) +—(nfl', +nf;, )
l

(A 1 1)

The Ising-type transformation itself preserves spin rota-
tional invariance of the original Hamiltonian if both the
spin and charge fields are treated on the same basis. The
spin-field term alone, however, does not have rotational
invariance, which leads to the concept of the Heisenberg-
type transformation. Examples of the Heisenberg-type
transformation are given in the literature. ' The
transformation of Heisenberg type preserves rotational in-
variance with respect to both the spin and charge fields,
respectively. ' Also, the use of the vector spin field allows
us the general description of the spin-field structure, the
variation in magnitude as well as the direction of the spin
field. In the following we use the Ising-type transforma-
tion bccausc of its simplicity.

From Eqs. (A10) and (A 1 1 ) Eq. (A6) is rewritten
s31,32, 37

U(p) = J + 5x;(r)5y;(r)exp —J dr+ —[[x;(r)]'+[y;(r)]'j S(p), (A12)

PS(P)=T,exp —J dr+ u; (r)n~; (r)

=1+g J . dpi dr„T, g u; (ri)n~; (ri) . . g ui (~-„)n~J (r„)
ao

( 1)PI P P

n~ 0 0n=1 J, O' J, O'

1/2

(A13)

u; (~)= mUax;(r)+i (A14)

J +5x;(~)5y;(~)e elf[xi»z, . . . ,yi, y2, . . . ]
f[xi»z~ . .~yi~y2) . ])FA= J Q 5x;(r)5y;(r)e

Inserting Eqs. (A12)—(A14) to Eq. (A7), we obtain the final result

(TF[ ( ) (,) . . ~( „)~( „) jS(P)&
((T,F[A(7-, )A(7, ). . . At(r„+i)A (7„+,) . .

j &)
=-

FA

(A15)

'p=q'[xi»2, .,yi y2, ]='4+q'i, (A17)

e,= —,J dr+[[+, (r)]'+[y, ( )]'j,
l

0, = —P
—'ln(S(P)) .

(A18)

(A19)

Equations (A15)—(A19) and (A13) and (A14) are the gen-
eral and exact expressions.

The above formulas show that the average of any physi-
cal quantity is calculated by two steps in the functional in-
tegral method. The first step is to calculate the interior of

)„~ in Eq. (A15). It can be calculated by the usual dia-
gram method. Its calculation is easier than that of Eq.
(A9), because the exponential of S(p) in Eq. (A13) con-
tains QIlly onc-body potcnt1als. Thc random onc-body po-

tential contains a factor PUT, which means that the ran-
dom field is effective with large U or high T.

The second step is to calculate the average by the func-
tional integral with the weight exp( —p%). The second
step is much more difficult than the first one, because in
+, 2%, variables get intertwined in a complex manner.
'We can do this complex calculation with an introduction
of approximations based on physical pictures.
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