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A new method for treating metal surfaces is presented which will complement the conventional
density-functional theory. It makes use of the correlated-basis-functions approach, which has prov-
en useful for treating liquid and solid helium, nuclear matter, and homogeneous and mildly inhomo-

geneous Coulomb systems. It is a variational theory that deals directly with the wave function —one
that contains in a balanced way both single-particle elements and explicit many-particle correlation
factors. The surface-energy expression does not require a density-gradient expansion. It does not
draw information from independent work on the homogeneous electron liquid and is thus totally
self-contained. Discrete ion-lattice effects are accounted for without the need to invoke a low-order

perturbation theory. Systematic improvements are possible, either through the introduction of
higher-order irreducible correlation factors or through a diagrammatic perturbation theory in the
correlated representation. Most importantly, approximate many-particle wave functions for
describing the ground-state and low-lying excitations are made available. They can be used for
determining adsorption properties such as the substrate-mediated interaction between adatoms. In
this paper we describe the theory in detail and report on numerical results obtained for the entire

range of metals, 2 & r, & 6. Our surface energies show slight improvement over those obtained with
density-functional methods. Our work functions are not quite as good at small r, ; there the
electron-density profiles display slightly higher peaks and longer tails. We discovered no new star-

tling results and had not expected to do so. The main accomplishment is the establishment of a
self-contained theory and a basis for future calculations considered impossible or difficult in the
density-functional formalism. Discussions are carried out in that spirit.

I. INTRODUCTION

A. Formulation of the problem

The system under consideration consists of N/Z
charge-Z ions and N electrons in a volume of order Q
closed on all sides except one. On this side, we have a free
surface that results from a cleaving process. For conveni-
ence, let us take Z =1 throughout.

The full Hamiltonian has the form

N g2 N g2 N

H=g Va+g V + g vs(aP)
2M .

1 2m
a(P

N N

+ g g uI. (ct i)+ g u:(tj)
a=1 i=1

Single-particle theories, such as band theory, keep the
first and third terms together and solve the one-particle
Schrodinger equation in detail. The choice of vi, reflects
realistically the effect of overlap between core and valence
electrons, and n., ( r ) contains information on both the lat-
tice symmetry and the spread of ion wave functions.
Coulomb interactions between the electrons are then
brought in as a correction. Conventional many-particle
theories, on the other hand, combine the first and fourth
terms with a semi-infinite uniform charged background to
form a jellium model, calculate the latter's properties, and
then treat the deviation of n+(r) from uniformity as a
perturbation. In either case, the information to be de-
duced includes at least the electron-density profile n ( r ),
the surface energy cr, the work function P, and the excita-
tion spectrum.

where M and I denote, respectively, the ion and electron
masses. In the simplest model, one assumes that the ion
lattice is static and represents it by a distribution function

n+ ( r ). The Hamiltonian reduces to

2

V;+ —,f dr dr 'n+(r)n+(r ')uII(r, r ')2'
N N 2

+ g f dr n+(r)ui, (r, r;)+ g
i=1 ~r —rl J

the second term being a constant.

B. Density-functional theory

In the original density-functional theory calculation
(DFT) for metal surfaces by Lang and Kohn, ' the energy
functional

[
r —r'i

+Tsfn(r)]+ f e„,[n(r)]n(r)dr
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is minimized with respect to the electron-density profile
n (r) for a jellium model. This can be done by solving an
auxiliary self-consistent single-particle Schrodinger equa-
tion

f2
V +u ff(r) g-(r)=e-q -(r)

2m P P P
(4)

with

and

From here,

rs[n(r)]=pe —f u,rr(r)n(r)dr .

The substitution of Eq. (7) into Eq. (3) yields the ground-
state energy.

In this calculation, the exchange-correlation energy den-
sity e„,[n ( r ) ] is to be taken from bulk electron liquid cal-
culations, which yield e„,(n) at uniform densities n Such.
a local-density approximation (I.DA) is expected to be
good for systems with slow variations or small inhomo-
geneities. Metal surfaces do not satisfy either require-
ment. Yet when lattice corrections on the jellium model
are accounted for in a first-order perturbation theory, the
LDA is found to yield surface energies and work func-
tions in rather good agreement with experimental data. '

The LDA and the first-order perturbation treatment for
the discrete lattice have been two sources of concern to
theorists in the field. During the last decade, many au-
thors have attempted to make improvements on these as-
pects of the original Lang-Kohn calculation. A few ex-
amples will be mentioned here.

To correct the LDA, Rasolt and co-workers ' included
in E [n (r )] the leading density-gradient correction

f e„','[n(r)][Un(r)] dr,
and found the surface energy increased by 20% or more,
depending on the value of r, . Gupta and Singwi added
the term

e„','n r V'n r -V V'n r dr,
and reduced the total correction to a few percent.
Langreth and Perdew replaced the density-gradient ex-
pansion with a wave-vector analysis, interpolating the
exchange-correlation energy between the LDA at short
wavelengths and the random phase approximation (RPA)
at long wavelengths. They found surface energies at
values approximately 10% above those of the LI3A in-
cluding a first-order perturbative correction (I.DA-FPC).

On improving the treatment for the ion lattice, Sahni
and co-workers carried out variational calculations using
trial density functions generated by a parametrized u,rf(r).

Monnier and Perdew, on the other hand, parametrized
only the discrete-lattice correction term in the self-
consistent potential, and used the solutions of the self-
consistent equation to generate trial density functions for
their variational calculation. In each case, a general
lowering of the surface energy was found, which tended to
offset the increases caused by correcting LDA-FPC. This
probably explains why the LDA results including first-
order perturbative correction for the discrete lattice, i.e.,
Lang-Kohn, stand so close to the best DFT results and to
experimental data.

A large number of three-dimensional band calculations
using realistic ion lattices exist in the literature.
Diverse methods have been used for treating the
exchange-correlation energy functional. Since it is gen-
erally believed by band theorists that many-particle effects
are small, the exchange-correlation density functional is
given simple forms. Few reported on the density profiles
or the surface energies. Their interest lies mainly in the
structure of the energy band, especially the surface states.

C. The correlated basis-fuactions approach

The method of correlated basis functions (CBF) seeks to
incorporate into the basis functions as much information
about the system as is practicable, without unduly restrict-
ing the outcome of the calculation. Correlations in the
system can be long-ranged, as in crystals or superconduc-
tors, or short-ranged, as in Liquid helium or nuclear
matter. The wave functions come in the form of two or
more factors. For example, one factor will be the "model
function, " defined as an optimum independent particle (or
quasiparticle) description for the system. In the case of a
system without long-range order, it will be a properly
symmetrized product of plane waves. For a solid, it may
be a product of Gaussians localized on lattice sites, Bloch
states, or phonons. In the case of a superfluid of fer-
mions, it can be a product of paired functions in the
momentum space—a BCS wave function. For a Fermi
system with a surface, as in the present case, it should be a
determinant whose elements are solutions of a single-
particle Hamiltonian that contains some reasonable model
surface potential, such as (but surely not limited to) the set

(r)] that appears in Eq. (4).
The other factor is a "correlation factor, " which

features interparticle (or interquasiparticle) correlations.
A popular example is a function in the Jastrow-Feenberg
form,

+f(r~)),

which accounts for pair-reducible many-particle correla-
tions. One can also include higher-order functions
designed to account for irreducible multiparticle correla-
tions. In the present case, as was shown in calculations
performed for electron correlations in bulk metal —both
CBF (Refs. 19 and 20) and t matrix (Ref. 21)—the
Jastrow-Feenberg form will be quite adequate.

The two factors serve to cast single-particle and many-
particle properties in balanced roles. The model function
emphasizes the first and third terms of the Hamiltonian
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(2). It takes exchange into account. The correlation fac-
tor stresses the importance of the last term in the Hamil-
tonian and thus the interparticle correlations. No assump-
tion need be made on their relative significance. The corn-
petition between these two factors will ultimately deter-
mine the best microscopic description for the system. For
example, if correlations are truly unimportant, the CBF
variational calculation will result in a g, f (r/) that de-

viates little from unity when the best [p (r ) } are used in

forming the model function. For details and general re-
views of the CBF theory, we refer the reader to Refs.
22—25 and recent conference proceedings.

An immediate question arises. The OFT has worked
rather well, so why should a new formalism be attempted?
It is our belief that the CBF method has become suffi-
ciently well developed for application to metal surface and
adsorption calculations. If successfully carried out, it can
provide a useful complement to the DFT for the following
reasons:

(i) In the CBF, the variational procedure is applied
directly on the ground-state wave function rather than the
density.

(ii) The wave function is constructed to explicitly ac-
count for single-particle and many-particle features in a
balanced way, as described above.

(iii) The energy expectation value will be expressed in
closed, integrable forms. The theory will be free of
density-gradient expansion or interpolation schemes.

(iv) The homogeneous bulk appears as a limiting case
of the inhomogeneous system [when the model surface po-
tential is taken as a constant, and thus [y (r)} turn into

plane waves]. They are treated on equal footing. The
theory is self-contained: It need not draw upon results of
independent work on the homogeneous system.

(v) The model for the lattice can be altered at will. It
enters the variational calculation through the Hamiltonian
(2). For the best effect, the symmetry of the model func-
tion should be chosen to match the lattice, but there
remains much flexibility in varying the model function.
One need not employ a low-order perturbation theory to
account for the discreteness of the lattice.

(vi) Systematic improvements are possible in two ways:

by including higher-order correlation factors in the trial
wave function, or by carrying out perturbative calcula-
tions in the correlated representation, using nondiagonal
matrix elements of the Hamiltonian (2) as perturbation.

(vii) The availability of a set of many-electron wave
functions enables us to use the theory for studying adsorp-
tion phenomena, in particular for obtaining the substrate-
mediated interaction between a pair of adsorbed
atoms/molecules. It also makes the theory applicable to
situations where interparticle correlations exert dominant
influences.

We have approached the development of such a theory
with much caution. The long-range nature of Coulomb
correlations was expected to give rise to spurious diver-
gences. In addition, 1IlhoIIlogeneltles as sharp as those
near the surfaces of metals would require accurate approx-
imation schemes.

Our first step was to apply CBF to Coulomb correla-

tions in a homogeneous Fermi system. We derived and
solved an integral equation [hereafter to be referred to as
the Chakravarty-Woo (CW) equation] for the homogene-
ous electron liquid. ' The results obtained were in good
agreement with those obtained with conventional methods
throughout the range of metallic densities (e.g., by Singwi
and co-workers ' ). The same integral equation in the
configuration representation was next applied to nuclear
matter. An initial attempt gave results that deviated
from Fermi hypernetted chain calculations
(FHNC/4). ' ' Subsequent diagrammatic analyses sug-
gested improvement on an approximation, which turned
out to be important for liquid helium and nuclear matter.
Its inclusion led to results that agreed closely with
FHNC/4, thereby confirming the validity of the CW
equation. It was shown that this improvement is not
needed for long-range systems such as the electron liquid.
We then moved on to inhomogeneous electron liquids,
deriving in the process coupled CW equations that con-
tain the homogeneous system as a limiting case. The first
application of this theory was on a system with relatively
mild inhomogeneities: metallic hydrogen. - Our results
agreed well with those obtained using a standard perturba-
tion theory and using the OFT. At that point, we de-
cided that the time had finally arrived for proceeding to
metal surface calculations.

II. THE ONE-ELECTRON MODEL PROBLEM

We take for our correlated wave function (suppressing
spin functions)

g(1,2, . . .,N)= + exp[ —,u(r; )]D[y],

where D [y] denotes a determinant with single-particle
elements [y-(r)}. Variation is to be conducted on u(r)

k

and y-(r ). u (r) will be a subject of discussion in Sec. III.
k

In this section, we focus our attention on the model func-
tion D [y], calculating for later use an "uncorrelated" den-
sity distribution and its attending contribution to the sur-
face energy.

The single-particle elements [y-(r)} should form a
k

complete set. The most convenient way to parametrize
such a set of functions is to take them as eigenstates of a
Hamiltonian that contains a parametrizable potential
V(r):

2ffE
—&'+V(r) y-(r)=&-q-(r) .

k k k

V(r) should have the appearance of a surface potential.
It is, however, only a device to assist us in constructing a
variational wave function. There is no reason for it to be
the effective surface potential experienced by an electron
in an actual metal. We will discuss this later.

In preliminary calculations, we experimented with
several simple forms of V(r), all of which are dependent
upon only one variable, z, the distance from the electronic
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Gibbs surface (to be defined presently). Here we shall em-
ploy a two-parameter hyperbolic tangent form:

VQ Z —ZQ
V(z) = 1+tanh

2 2a
(10)

The two parameters are Vo and a, which measure, respec-
tively, the depth and width of the model potential. The
third parameter zQ determines the location of the poten-
tial, but cannot be considered free, as will be seen later in
this section and in Sec. III.

We adopt periodic boundary conditions in x and y
directions, each with period L. In the z direction, we con-
fine the electron to a region bounded at z = Lby an—in-
finite barrier, but we let the wave functions decay freely
outside the surface, i.e., beyond the region z =0.

The solutions of Eq. (9), with V(r) given by Eq. (10),
can be written as

lim yi, (z) =cos[k (z —zp )—y(k) ],Z~ oo

where y(k) denotes the phase shift:

(18)

l
y(k) = —ln

2
1 (p+v)P(@+v+1)P( —2p)

&(v—p)&(v —@+1)&(2p)
(19)

a continuous function of k in the range of allowed values
of k, with the property

y(0)= ——.
2

(20)

Also, since p(k) = —p( —k) and v(k) =v( —k), we have

The requirement that yI, (z) decay exponentially outside
the surface means that we must take v~0. Deep into the
bulk, as z~ —~, yI, (z) takes on its asymptotic form of a
cosine wave of unit amplitude:

i(k x+k y)(r) =O'I I ~(x,3',z)= —e " q~(z), y( —k)= —y(k) . (21)

where

2Am~ 27jmy
(12)

The eigenvalues k can be determined from the boundary
condition

(22)

d fs k
2 + V(z) q)I, (z) = pI, (z)

2m dz 2m
(13)

and can be expressed in terms of 2F~, the hypergeometric
function

m„and m„being integers, both positive and negative.
q&i, (z) then satisfies the one-dimensional Schrodinger equa-
tion

Using the asymptotic condition (18),

(L+zp)+y(k )=(2m+1)—,m =0,+1,+2, . . . .

From Eq. (13), k and —k correspond to the same energy.
Since the energy eigenstates for a one-dimensional
Schrodinger equation cannot be degenerate, we take only
k&0. Also, by Eq. (21), m)0. Thus the quantization
condition of k reads

ikz
1

yl, (z) =C 2F, p+ v, p, +v+ 1,2v+. 1,(1+/)"+" ' 1+
(2m + 1)vr

2(L+zp)
y(k )

m =0, 1,2, . . . .
L +ZQ

(23)

where

p=ika, v = 2m Vo
-—k a

(14)

(15)

Now let us look at an X-electron system. Suppose we
have a set of X noninteracting electrons moving under the
influence of the same model potential V(z). The density
of such a noninteracting system will be given by

and

g =
exp [(z —zp )/a],

~
&(p+ )

~ ~
&(p+ +1)

~

2I (2v+1) I (2p)
~

M
np(r)=—"o(z)=2 2 2 I mI„,I„,I, (& X z)

~

' (24)
m =1 m„,m„

where the upper limit M corresponds to kM, the max-
imum value of k when N electrons fill up the X lowest
single-particle states. Straightforward counting gives

M (k2 k2 )1/2

+=2+ g 1=2+,I
m=O m m m=O 4~x' y

L (L +zp) k~
2+k dk = g (kM —k ) = +—I y(k)k dk

(25)

To lend this uncorrelated density function a more con-
crete interpretation one that will become useful later
when we discuss the interacting system described by the
wave function (8)—we now introduce an imaginary "posi-

l

tive charge" background. The background is brought up
here merely to facilitate counting. It is not to add an
external field and alter our single-particle calculation.
Therefore it does not matter how we distribute these ima-
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ginary charges as long as they are confined between two
planes z=O and z= —L+5 and they give us an average
density ( n+ ( r ) ) equal to the bulk density nz of the
noninteracting electrons:

N 1V

L (L —5)
(26)

Equations (25)—(27) yield

&+zo l kF
kM =kF — —kF+ 2

—f y(k)k dk
3 k o

(28)

z = L+5—gives the location of the asymptotic Gibbs sur-
face of the electron system. That the latter is not at
z = —L is because a short distance, on the order of 25, is
needed for the electron density np(z) to fall from its bulk
value at large negative z to zero at z = L. (Se—e Fig. 1.)
To preserve charge neutrality, the imaginary background
must end on a plane that matches this asymptotic Gibbs
surface. Of course, the same is true near the free surface;
we shall address that question a little later.

Equation (26) enables us to relate kM to kF, the Fermi
momentum of the bulk, defined as usual by

kQ
nz —— (27)

3~2

FIG. 1. Asymptotic Gibbs surface.

Note that caution must be taken everywhere with regard
to terms of order L ' when we perform surface calcula-
tions. Following the same counting procedure as that of
Eq. (25), and making use of the Euler-Maclaurin formula,
we find from Eq. (24) to order L

kF
no(z) = f (kF k)—

~

yk(z)
~

dk . (29)

Asymptotically, as z~ —L,

kF
np(z)~ f (kF —k )sin [k(z+L)]dk

3=n~ 1+ 2 2 cos[2kF(z+L)] —
3 3

sin[2kF(z+L)]3

4kF(z +L) 8kF(z +L)
(30)

Using this, the charge-neutrality condition renders

37T

8kF
(31)

Moving now to the free end, take a point z = —l such

that L« —I «——1/kF, in other words, a point deep in

the bulk. Charge neutrality requires

f np(z)dz=nzl . (32)

Since np(z)~n~ when z && —1/kF, Eq. (32) does not de-

pend on l. The transformation z'=z —zp then yields
00 00

f np(z'+zp )dz' =f n~dz'+ n p(z'+zp )dz'
So

=nszp+ np(z'+zp)dz—I

Or, by Eq. (32),

np(z'+zp)
zp ——l— dz—I n

Since the positive background has been taken to terminate
at z =0, the electronic Gibbs surface must also be at z =0.
Equation (33) tells us that to guarantee the latter we must
choose zp to satisfy Eq. (33). Thus zp is not a free param-
eter.

The ground-state energy of the noninteracting system is
given by

g2 M g2 L 2 M (k2 k2 )1/2

T, =2g~, = g—g (k„'+k„'+k')=, g f
m=0 m„,m 4~ m=Ok

2+k (k'+ k' )dk

g2L2 M Q2L2 L+2 ) k~
1

k

8ppz & 2py1 ~2 5 L 0
(34)
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Equation (28) converts T1 to the form

fi L
1

2&l 7T

2zo

5 15L
6

3L

+—f y(k)(k —kF)k dk
o

(35)

k=, m =1,2, . . .
2L

6
k

3L

AL kM
T1

m~

For the bulk system, similar calculations as described
above lead to

its value as determined in Ref. 19.
Offhand, it appears that a better choice of u (r) would

be one that varies with the local density. In other words,
nB in co~ should probably be replaced by the local electron
density n (r). Closer inspection indicates that such a sim-
ple local density dependence would not be quite correct,
because n ( r ) does not approximate the density of a locally
neutral system. It is better, at least for now, to leave nB in
its place.

A. Chakravarty-Woo equation for the density

We now define for P(1,2, . . .N) the n-particle distribu-
tion functions p(r1, r2, . . ., r„). With spin indices and
summations suppressed throughout,

N! f I 0 I
drn+1' ' ' dr+

")' f I 0 I'd

(39)
A'L'

fly &

1 ~kI'-

3L L 16
(36) Note that the one-particle distribution function

Thus, the surface energy per unit area is given by

B
T1 —

2 T1

L 2

kF

,
', zokF'+ —f—k«2 —kr')

2m&

y(k)+ —dk
4

(37)

(40)

is precisely the density function n (r1). In the special case
of u(r)=0, p(r) reduces to the density no(r) of an un-
correlated electron system. For later use, we write down
explicitly the two- and three-particle distribution func-
tions:

Once again we emphasize that this section has dealt
with choosing a set of model functions I y-( r ) I for use in

k
the variational wave function 1((1,2, . . . ,N). The purpose
of introducing an imaginary neutralizing background after
the completion of the eigenvalue calculation was to estab-
lish a proper counting procedure. In the process, several
concepts and formulas emerged, which will prove useful
in later sections.

III. DENSITY FOR AN INTERACTING
ELECTRON SYSTEM

and

dl '''dr1v
p(r1, r2)=N(N —1) f Ill

=p(rl)p(r2)g(rl r2)

f ill
p (r1, r2, r3) =N(N —1)(N —2)-

f Ill

(41)

For describing an interacting electron system, we go
back to the correlated wave function of Eq. (8). First, we
will discuss the choice of u (r).

In Ref. 19, we took for a homogeneous electron liquid

2e
u (r) = ——(1—e b'), (38)

where co& =(4~n~e Im)'~ denotes the plasmon frequency
and b a variational parameter. The latter was determined
for every value of r, . It was shown in Ref. 19 that such a
u(r) satisfied the required sum rule. We shall adopt the
same form of u (r) in this work to ensure that the bulk
will be eliminated exactly in our calculation of the surface
energy. Of course, for each r„b will have to be accorded

1~7 (r2)P ( 3)g( 1 r2 r3) (42)

In this section, our task is to obtain p ( r ), or n ( r ), for an
interacting system described by the correlated wave func-
tion g.

A most direct procedure would be by integration, using,
for example, a Monte Carlo method and the definition
of p ( r ) [Eq. (40)]. We choose, however, to use an
integro-differential equation approach: the generalized
CW equation. Unlike Ref. 20, we shall do it in the config-
uration representation, as in Ref. 40. First, we define a
"strength parameter" A, for the correlation and form a A, -
dependent wave function:
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g(1,2, . . .,X
~

A)= P exp[ —,'Au(rrj)] D[q&j . (43)
E,J =1

1 (J
Then we define A,-dependent distribution functions
p{r] I

A) p(r] rz
I

A) p{r] r2 r3
I
I) etc as in Eqs

(40)—(42). The equations that we derive will be for these
A,-dependent distribution functions. The solutions for
these equations taken in the full-strength limit X=1 are
then the functions we seek. In particular, p(r

~

A, =l)

=n (r ) =n (z). They will be related to the functions at
the uncorrelated limit, A, =O, e.g., p (r

~

A, =O) =no(r )—:no(z).
The generalized C%" equation is the first of a hierarchy

obtained by differentiating the definition of p (r]
~

A, ) with
respect to A, , introducing into the results the definitions of
p(r], r2

~

A, ) and p(r], r2, r3
~

A,), and then reintegrating
with respect to A, . Straightforward algebra leads to the
nonlinear integral equation

A,

p(r]
~
A)=p(r]

~

A, =O) exp f dA, ' f u(r]2)p(r2
~

A, ')g(r], r2
~

A, ')dr2

+-,' f «' f u(r23)p(r2
~

~')p(r3
~

&')[g(r], r„r3 (
~') —g(r2, r3

~

~ )]dr2dr3 (44)

The second of the hierarchy of CW equations would be obtained by performing a similar operation on p(r], r2
~

A,).
This becomes very complicated. It is a project that we plan to undertake in the future. For the present, we intend to ap-
proximate p (r], rq

~

A, ) in a manner to be described in Sec. III E and truncate the hierarchy by imposing further a convo-
lution approximation on p( r], r2, r3

~

A, ):

g(r] r2 r3
~
~) I+h]2(~)+hp3(~)+h3](~)+h]2(~)h23(~)+h23(~)h3](~)+h3](~)hlz(~)

+f p( 4r
~
&)h]4(&)h24(A)h34(&)dr4,

where

hJ(A, ) =g (r;, rJ
~

I, ) —1 .

Equation (44) then becomes

(45)

(46)

ln = +A](r]
~
k),p(r] (

A, )

p(r]
~

&=0)
(47)

with

A](r]

Az(r]

A3(r]

A4(r]

A5(r,

and

~

A)= f dA'f dr2. u(r]z)p(rz
~

A, '),
i&)= f dk'f drzu(r]z)p(r2i A')h]r(A, '),,

~

A)= f dA'f dr2d, r3u(r23)p(rz
~

1,')p(r3~ A, ')h»(A, '),
) f dA f dr2dI 3u (r23 )p ( r2

~

A, ')p ( r3
~

A, ')h ]2(A, ')h23(A, ')

~

&)= ,' f d~'-f dr2dr3u(r23)p(r2
~

&')p(r3
~

&')h»(&')h»(A, '),

(48)

(49)

(50)

(51)

(52)

A.

A6(r]
~

A)= —,
' f dA, 'f dr2dr3dr4u(r23)p(r2~ A, ')]]](r3

~

A, ')p(r4
~

A, ')h]4(A, ')h2q(A, ')h34(A, ') . (53)

Careful inspection shows that in the convolution approximation the CW equation preserves the asymptotic behavior
of the density function. In other words, all A] s approach zero deep into the bulk. This is extremely important for a
nontrivial interpretation of the solution.

B. Source of spurious divergences

u (rj ) is long-ranged, but h;1 is short-ranged. We thus find A2, A4, A5, and A6 finite, and A] and A3 divergent. The
divergences are expected to be spurious.

First, by combining A
~ and A3 we can demonstrate that the most divergent parts cancel. Let us write A3 as

A.

A3(r]
~

A)= f di'f drzdr3, u(
~
r]2 —r]3

~
)p(rq

~

A, ')p(r3
~

A, ')h]3(A, ')

= f, d&' f d r2d r3I u(r»)+ r» [~z»(~&3)1-„, -,
,
+ lp(r21~')S (r31~')h]3(~') (54)

The definitions (40) and (41) give rise to an obvious sequential relation (or sum rule):
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J p(r$ r3
~

~)~r3 (~ 1)p(r$

But since

(55)

p r& r3
I
~)~r3= f p(ri I ~)p(r3 ~)g(ri r3

~
~)~r3

=p('i I~) f p(r3I~)(g(ri r31~) 1]~r3+f p(r3~~)~r3

=p(r&
~

~) fp(r; &)h»(A, )dr, +N

Eq. (55) becomes

f p( 3ii, )h, 3(A, )d, = —1.
Using this relation in A3, the first term becomes

f dA, 'f drzdr3u(r&z)p(rz
~

A.')p(r3
i
1,')hi3(A, ')= —f dA,

' fdr uz(r& z)p(r ziA, '), (57)

which cancels 3] exactly. The second term in A3 is not as divergent, nor are the higher-order terms in the expansion.
This is, however, not the way to handle the divergence problem. Having been convinced in this manner that the diver-

gences are spurious, we seek a more rigorous way of removing them.
To proceed, we shall simplify the notations and the calculations by recognizing that in the models to be considered,

the density profile will depend only on z—normal to the surface. We write p (z
~

A, ) in place of p ( r
~

A, ). Also, h &;(A, ) de-
pends on r&; as well as z~ and z;. We shall suppress z~ and z; in the notation and write it as h(r~;

~

A, ). Bringing Eq. (56)
into A, , we find

A, +23= f dA, ' f drzu(r, z)p(rz
~

k') —f dr, p(r3
~

A, ')h)3(A, ')

J aA f arzar3u(rz3)p(rz
~

A )p(r$
~

k )/l'[3(A )

f ~~ f ~r3p(z3
~

~ )~13(~ ) f ~rzp(zz
~

~ )[&(r23) &(rlz)]

2lT J aA f ar3p(z3
~

A )/l (r/3
~

~ ) f 4zzp(zz ~ )f
~ ~

g~ (g)~g

z„f ~~' f ~z3p (z3
I
~')~z. '(

I
z&3 I

)f ~ zz(pzIz') f
]

(5&)

A z( iz )=f gh(g~ k)dg.

Now, using u (r) as given in Eq. (38), A
~ +23 reduces to two terms:

~1+~3 ~1(zl
l
~)+~3(zl ~) i

with

(59)

(60)

~i(zi I
~)=(2~)'f ~/' f ~z3p(z31~')~z. (

I
zi31)f ~zzp(zz

I

~') f

~3(z~
I
~)=(2~)'—f ~~' f ~z»(z3

I
~')~z. (

I
zi31)f ~zz« " —e " )p(zz I

~') (62)

W3 is well behaved. We shall later reduce it further along with 22, A4, A5, and A6. For now let us concentrate on W&,
which would diverge if the calculation is carried out without due regard to the order in which several length scales are
taken to their infinite limit.

C. Removal of divergences in W&(z&
~

A, )

Consider the cleaving process, which results in two free
surfaces. Let us abandon the coordinate system used in
Sec. II for the moment and adopt one that is symmetric,

i.e., one whose origin sits midway between the two free
surfaces, as defined by two Cxibbs surfaces at z = —zG and
z =+zz. The asymptotic boundaries will be placed at
z = Land z =+L. (—We ignore 5, since asymptotic
boundary behavior does not enter present arguments. )
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FI+. 2. Cleaving.

+ZG

measured by L and zG, respectively. The latter can be
described by modifying u(r) with an exponential factor
e '", measured by the length e '. All three approach in-
finity. It is important to take the limits in the right order.

In accordance with customary practices, we bring e
into the right-hand side of Eq. (61) and postpone taking
the limit a~0 until the final stage of calculation.
Separating out the deviation from the average bulk densi-
ty, we define f (z

~

A, ) by

Figure 2 helps to define these points on the z axis.
There are three length scales involved: the size of the

system, the spacing between the two cleaved surfaces, and
the range of the Coulomb correlation. The former two are

p(z
I
~)=n~[6( zg z)—+f—(z

l
~)+6(z —zg)]

Thus,

2W~(z~
~

A)= —(2am~) a f dA, 'f dz3[6( —zg —z3)+f(z3
~

A, ')+6(z3 zg)]A g(
~
zf3

~
)

I 21 I

X f dz2[6( —zg —z2)+f(z2
f

A, )+6(z2 —zg)] f e dg'. (64)
z,

Take z& on the left of the cleaving plane; then the term 6(z3 —zg) can be omitted from the integral over z3, since
(

~

z J 3 ~
) is short ranged and the separation between the free surfaces is macroscopic. W

~
splits into four terms:

M1 =M11+M12+ M13+ W14,

with
z,

Wqq(z,
/

A)= (2~n—s) a dA,
' dz36( —zg —z3)A ~( /z, 3 /

) dz2[6( —zg —z )+6(z2 —zg)] e ' dg,
0 IZ231

W&2(zt
/

A)= (2vrnz) af—dA'f dz, 3f(z3
f

A, ')A ~( fz&3 ) f dz2[6( —zg —z2)+6(z2 —zg)] f e-'~dg,
0 I zp3 I

z„
Mq3(zq

/

A, )= (2rrns—) af dk'f dz36( —zg —z3)~~( /zq3 f
)f dz2f(z2 fA, ') f~

~

e ' dg',

(65)

(67)

(68)

Mq4(zq
f
1,) = —(2mnz) af dA, ' f dz3f (z3

f

A, ')A ~(
/

z&3
f

)f d 2f (z2
/

A, ')f e '~ g' . (69)

W13 and M14 can be evaluated immediately The results will be given presently. In M1 1 and M 12, there remains a small
complication. As the two free surfaces are given increased separation, i.e., as 2zg —moo, one should not allow the
Coulomb correlation factor to be distorted. Hence if z& is on the left side of the cleaving plane, the factor e '~ should be

—e(g' —2zG )
replaced by e when an integration is performed over the region on the right of the cleaving plane. Thus

~11 ~11L+~11R

M()L(z)
~

A)=lim lim (2rrng) af dA'f d,z3A g( ~z)3
~

) f dz2 —( —e " +e " ),
e~O L~oo 0 —L —L

A,
—Z L

~&&&(z&
~

P)=hm hm (2nn~) af dP'f dz3P/ g(
~
z&3

~
)f dz2 —( —e +e ')e

e~O L~oo 0 —L ZG

Combining these expressions, it can be seen that there will be a contribution only if z& is located outside the Gibbs sur-
face:

W„(z,
~

A)=(2mn ) a f dA'6(z, +z,g)(z, +zg) f 'A ~( ~z
~

)dz .

Likewise,

(70)

M 12L ——lim lim
e~O L —+ao

M12+ ——hm 11m
e—+0 L~co

Combining,

L L—(2mn~) af di'f dz3f, (z3
~

A.')A ~( ~z&3 ~
)f dz26( —zg —z2) f e '~dg

A. L L—(2n'ng) a f dA. 'f dz3f(z3
~

A, ')A z( ~zi3
~

)f ~ dz26(z2 —zg) f
~ ~

e dg
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M)2(z) A)=(2mn~) af dA' , B(z)+zg)(z)+zg) f f(z)+z A, ')A g(
I

z
I

)dz

—f f(z+ z,
I
~'}~,(

I
z

I
)(z, +z+zg )'dz

Finally, the charge neutrality condition, now in the form

f(z
I

A, )dz =0,
leads Eqs. (68) and (69) to the expressions

QQ

J3f ]3(z& A, )=(2nnz ) a dk' Ie( —zg —z —z& )[~~ (z& +z) —~ ~ (z& )]0 0

+0( —zg +z —z ( )[w g (z) —z) —w g (z) )]]A g (z)dz

(71)

(72)

(73)

+f (z~ —z
I

A, ')[M ~ (z~ —z) —M ~(z, )]]A ~(z)dz, (74)

a ~(z) =2f f (z' A, )(z' —z)dz' . (7S)

D. Remaining parts of the Chakravarty-Woo equation

Straightforward integration yields

oo

dc& 3(z& I
A ) =(2m) — dA,

'
[p(z& +z A, ')[ H& (z& +z) —H~ (z~ )]+p (z& —z

I

k')[H& (z& —z) —H& (z& )])A ~ (z)dz0 0

(76)

where

H~(z)= f [p(z+z'
I
1)+p(z —z'

I
A)]e ' dz' . (77)

A2 and A& can be combined in much the same manner as A& and A3. In other words, multiply the integrand of
Az(r&

I
k) by —f d r3p(r3

I

k')h»(k') and add the results to A4(r~
I

A). We find by straightforward integration

A2(z)
I

A, )+A4(z)
I A)=2' f, dA'f Ip. (z)+z

I
A, ')[Ag(z)+z) —Ag(z))]

where

+p(z) —z A, ')[A~(z) —z) —A'~(z))]I% g(z)dz, (78)

A~(z) =2~f [p(z+ z'
I

A, )+p (z —z'
I
k)]Kq(z')dz'

and

Kx( lz I
)= f g'hi(

I
k)u(g)dg .

A5 and A6 consist of complicated integrals. The following expansion turns out to be useful:

f drp(z IA)u(
I
r —r

I
)h(

I
r —rpl IA)

=f drp(z
I
~)[u(

I rp —r
I
)+(r —rp) [~u(

I

r r
I )]-, =-, + ' ' lh(

I
r rpl I ~)

(80)

= —u (r~)+u'(r@, ) f dr(r —rp)p(z
I

A, )h (
I

r —rp I I
A.)+

P'p

= —u(rp )+u'(rp ) f d«z z~»(z
I
~)h(

I

r r—~I I
~)+-

Pp

Zp Z~
u (rp ) +u'(r p ) &g(zp)+—

7~ (81)



CORRELATED-BASIS-FUNCTIONS THEORY OF METAL SURFACES

where

&&(z)= 2—n f [p(z+z'
I
~)—p(z —z'

I
~)]~~(z')z'dz' .

Substitution of Eq. (81) into As and A6 leads to

~s(zi
I
~)= &~2(zl

I
~)+&~s(zi

I
~»

(82)

(83)

where

6As(z,
I
A)= —, dA, '&g(z))Sq(z)),

0

Ã~(z) =2mf . [p (z +z'
I

A ) —p (z —z' A, )]g~(z')z'dz',

Ex( lz I
)= f,

"
&(kl ~»'(k)dk

and to

A6(z(
I

A, )= ——,'A~(z)
I

A, )+526(z)
I

A, ),
where

526(z,
I

A)=m f dA, 'f [p(z~+z
I

A, ')W~(z&+z)g~(z, +z)+p(z& —z
I

A, ')W~(z& —z)g~(z& —z)]A ~(z)dz .
0 0

(84)

(86)

(87)

(88)

In Eqs. (83) and (87), only the two leading terms of As
and A6 have been retained. Numerical computations give
results that show the expansion converges reasonably well,
and since A5 and A6 are relatively small to begin with,
truncation after two terms does not significantly affect the
accuracy of the calculation. (See Table I.)

g (rl r21 ~)—gB(r12 ~
I
n(zi )) (89)

where gz(r, z, A,
I

n(z& )) denotes a bulk g~(r&z, A) at a par-
ticular density n that depends on z& through the sequential
relation (or sum rule), Eq. (56), namely,

f n(r2
I
&)[gg(r~2, &

I
n(zj)) —1]d~~———1 (90)

In actual practice, instead of solving Eq. (90), we permit
gz to scale with nz and determine the scale parameter by
requiring it to satisfy Eq. (90). Such an approximation
would not be too inaccurate since gz does scale reasonably
well as long as the density is not too high. (See the results
given in Ref. 19.) In addition, we interpolate between the
fully interacting gz and the Hartree-Fock g~, both from

E. Sum-rule approximation for g ( r~, r2
I

A,). Typical results

It should be clear by now that if the one-particle C%'
equation is already so difficult to solve, determining
g ( r ~, r2 I

k) by actually solving the two-particle CW equa-
tion would pose far too prohibitive a task at this stage. In
preliminary work, we simply employed for each r,
the pair distribution function of a bulk electron liquid,
gz(r&2), determined at the same r, in Ref. 19. Such a g
does not take into account local variations of the density
in the surface region.

In this work we bring about an improvement, still tak-
ing results from the bulk calculation, but using for each r,
and A, the entire set of g~(r) with densities ranging from 0
to the peak value of n (r), and A,

' ranging from 0 to A, . We
let the local density enter through the following approxi-
mation method. Let

l

Ref. 19, to give g~ its A, dependence. More sophisticated
approximation schemes are planned to be attempted in fu-
ture work.

A word about the relocation of the Gibbs surface.
Equation (44) comes from the definition of the density
function, Eq. (40), which is the same as that for the un-
correlated system [with u (r) set to zero]. So, if
no(r)—:p(r

I

A, =O) observes charge neutrality, so does
n(r)=p(r

I

A, =l). In principle, then, the Gibbs surface
would not shift.

However, approximations must be made to bring Eq.
(44) into its final, usable form. There is no guarantee that
the Gibbs surface located at z =0 in Sec. II would remain
at z =0. As a check on the approximations, we require
the shift to be slight. It turns out to indeed be the case.
Nevertheless, it is still necessary to relocate the Gibbs sur-
face in accordance with the dictates of n (r ) in order to
ensure exact charge neutrality so that the energy and work
function calculated will be meaningful.

In actual computation, Eqs. (47)—(53) are solved itera-
tively. The iteration process begins with p(r

I

A, =O) re-
placing p(r

I
A,) on the right-hand side of the equations.

Once a new p(r
I

A,) emerges on the left-hand side of Eq.
(47), it is translated along the z axis until the charge neu-
trality condition (72) is satisfied. This is done for every
value of A, . In other words, in each case, the Gibbs surface
will be maintained at the origin. That zG appears in the
results for M, (z

I
k) should be of no concern. The coordi-

nate system considered in Sec. III C was devised to facili-
tate the removal of spurious divergences. As soon as the
limits are taken properly, we stop worrying about the
cleaving process and return to dealing with one one side of
the cleaving plane, as in the evaluation of
M3 A 2 A 4 2 5 and 2 6. In the final results for W &, i.e.,
in Eqs. (70), (71), (73), and (74), —zG always appears in
the role of a reference point for z coordinates. It may sim-
ply be set to zero as a result of relocating the Gibbs sur-
face.
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Table I shows typical results in a density profile calcu-
lation. The particular case shown is for r, =3.28 (Li).
Detailed results will be given in Sec. V.

2

T4 —— f p(rl, r2, r3)Vlu(r12) V,u(rl3)dr&dr2dr3,
8m

IV. SURFACE ENERGY AND VfORK FUNCTION

The Hamiltonian of the interacting electron system was
given in Eq. (2):

N 2

H = g V';+ —,f dr dr 'n+(r)n+(r ')vII(r, r ')
27?l

X 2f dr n+(r)vl, (r, r;)+ g
i=1 ij =1 ij

n+(r2)
& Vl, &z —— e—f drln(r, )f dr2

r12

e p(rl r2)
&V„&J= f dr, dr,ee

?'12

(100)

(101)

(102)

In this section, we wish to evaluate its expectation value in
the correlated wave function f(1,2, . . .,%) of Eq. (8):

(91)

H =HJ+AH .

We begin with HJ..
(92)

2??z 2 I'12

Subtracting from E the bulk energy ,'E, the —remainder,

which is proportional to L, , will be the total surface ener-

gy E . The surface energy per unit area is then
Cr=E /L

It is convenient to separate H into two parts: a jellium-
model part HJ and a lattice correction part hH,

n(rl)n(r2)[g(r, r2) —1]
U, = — dr1dr2 (104)

We shall first work on the kinetic-energy contributions
Tl, I =1,. . .4. Tl was given in Sec. II, Eq. (34). The cor-
responding bulk contribution Tl was given in Eq. (36).
The contribution to the surface energy per area, t1, is thus
given as in Eq. (37):

']I

2 T1

I 2

& VII &g, & Viz &J, allcl & V~e &J call be comblnecl allcl
rewritten as U„+U„where

e [n( r)ln+—(rl)][n(r2) n+(r2)]
Ues dr ldr2CS

~12

(103)

(93) g2 k~——
15 zokF+ f k(k —k~)[y(k)+ ,' rr]dk-

2Pl 71' 0

where n+ ( r ) now denotes a semi-infinite uniform positive
charge distribution:

-=&T&+& V„&,+& V,.&, +& V„&,

—= &T&+U..+U,

(es denotes the electrostatic contribution, c denotes corre-
lation), where

&T& =Tl+T2+T3+T4,

Next,

T2 —— I. f n (z) V(—z)dz

and

T2 ——0.
Hence

1

T2 2 T2

I 2

= —f n (z) V(z)dz .

(105)

(106)

(107)

(108)
with

T, =2+e„,

T2 ———f n(r)V(r)dr,
2

T3 — — p (rl, r2)[ Vlu (rl2)] drldr2
8m

(96)
T3 and T4 are divergent and complicated to evaluate. We
shall give an outline below and refer the reader to Appen-
dixes 3—D for details.

%'ith the use of the convolution approximation for
p(rl, r2, r3), as shown in Eq. (45) except that now we deal
with the full-correlation limit A, = 1, T4 can be separated
into three parts:
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T4 T41 + T42+ T43

g2
T4i —— dridr2dr3n(zi)n (zz)n(z3)

8m

ging]3 iu (riz )' V iu (ri3 )

fi
T42 —— d r id r 2d r 3n (z, )n (z2 )n (z3 )

Sm

Xgiph23 V iu (ri2). V iu (r i3),

T43 — d r id rzd r3n (z i )n (z2 )n (z3 )
8m

X hz3h3i+f dr, n(z4)hi4hzqh34
L

(109)

(110)

A. Kinetic energy —short-range part

First we consider T42, T43 and T3, since they all con-
tain the short-range factor h,j., making their evaluation
easier to carry out. T4i is where all the difficulties arise;
we shall discuss it in Sec. IV B.

Let us begin by showing that the divergent parts of T3
and T4z cancel. By rewriting T42 in the form

2

T4~= dr idr zn(z i)n (zi)gi2
Sm

X Viu(riz) Vi f dr3n(z3)h23u (ri3)

and calling forth the expansion (81), one finds

T3 + T4$ d r id r2n (zi )n (zi )g i2& i(zz )
Sm

—+ Z2 Z]
XViu(riz) Vi u'(rip)

~&2

X V'iu (ri2) Viu (r,3),

where g;~ =g(r—;, rJ) and h,j =g,j —1 as before. Note that
we shall again take g in the form of a bulk g that is scaled
to satisfy the sum rule locally, as in Sec. III E.

(112)
The definition of &,(z), Eq. (82), indicates that it would
vanish if p (z) is constant, which is the case for the homo-
geneous bulk. Thus T3 + T42 vanishes. Combining this
result with Eq. (112) and reducing it further algebraically,
we obtain

(T3+ 4z) ——,
' (T3+ T42)

t3+t42 =—
L 2 I" 12

Z2 Z1
dridr2n(zi)n(z2)gi2&i(z2) u'(ri2)u "(ri2) .

Sml.
(113)

Next, the second term in T43 can be rewritten as

dridr2dr4n (zi)n (zz)n(z4)hi4h24Viu (ri2) Vi f dr3n (z3)h34u (ri3)
Sm

and expanded as in Eq. (81). Its first contribution cancels the first term in T43 leaving only its second contribution in
the expansion. It reads

2 Z4, Z1f dridr2n(zi)n(z2)Viu(ri2). f dr4n(z4)h24 hi4&i(z4)Vi u'(ri4)
Sm r14

The existence of the short-range factor h24 permits the coordinate r4 in the curly brackets to be replaced by rz, which
leads to further simplification and the result

2 Z2 Z1
T43 f dridr2n(zi )n (zz)h i2&i(z2) V iu (ri2) V i u'(ri2)

8m

Once again, because of & i(z), T43 vanishes. Thus,
B

T43 2 T43
t43 —=

2L
Z2 —Z1

dridrzn(zi)n(zz)hi2&i(zz) u'(riz)u "(ri2) .
Sml ~12

Combining Eqs. (113)and (115),

7TA2 2

Sm
dzidz2n(zi)n(z2)&i(z2)(z2 —zi)[u'(

I
z, 2 l

)

This leaves T41.

Z2 Z1
3 + 42 + 43 z dr idr2n (zi )n (z2 )& i(z2 ) u '(r i2 )u "(riz )

SmL ~12

00

dzidzzn(zi )n (zz)&i(z2)(zz —zi ) 2mu'(r)u "(r)dr
8m Iz„ I

(114)

(115)

(116)
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L (z) =—ng[e( —zG z)+f1.—(z)]

and its mirror image

R(z)=n~[e(z —zG)+f~(z)] .

(117)

(118)

Note that fL, (z) =f~( —z). Each piece dies off in the re-
gion between the free surfaces, i.e., —zG &z &zG. fL and
fz each satisfies the charge neutrality condition, with
Cxibbs surfaces falling on z = —zG and z =zG, respectively.
The sum of fi and fz gives f (z

~

A, = 1) of Eq. (63), but it
is more convenient here to write f in two parts:

B. Kinetic energy —long-range part

We refer to Tz& as the long-range part of the kinetic en-
ergy, since the integrand contains no short-range factor to
ensure its convergence. In fact, direct integration would
give rise to divergences that are obviously spurious. We
return to procedures similar to those employed in Sec. III
for removing divergences in the density equation.

Figure 2 once again becomes helpful. We shall write
n (z) as the sum of two parts: a left piece

T41 —T41
B

41 =

[(W) —W) )+(Wp —W2 )+(8'3 W3 )]B B B

(124)

[(5W, +5W, )+ 8', +(~,'+ ~3)]
m

(2n. ) f dz[A (z)] + Wi, (125)

where

W1 —8'1 and W2 —W2 will be evaluated in Appendix A,
with the most tedious part appearing separately in Appen-
dix 8; another part is given in Appendix D. W3 W3
will be evaluated in Appendix C, with one part appearing
in Appendix D. The final results are given below. It
should be noted that while T41 and T41 both diverge as
L~~, their difference per unit area is finite, as expected.
We have, at the end,

fi
T4& —— d r &d r2d r3n(z& )n (z2 )n (z3 )

8m

Bu(r)2) Bu(r)3)
+g12g13

Z1 Z1
(119)

0
m(z)= f (z —z')g )(

~

z —z'
~

)dz' .

p', consists of many integrals. It is given in Appendix &
and will not be reproduced here.

C. U

Tgi —— (8'i+ 8'2+ W'3),
m

(120)

Enter n(z):L(z)+R(—z). Applying the symmetry with
respect to exchanging r2 and r3. Next apply the symme-
try L (z) =R ( —z). One finds

In the jellium model, n+(r) is merely a step function.
We need to deal with only one side of the cleaved plane,
say, the left side. Equations (103) and (117) yield

2 ~12

with

Bu(r~2) Bu(r&3)
dz1 d r2d r 3g12g13

Z1 Z1

or

enB

2 f dr fI (z)N(z), (126)

XL (z~ )L (z2)L (z3),

Bu(r~2) Bu(r~3)
W2 =

4 «1 «2«3g12g13
Z1 Z1

(121)
where

@(zt)=f dr2

V 4(z) = —4men~fi (z)

(127)

(128)
XL (z& )L(z2)R (z3) (122)

in Eq. (126) and then integrating by parts, we find

Bu(r)2) Bu(r, 3)
dz1 d r2d r3g12g13

XL (z~ )R(z2)R (z3), (123)

U„= f dr(V@):— f dr E

Finally, with Gauss's law
z

E(z) =4men~ f dz'f. l (z'),
where all integrations are from —zG —L to zG+L.

For T4~, L (z) is replaced by n&e( —z), R (z) by n~e(z),
and g,J by g,j, which stands for the bulk g,j at the homo-
geneous density nB. The integrations are from —L to L.
We refer to these contributions as W1, Wz, and W3.

In such a configuration

we obtain
r

Ues =2ne n~L f dz f dz'fL (z') (129)

Obviously U„=O. Thus the electrostatic contribution to
the surface energy per unit area is given by
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Ues 2 2 0 z 2

u„—= 2
——2me ns f dz f dz'fL, (z')

L 2 OO OO

D. U,

(130)
From Eq. (104), U, —U, =L u„where

QO 00

u, = f dz, f dz, n(z, )n(z, )

(131)

We define
&& f 2v [g(r„r,) g, (—r)]dr .

a
U, = dr, f dr2n(z, )n(z2)C

~&2

Then,

(132)

g(r„rz) takes the form of Eqs. (89) and (90); it is a func-

tion of r and of z, through n(zi ). We have

2

U, ——, U, =L" f" dz, f" dz2[n(zi)n(z2) —n&6( —zi)] 2m[gtt(r) —1]dr
00 OO

=L me nz f dr[gti(r) 1][yi(r)+—y2(r)+y3(r)], (133)

where

y, (r)= f dz, f dzze(r —~ziz
~
)[6(—zi)6( —zz) —6( —zi)]

0 00 0 zl+r ~2
= —f dzi f dz2e(r ~zi,

~

)=—f dz, f dz,

yq(r)=2 f dzi f dz26(r —~ziz ~
)6( —zi)fr. (z2)

0 Z
J

00

=2 dzi f dz2fL(z2)6(r —zi+z2)+ dz2fL(z2)6(r —z2+zi)
OO . 00 1

0 z z&+r 0 z)+r
=2 f dz f dz2fL (z2)+ f dz2fL, (z3) =2 f dz, f dzzfL, (z2),

00 z] —r z)

(134)

(135)

y (r)= f dz, f dz 6(r —~z, z
~

)fL(zi)fL(z2)=2 f" dz,f, (z, ) f '
dz,f, (z, )e(r ~z, i

~

)

OO
Z ]=2 f dzi fL (zi) f dz2fL(z2) . (136)

The contribution to the surface energy per unit area is

L 2

2 2

8
+me n~ f dr[gJ3(r) 1][y2(r)+Y3(r)]+u—

0

(137)

0, r(r,
u„(r)=u„(r ) =.

) f )1~
7

(139)

from a pure Coulomb interaction. We shall follow the
Lang-Kohn calculation' and adopt the local ion pseudopo-
tential proposed by Ashcroft ' (with ionic charge Z = 1):

E. Lattice correction term

We have

(q~~II ~y) (138)

where hH =H —HJ. Note that ME contains changes
from HJ that come from two independent sources. First,
n+(r) will now be a semi-infinite positively charged lat-
tice, n+ ( r )6( —z), instead of a uniform distribution.
Second, the ion-electron interaction UI, will now differ

where r, is a cutoff radius determined for each metal to
give a reasonable description of its bulk properties.

There is no correction to the kinetic energy terms. This
can be seen by a quick inspection of Eqs. (95)—(99): Nei-
ther the positive charge distribution nor the electron-ion
interaction appears in those equations. To avoid con-
fusion, let us remind the reader that the "kinetic energy"
here is that for a chosen form of the trial iuaue function g,
as are the distribution functions n ( r ), p( r i, r z), and

p( r i, r z, r 3) that appear in the kinetic energy expressions.
To improve the quantitative aspects of our theory, we may
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wish to widen our variational space at some time to better
accommodate the lattice model.

The corrections are for

«&, -=«„&,+«„&,+«„&, .

Since the ions are assumed static and nonoverlapping, we
can use a pure Coulomb interaction for VII, as in Eq.

(100). The pseudopotential enters only in VI, .
The lattice correction is given by

aE=( v), —( v), ,

where

(140)

«&, =«„&,+(v„&,+«„),
e n+(r~)n+(r2)6( —z&)6( —z&)

dl 1d1 g2
n(r&)n(r2)

+ f dr~dr2 +U,
2

and

n(r&)n+(r2)6( —z2)—e dr1dr2 6(r)p r,—)
~1Z

(141)

n~e( —z~)6( —z2) e n(r~) n( r)2n(r~)n~e( —z2)
dr]dr2 + dr 1dr2 +U, —e dr1dr2

2 ~12 2 12

There is of course the bulk counterpart to remove:

—,
' aE'= -,' [(v),' —( v),'],

where

(142)

(143)

(144)

and

( v),'= v,'.
Combining and reaaranging, we find the contribution to the surface energy per unit area to be

n+ (r &)n+( r2)6( —z& )6( —z2)

L 2L
(AE —,

'
b,E ) = d—r&d r2

(145)

nzn (rq)6( —z&)6( —z2) n B(—z, )6( —z )—2 dr1dr2 6(r~2 r, )+ dr~dr2—
7 12

+n(r&) +n( r)2 ngn+(12 ng
dred r2 —2 d r &dr& 6(r~2 r, )+ —dred r2

~1Z 7 12 7 12

n gn+ (r2)6( —z] )e( —z2) n~e( —zi)6( —z2)+ dr]dr2
L 2

~12
6(r„—r, ) — dr)dr2

(rn]) +n(r2)e( —Z2) n(r &)n~e( —z2)
dI 1d12 6(r, z

—r, )+ dr&dr2

(146)

It should be noted that the first set of six terms in the
square brackets corresponds to

[E(lat, lat)+E( —,lat)+E( —,—)]
—

2 [E;„r(lat, lat) +E;~(—,lat) +E; r( —,—)]

5o. ,= —f 5U(z)[n(z) n+6( —z—)]dz, (147)

which came from averaging the following expression over
the xy plane:

2 f [@ (r~) —@ (r&)][n(r&)—n&6( —z&)]dr~,

of Lang and Kohn, or 5o,t. The second set of four terms
corresponds to 5o„, of Lang and Kohn, since the latter
was given by where

(148)
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en+(rp)e( —z2)
@ (r))= f 6(r ~2

—r, )d rz (149)

(150)

A kF d[ne„,(n)]+
2EPl

In this case, for consistency's sake, we take e„,(n) from
the CBF calculation for bulk electron liquids (see Ref. 19).

(5U) is as defined in Eqs. (147)—(150) and averaged
over the xy plane. For the Ashcroft pseudopotential,

F. Work function

To obtain the work function, we should (i) calculate the
energy of an X-electron system with a surface, (ii) calcu-
late the energy of a system with X—1 electrons to the left
of the surface and one electron at infinity, and (iii) obtain
the difference between these two energies. Each energy
should be calculated with a variational correlated wave
function.

In practice, since formally the evaluation of an expecta-
tion value of HJ+hH is exactly like carrying out a first-
order perturbation theory, we can adopt the Lang-Kohn
procedure as presented by Sahni and co-workers or Mon-
nier and Perdew. There, the work function P is given by

/=M& —p —(5U) . (151)

AC) stands for the electronic relaxation dipole barrier and
can be calculated from the static potential (127) or

e[n(r ') —nate( —z')]
@(r)= — dr ' .

/

r —r'f
(1S2)

6@=eC (+ oo ) —e@(—~ )

=4me f z[n(z) —n~e( —z)]dz .

p, is the chemical potential of the bulk metal:

These results should not be surprising, since a first-order
perturbation theory using the jellium wave function as un-
perturbed is totally equivalent to a variational calculation
restricted to using a trial toaue function determined from
the jeOium calculation If w. e restrict our P to that which
minimizes EJ, our resulting expression for E=—Ez+AE
should agree with that of Lang and Kohn. In that sense,
we would merely have given a more systematic derivation
of the Lang-Kohn correction term. What enhances our
variational calculation is that g need not be thus restrict-
ed. We minimize the total E—=EJ+AE with respect to
the variational parameters in g rather than using the g
that minimizes Ez. In fact, had we given the form of f
sufficient Aexibility, our procedure would have provided a
quantitative check on the accuracy of the first-order per-
turbation calculation. Unfortunately, our present choice
for Ip-(r)I is too restrictive for this purpose. We will

k

discuss this later.
The computation of our correction terms follows exact-

ly the procedure prescribed by Lang and Kohn. The for-
mulas are too lengthy to reproduce here. The reader is re-
ferred to Ref. 1, Sec. III, and Appendixes C and D.

(155)

where d denotes the interplanar spacing. We have not
made an attempt at this stage to use a more sophisticated
expression for the work function, e.g., the "displaced-
profile" work function of Ref. 8.

As input to the calculation, we need for each metal its
value of r, or kF. Once a crystal lattice structure is identi-
fied, we have the lattice cell size and the interplanar spac-
ing d. These are physical parameters. In addition, we
have the Ashcroft pseudopotential parameter r, .

We then need the bulk parameters u and b, as deter-
mined in an earlier calculation' for every value of r, . (In
Sec. III we explained why there was no attempt to revise
these parameters. ) We also take the bulk pair distribution
functions gs(r

~

ns ) from the CBF calculation in Ref. 19.
In the surface region, they are accorded local dependences
as explained in Sec. IVE.

In the model single-particle wave functions Iy-„(r)I,
there exist the variational parameters Vo and a. They are
subject to variation. The single-particle energy spectrum
e- and the density profile of the uncorrelated model sys-

k

tern np(z) are evaluated in Sec. II.
There are no other inputs to the theory. All numerical

calculations proceed in accordance with the equations and
formulas derived in Secs. III and IV. Appendix E lists the
various special functions defined for solving the density
profile equation and evaluating the surface energy. They
are assembled for the convenience of the reader.

We refer the reader to Table I for typical intermediate
results from an iteration of the CW equation. Shown, ex-
cept for the last two columns, are results obtained from
the first iteration of a calculation at r, =3.28 (Li), with
Vp ——1.80(A' kp/2m ) and a =0.08 A. The last two
columns give the density profiles for the noninteracting
and interacting systems, respectively.

Table II lists the model parameters, bulk parameters,
and optimum variational parameters for all the metals
considered. Figure 3 shows density profiles obtained for
two extreme cases: r2 ——2.07 (Al) and S.65 (Cs). Figure 4
contrasts the density profile obtained for r, =3.99 (Na)
against that obtained by Lang and Kohn for r, =4.00.

In Table III, we list the surface energies and work func-
tions determined in this work and compare them to the
I3FT results of Lang and Kohn, ' Sahni and co-workers,
and Monnier and Perdew. Experimental results are
also shown. In the case of surface energies, "experimen-
tal" results refer to data extrapolated or inferred from sur-
face tension measurements performed on liquid metals or
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TABLE II. Parameters in the calculations.

Metal Face d (A)

Model parameters

r, (a.u. ) (x (A) b (A ')

Bulk
parameters

Optimized
variational
parameters

0
2m

a (A)

Al
Zn
Pb
Mg
Li
Na
K
Rb
Cs

2.07
2.30
2.30
2.66
3.28
3.99
4.96
5.23
5.65

fcc (111)
hcp (0001)
fcc (111)

hcp (0001)
bcc (110)
bcc (110)
bcc (110)
bcc (110)
bcc (110)

2.34
2.47
2.86
2.60
2.47
2.99
3.70
3.95
4.28

1.12
1.27
1.12
1.39
1.06
1.67
2.14
2.61
2.93

1.82
2.13
2.13
2.65
3.63
4.87
6.75
7.29
8.21

1.40
1.32
1.32
1.21
1.11
1.00
0.91
0.89
0.87

1.24
1.33
1.41
1.45
1.80
2.06
2.24
2.29
2.30

0.18
0.17
0.14
0.16
0.08
0.03
0.03
0.03
0.04

solid-liquid interfaces. This accounts for the rather large
uncertainties.

Figure 5 shows surface energies plotted against r, . Our
results for the surface energies appear to be slightly im-
proved over those of the DFT calculations. The work
functions are not quite as good at small r, . Since all the
results are presented here, we shall allow the reader to
draw his own conclusions.

A discussion of these results may prove useful when
carried out in reference to features that are special to our
CBF theory. Let us return, then, to some of the points
raised in Sec. IC.

A. Wave functions

Unlike the DFT, our theory begins with the Hamiltoni-
an and with a trial wave function for the ground state.
The expectation value of the Hamiltonian is formed. The
variational calculation that minimizes this expectation
value is performed on the wave function rather than the
density. That the latter is important is because one is li-
able to construct density functions that do not correspond

QjV

6V(r)
(156)

along with

to wave functions. While the solution of the self-
consistent equation would yield valid density functions—
provided that the approximations are accurate —free vari-
ations of parametrized density functions do not lend us
that assurance. On the other hand, direct variations on
parametrized wave functions always uphold the minimum
principle, provided again that the approximations are ac-
curate. This we consider a desirable feature of the CBF
theory.

The form of the correlated wave function, Eq. (8), im-
poses unfortunate restrictions on the choice of trial wave
functions. At the very least we should have set the
single-particle orbitals {&p-(r)j free. Even if we had to

k

take {q&-(r ) I as the eigenfunctions of some model poten-
k

tial V(r), it would have been better to solve a self-
consistent equation such as

1 0

n(zj/nB

1.0

Z(kF 1j

0
z(k„-'j

FIG. 3. Density profiles.
r, =2.07 (Al).

r, =5.65 (Cs); —~ —~ —~ r, =3.99 (Na); —~ —- —.FICx. 4. Density profiles.
r, =4.00 from Lang and Kohn (Ref. 1).
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TABLE III. Surface-energy and work-function results.

Metal Face
Lang and Kohn

(Ref. 1)

Surface energy (erg/cm )
DFT
Sahni and
co-workers

(Ref. 8)

Monnier
and Perdew

(Ref. 9) CBF Expt.

2.07
2.30
2.30
2.66
3.28
3.99
4.96
5.23
5.65

AL
Zn
Pb
Mg
Li
Na
K
Rb
Cs

(111)
(0001)
(111)
(0001)
(110)
(110)
(110)
(110)
(110)

730
480

1140
546
380
230
140
120
102

692—852
509—627
779—886
552—629
371—409
227—248
136—147
107—116
85—93

795
590
456
619
392
247
148
117
93

977
547

1118
672
465
264
124
107

92

1143,' 1170, 965'
13 a 1040 b 350d

593,' 690
785 a 712c
522 ' 470'

261,' 275 " 220
145 135 b 125

117, 95'

95,' 80

5E
5u(r )

(157)

1000—

ZA

800 — x

0 pb

6oo-
O
CD

400—

x

Q

Na

instead of fixing u(r) and parametrizing V(r). The ex-
pressions shown in Appendixes A—D should, however,
convince the reader why it would be unthinkable in practi-
cal terms to attempt solving such a self-consistency. In
addition, our experience with several drastically different
forms of V(r) indicates that such free variations may not
be necessary, at least for r, & 3 where the calculation is not
terribly sensitive to the choice of V( r ).

%'e do expect to bring about several improvements in
the future. One is to allow periodicity in V(r) in the z
direction. This will require new derivations for the one-
electron model problem (Sec. II) and new computations
for the remaining work, but no formal changes. Another
is to adopt results of three-dimensional band calculations
by other authors and use them in place of our own one-
electron model. What is needed includes the uncorrelated

density profile and the single-particle spectrum (density of
states). The exact form of the single-particle wave func-
tions need not be known.

The CBF theory offers a set of approximate wave func-
tions for the excited states of the many-body system.
They are in the form (8), with D[p] representing deter-
minants whose elements are selected from the complete set
I tp-( r ) I. These correlated wave functions correspond tok
"unperturbed" particle-hole states. Linear combinations
of these functions can be constructed to give rise to collec-
tive excitations, e.g., surface plasmons, in ways not unlike
the Feynman phonon emerging from correlated basis
functions for a Bose system. At present we are working
on adsorption problems in which these excited state func-
tions are actually employed for calculating adatom self-
energies and substrate-mediated interatomic potentials.
We feel that these wave functions are more representative
of the excitations than determinants made up of single-
particle solutions of the self-consistent equation in the
DFT.

In Secs. I A and I C we spoke of our motivation to cast
single-particle and many-particle properties in balanced
roles. In many cases, single-particle properties dominate,
and a good three-dimensional one-electron calculation
would suffice. If necessary, the results can be put into a
DFT to account for correlation effects. In other cases,
many-particle correlations can be dominant. There is no
reason, however, for us to insist on prejudging the relative
importance of single- versus many-particle effects. Wave
functions such as (8) do not require prejudgment. They
include all independent particle models as limiting cases
[in the limit u(r)~0].

K
Rb

I

2.0
I I

2.5 3.0
I

3.5 4.0

rs

4.5
I

5.0
I

6.0

&I&. 5. Surface energy plotted against r, . I, "experiment";
0, Lang and Kohn (DFT); )&; Monnier and Perdew (DFT); 0,
present calculation (CFG). Where & disappears, it falls be-
tween O and R.

B. Surface-energy expressions

» Eqs. (95)—(102), all contributions to the surface ener-
gy are seen as expressed in terms of integrals containing
one-, two-, and three-particle distribution functions. They
are in closed forms. No density-gradient expansion is
needed.

As these expressions become reduced to usable forms,
approximation schemes are introduced. The convolution
approximation for p(r&, r2, r3), for example, corresponds
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Metal Face

Work function (eV)
DFT
Sahni and
co-workers

(Ref. 8)
Lang and Kohn

(Ref. 1)

TABLE III. ( Continued. )

Monnier
and Perdew

(Ref. 9) CBF Expt. g

2.07
2.30
2.30
2.66
3.28
3.99
4.96
5.23
5.65

AL
Zn
pb
Mg
Li
Na
K
Rb
Cs

{111)
(0001)
(111)
(0001)
{110)
(110)
(110)
(110)
(110)

4.05
4.15
3.85
4.05
3.55
3.10
2.75
2.20
2.25

3.47—3.92
3.65—4.07
5.23—3.65
3.88—4.01
3.87—3.58
3.33—3.08
3.01—2.72
2.72—2.49
2.56—2.35

4.0
4.2
3.9
4.2
3.5
3.3
2.9
2.6
2.5

3.6
3.0
5.9
3.0
3.6
2.9
2.7
2.2
2.1

4.19
4.33
4.01
3.66

2.32, 3. 1

2.7
2.39
2.21
2.12

'Reference 42
Reference 43.

'Reference 44.

dReference 45.
'Reference 46.

Reference 47.
gReference 48.

to a partial summation of cluster contributions to infinite
orders. Accuracy may be at issue, but not convergence.
Since accuracy can be checked out numerically, by using
stochastic methods or by comparing different approxima-
tion schemes, we are on safer grounds than calling in
corrections one term at a time, as in many DFT calcula-
tions.

It should be admitted that some of the contributions in
our surface energy are evaluated on the basis of keeping
just the leading terms in a Taylor expansion. (See T&2 and
T43 in Sec. IV A.) We did take care to ensure that the nu-
merical errors that result are acceptably small. It is quite
possible to avoid using these expansions altogether if more
computer time is placed at our disposal. The nature of
our approximations is numerical, unlike the density-
gradient expansion in the DFT.

In Sec. III A, where the convolution approximation was
employed for the CW equation, we mentioned in passing
that the asymptotic behavior of the density function was
preserved. This deserves additional emphasis. It is im-
portant that the right-hand side of Eq. (47) approach zero
as z~ ~—~, since otherwise the bulk limit of the correlat-
ed density function would be macroscopically different
from that of the uncorrelated density function, leading to
a macroscopic surplus or deficit of negative charge. Of
the commonly used approximation schemes for multipar-
ticle distribution functions, the convolution approxima™
tion is the only one that satisfies this particular require-
ment.

We remarked earlier that in the CBF theory the homo-
geneous bulk appears as a limiting case of the inhomo-
geneous system. When V(r) is taken to be zero or con-
stant, Iy-(r) j reduces to plane waves. We have then a

k
wave function suitable for describing the homogeneous
electron liquid, as in Ref. 19. When seen in this light, our
present theory for the metal surface is completely self-
contained. No input from other authors' bulk calculations
is needed. Whatever approximation schemes used in the
homogeneous system are also those used in the inhomo-

geneous system. Even when an approximation scheme is
deemed numerically less than satisfactory, the fact that
the same scheme is used for both the homogeneous and
the inhomogeneous system tends to reduce the magnitude
of the error by compensation. In the calculation of the
surface energy, for example, terms of order L in the sys-
tem and in the bulk cancel out exactly as required.

C. Systematic improvements; applications

Systematic improvements come in two forms: on the
model and on the theory. As far as the model is con-
cerned, we intend to adopt a three-dimensional static lat-
tice of positive ions. Many reliable one-electron theories
are available. ' ' There is no need for us to define a new
parametrized V(r) and solve for Ip-(r)I. By taking

k
one-electron spectra and density profiles from other calcu-
lations, we no longer vary the single-particle part of the
correlated wave function. More attention will be paid to
the determination of the correlation factor u. In a previ-
ous paper on the theory of quantum crystals, we studied
the effects of lattice symmetry and anisotropy on pair
correlations. Part of the formalism can be adapted for
present use.

As for improvements on the theory, the basic question
is on the form of the correlated wave function. We feel
that the form (8) has been shown to be adequate for
describing the ground state. In other words, there is little
need for introducing, e.g., three-particle correlation fac-
tors, nor is it necessary to use the entire set and perform a
perturbation theory in the correlated basis. Where more
work is in order is in the description of collective excita-
tions. Proper linear combinations of the correlated basis
functions need to be constructed. Readers who are in-
terested in examining the importance of multiparticle
correlated factors may wish to consult Refs. 51—53 and
25.
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Ongoing work in our group consists of the application
of the CBF theory to three types of problems. The first is
adsorption, in particular, the adsorption energy and elec-
tron configuration of a single adatom, and the substrate-
mediated interaction between two adatoms. In the former
case, a wave function can be constructed as a product of
the X-electron correlated wave function given in this pa-
per and a hydrogen orbital, or it can be that for an
(N+1)-electron correlated wave function in a background
made up of N ions in a semi-infinite lattice and one ion at
a short distance from the outermost lattice plane. These
extremes in bonding provide us with a way of studying the
transition of an adatom from a physisorbed to a chem-
isorbed state. In the latter case, we shaH begin with the
simpler model of two physisorbed hydrogen atoms at
moderate to long distances from each other. The wave
function employed is then simply the product of the N-
electron wave function and two separately centered hydro-
gen orbitals, properly symmetrized.

In both cases, particle-hole states of the substrate sur-
face will then enter. The vertices depicting the interaction
between an adatom and the substrate will be nondiagonal
matrix elements calculated directly from the Hamiltonian
and the product wave functions, in a manner not unlike
the way in which the diagonal matrix element (expectation
value) was evaluated in this paper. The calculation will be
more difficult, but we have had some experience with it in
our earlier work on metallic hydrogen. ' Indications
from our CBF formalism for He-"He solutions are that
the adatom-adatom interaction wiH be highly nonlocal.

A second type of ongoing work deals with defects in or
on metals. One model calculation attempts to describe the
effect of a point-charge defect in a jellium, using the same

theoretical framework as in this paper but for the coordi-
nate system. This will serve as a starting point for a
theory of hydrogen in metal, vacancy, or indeed a large
atom.

A third type of ongoing work is strictly formal in na-
ture: a study on the relation between DFT and CBF. Ini-
tial work focuses on a relatively simple model —that of a
low-density system of bosons interacting via a weH-
behaved pairwise potential. Input needed for the CBF
theory is available from earlier results relating CBF to
field-theoretic methods (which proved to be reasonably
successful).
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APPENDIX A: EVALUATION OF W] —W & AND Wg —W2

W1 contains L(z1)L(z2)L(z3). Since L(z) vanishes in the region —zG+L &z &zG+L, we can replace the upper limit
in the z& integration by —ZG+L. A translation of the origin to —zG gives rise to

nB L L L Q (ur)12gu(r13)8') —— dz1 d r2 d I 3g12813 [e(—z, )e( —z, )e( —z )+l,(z„z,z )]8 —L —L Bz] Bz]

= 8') +58']+8"), (A 1)

where

and

nB 0 0 0 Bu(r12) Bu(r13)
1 g

d 2 g dr3(g12g13 g 12g 13)
Z] Z]

ng 03 0 0 Bu(r12) Bu(r13)
dz1 dr2 dr3[(h12h13 —h12h13)+2(h12 —h12)]

8 —L —L —L aZ Bz 1

nB L I. L, 13u(r12) Bu(r13)
~ d r3g12g13

g l 1(z1 z2 z3 )
1 1

(A2)

(A3)

l, (z„z„z,) = e( —z, )e( —z, )f, (z, )+ e( —z, )f, (z, )e( —z, )+f, (z, )e( —z, )e( —z, )

+e( —z, )f, (z, )f, (z, )+f, (z, )e( —z, )f, (z, )+f, (z, )f, (z, )e( —z, )+f, (z, )f, (z, )f, (z, ) . (A4)
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W2 can likewise be separated into two parts. The first part,

nB zG+L3 'G+L Bu(r]2) Bu(r]3)
~21 dz1 d r 2d r 3g 12g 13 e(—,—,)e( —z, —,)e(,—,),

4 —zG —L —zG —L 8

can be written with g]3 replaced by unity, since in this integral
~
z]3 i

)2zG, which becomes macroscopic as the cleaved
surfaces become separated. Thus

n B
8'21 ——

4
dz] 6( —

G
—z] ) «2g]2

Bu(r]2) zG+L Bu (r]3 )
6( —zG —z2) dr3

Bz ] G 'BZ 1

8'21 ——

u (r) has the form of Coulomb's interaction. By Gauss's law the "field" at z, (which is less than —zG) will not change
if the "charged region" is moved from [zG,zG+L] to [—zG, —zG+L]. This permits us to change the limits on the z3
integration. A further shift of origin to —zG leads to

nB L Bu(r]2) Bu(r]3)
dz] f dr2 f dr3g]2 6(—z])6( —z2)6(z3) . (A5)

Now, since 8'2 can be written as

]]2] L L L ~ Bu(r]2) Bu(r]3) 2] Bu(r]2) Bu(r]3)f dz f dr2 f dr&]2
&

+h]3 6( —z])6( —z2)6(z3),
4 —L —L —L Bz] Bz] Bz] Bz]

we have

(A6)

8'» ——8', +6%2+ 8", ,

where

nB L L L Bu(r]2) Bu(r]3)
58'2 —— dz, dr2 dr3(g]2 —g]2) 6( —z] )6( —z2)6(z3)

4 —L —L —L BZ1 BZ1

nB 0 0 I. z Bu(r]2) Bu(r]3)
dz] f dr2 f dr3(h]2 —h]2)

—nB L L L ~ 2] B u(P] 2) Bu(r]3)f dz f d r f d r3g]2h 13 ~
e( —z, )e( —z, )e(z3 )

(Aj)

(A8)

(A9)

The remaining part of W2 is

nB Bu(r, ) Bu(r]3)
W22 dz] dr2dr3g]2g]3 2( 1 2 3)4 Z1 Z1

where

l2(z],z2,z3) = [fL(z] )6( —zG —z2)6(z3 —zG)+6( —zG —z] )fL(z2)6(z3 —zG)+6( —zg —z] )6( —zG —z2)f1](z3)

+e( —zG —z])fL(Z2)f, (Z3)+fL«] )e( —zG —z2)fi](Z3)

+fI (z])fL (z2)6(z3 —zG )+fL (z])fL (z2)f~ (z3)] .

(A10)

(A 1 1)

It vanishes upon term-by-term inspection. This is realized by first noting that since
~
z»

i
)2zG ~ ao, one can set g]3 to

unity and u(r]3) to —a/r]3. W22 now reads

with

~22 ~221 + ~222 + ~223 (A12)

nB a
W221 —— f dz] f dr2dr3

4 BZ1

r —A

r 12 Bz1

—CX

l2(z],z2, z3 )
r13

3
nB 2 Z12 213

(2ma) dz] dz2 dz3 l2(z],z2,z3)4 Z]2 213

3"'f f4 " " 'Bz1 r12 BZ1 r13

—a
l2(z],z2, z3)

3—nB Z]2 b i z]2i-Z13
(2vra) dz, dz2 e ' dz3 12(z] z2 z3 )

Z12 Z13

(A13)

(A14)
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ng au(r12) a
&223 —— f dzl f dr2dr3h12

4 Z1

—CX

12(Z1,Z2, Z3 )

n21 2'~ Bu(r12)3
Z13

2 f drldr2h12 f dz3 L2(zl Z2 Z3) .
4 Z1 213

(A15)

Each of these expressions contains seven terms, by Eq. (All). In each case, the first pair of terms cancel, while all
zg+L

remaining terms vanish, either because the integral over z3 can be isolated in the form dz3f~(Z3), which van-
zg

ishes on account of charge neutrality, or because an odd integrand can be identified.
In summary, then, from Eqs. (Al) and (A7), one finds

( ~1 ~1 )+(~2 ~2 ) b~l +5~2+ ~l + ~2
where from Eqs. (A2) and (Ag),

3 0
5&1+5&2= f

'2
Bu(r12)

d 1'2h 12—L BZ1

'2
o ~ Bu(r, 2)

dr2I 12—L Z1

ng 0 ~ Qu(r12) 0 au(r») L au(r13)f dz f dr(h„—h') f dr, +f dr,
Z1 Z1

The second term vanishes since Bu (r13 )/Bzl is odd, leaving
3

$W, +5&2= (2m) f dzI [~(z)] —[A (z)] I, (A17)

where

A (z) = f (z —z')g 1( i
z —z'

i
)dz' . (A18)

The superscript 8 implies that g 1( z —z'
~

) be used in (A18) for defining A (z) and that in turn h (g~ 1) be used in
Eq. (g6) for the definition of gg(

~

z ).
W'1 consists of many contributions. We reserve it for Appendix B. 8'z combines neatly with 8'3. a term from

8'3 —8'3. We reserve it for Appendix D.

APPENDIX 8: EVAI.UATION OF 8')

Equations (A3) and (A4) give, by virtue of symmetries in some of the terms,

8'1 ——28'11+8 12 + 8 '13 +28 '14+ 8'15,
with

ng 0 Bu(r12) Bu(r13) 4
28'11 ——— dz1 d r2 d r3g12g» fL(z3) = g~»-——L —L BZ BZ1 1 /=1

o o Bu(r12) Bu(r»)
dzl fL (zl ) d r2 dr 3g12g13 LU2l,8 —L —L BZ 1 BZ

03 Ou(r, 2) Bu(r»)
dZ1 d 2 d 3g 12g13 fI.(Z2)fI. (Z»

8 —L —L BZ BZ1 1

ng
3 0 L Bu(r12) $14(r13 }

2~14 dzl dr2 dr3g12g 13 fL(zl )fL(Z3) = g ~4l—L —L BZ BZ1 1 l=1

(81)

(83)

(84)

(85)

3
ng L Bu(r, 2) Bu(r13)

~13
g L

dzl
L dr2

L dr3g12g13
g g

fL(zl )fL(Z2)fL(Z3) (86)

Equations (82), (83), and (85) each breaks down the right-hand side to four contributions, corresponding to the four
terms from g12g13 ——1+h12+h13+h12h13, respectively. We find, after some algebraic work,
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nB
3 o ])u(r]z} L, Bu(r]3)

z
Z] Bz]

3

8
(2~a) L f dz fi (z) e—'+ f dz fi (z) e—

0 b

W)2 =

where

+ dz fL(z) — + e '— e ' + dzfi(z) — e
2 3 bz 2Z bz 2 1 b,

—L b2 b b b

nB
3 o Bu(r]2) L Bu(r]3) ng

3

f dz, f dr2h], f dr3 f~(z3)= (2m)' f dz~(z)~(z},
Z$

(87}

(88)

~(z)= —f (z —z')fL (z')u(
i
z —z'

i
)dz',

nB
3 o Bu(r]2) L Bu(r]3)f,«] f dr2, f dr3h» fi(Z3}

Z]

nB
3 L (}u(r]3)

(2na) Ldz—3fI (z3) dr]h]3
4 —L —L ()Z 3

f dze 'W(z)

(89)

(810)

where

W(z) = f (z —z')f 1(z')g ]( i
z —z'

i
)dz',

nB
3 Ic}u(r]2) L ])u(r]3) pl

3

w].=, f,«] f, dr,h„, f, d-.,h]3 fg(Z3)= (2m) f dz~(z)W(z),

nB L3 o ]}u(r]2) o Bu(r]3)
w2]= f dz]fL(z]) f dry f dr3—L —L QZ( —L z]

3

(2lra) L —f dz fL(z) e'—f dz—fl (z) e' + f —dz fr (z) e

(811)

(812)

L
+ f dzfL(z) e (813)

nB o Bu(r]z) o Bu(r»)
W22 = f dz]fr (z] ) f dr2h]2 f dr3

8 —L —L Qz ] Lg—z ]

nB
3 L Bu(r]3)

(2lzzz) f f dz3fz(33) / drI)33\
az3

2m b
L —bf dz fr (z)e 'M(z)+ f dz fL (z)e 'Pi"(z)

W23 = =Wp2

nB o Bu(r]z) L, Bu(r]3)
w4z=

4 f dz]fL, (z]) f dr2h]2
& f dr3

&
fr. (z3)

4 —L —L BZ) Z]

nB L3

(2m ) f dz fr (z)M(z)~(z),

nB L 0 ]}u(r]2) o ]}u(r]3)f dz]fL(z]) f dr2 f dr3ll]3

nB 0 Qu(r]2) 0 Qu(r]3)
W24 = dz]fL, (z] ) dr3h»

8 —L Bz] BZ]

nB L o ]}u(r]z) L. Bu(r]3)
w4] 4 f dz]fI (z] ) f drz

& f dr3
~

fL(z3)—L —L Bz] Zf

3

4 b .
(2n ) ——f dz fL, (z)e '~(z) f dz fL (z)e '~(z)—

0

(2m. ) f dz fi (z)[Pi (z)]

(814)
(815)

(816)

(817)

(818)
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ng L o Bu(r12) L Bu(r13)f dzIfL(ZI) f dr2
& f dr3" 13 fL(Z3)

3

4 b .
(2Ir) —f dz fL(z)e 'W(z)+ f dz fL(z)e 'W(z)

0
(819)

ng L o Qu (r I2) L Qu (r13 )
uI44 f dzIfL(ZI ) f dr2h12

~ f d.3h13
~

fI (Z3)—L aZ, 2]

egg L
-(2Ir) f dz fL(z)A (z)W(z) .—L

(820)

Also,

8 )3 ——)gal 0 L3 Bu (r I2)f dzI f d r2( 1+h12) fL(z2)
2]

2 3

(2Ir)' f dz[~(z)+ W(z)]'
8 —L

(821)

ala
3 L »(r I2)

W'Iz —— dzI fL(zI ) dr2(1+h12) fL(z2)
3

8
(2Ir) f dz fL(z)[~(z)+W(z)]—L

(822)

This completes the calculation for 8"~. It is interesting to note that in the calculation for w2& we actually encountered
a term of order L . It dropped out, however, because it appeared with a coefficient fL(z)dz, which vanished on ac-L
count of charge neutrality. Also, in the final results for w&~, there exist two terms of order L,. They are cancelled exact-
ly by like terms in wz&. w]3 contains a term of order I., which is cancelled exactly by the leading term in w22 and that in
w23. All surviving contributions are of order 1, as expected. In this manner, we have removed the spurious divergences
in 8).

APPENDIX C: EVALUATION GF W3 —S'3

We have

Bu(rI2) Bu(r13)&3= II dzl dr2dr3gI2g13 L(zl )R(z2)R(z3)
21 21

Bu(rI2) Bu(rI3)f dz, f dr2dr3 L(zI)R(z2)R(z3)
Z] Z2

Again, as in 8'2I, we change the limits on z2 and z3 by Cxauss s law, shifting them to [—zg, —zg+L]. Then a transla-
tion of the origin leads to

rIs 0 fL Qu(r12) fL Btl(rI3)3

8'3) —— dz] d r2 dr 38 —L 0 Qz( 0 Bz]
(Cl)

Now,

ng ~ Bu(rI2) Bu(r»)
dzr d rzd r3g 6( —z I )e(Z2 )e(z3 )

8 aZ aZ

since in this integral
~
z12

~

& 2zg —& ~ and
~

z, 3 ~

& 2zg ~ co, and thus gI2~1 and g13 —+1. As for W2, we now separate
8'3 into two parts. Qne part gives

ng Bu(rI2) Bu(rI3)
dz~ d r2d r 3 0( Zg ZI )e(Z2 Zg )e(Z3 Zg )

8 Bzi Bzi

ns —~G f~G+L Bu(r12) f&G+L Bu(r13)3

dz~ dr2 dr3
8 -zg -L zG az1 6 'Bz

$

371' 0 Qu(rI2) L Bu(r13)
dz) d r2 dr3 — —8 3,—L 0 (C2)
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where

ng 0 L L ~ ~ ~ Bu(r~2) Bu(r~3)
W'3 ——— f dz& f dr2 f dr3(2h~z+h &zh~3)

z1

We shall proceed to show that the other part of 8'3 vanishes:

nz Bu(r~~) Bu(r~3)
W32 —— dz& dred r3 l3(z&,z2,z, ),

8 1 1

where

(C3)

(C4)

I (z„z,z )=f (z, )6(z —z )6(z —z )+6(—z —z, )f (z )6(z —z )

+6( —z —z, )6(z, —zG)fR(z )+6(—z —z~)f~(z, )f~(z3)

+f (,)6(,— )f ( )+f ( )f ( )6( — )+f ( )f ( )f (

—cx 8 —cx

7'12 Bz 1 T 13

3
nB 2 z12 z13(2~a)' f dz, f dz2 f dz3 l3(z] z2 z3)
8

3
ng 2(2ma) dz~ f dz2 f dz3I3(z~, z2, z3),
8

The proof is exceedingly simple. Since u(r&2)~ a/—r&2 and u(r»)~ —a/r&3 here,
3 T

ng a
W32 —— dz1 d r2d r3 l3(z),z2, zq )

8 z1

(C5)

(C6)

since zz &z, and z3 &z~. The limits of integration are from —zG I- to zG+—L, or from —~ to oo. Since each term in

Eq. (C5) contains at least one factor of fL or fz that will be separated out for integration in Eq. (C6), every term van-
ishes as a result of charge neutrality. Thus,

W32 ——0 .

Equations (Cl), (C2), and (C7) yield

(C7)

B B
3 W3 W31 + W32 W3 —W3 (C8)

W3 will be evaluated in Appendix 0 along with Wz .

APPENDIX D: EVALUATION OF 8'p AND 8'3

From Eq. (A9),

W2 W21+ W22

where
3

z1 z1

and
3

z1 z1

From Eq. (C3),

W3 ——W31+ W32,

where

—ng
3

z Bu(r~2) Bu(r&3)
dz1 d I 2 d r3k 13—I 0 0 az az

(Dl)

(D2)

(D3)

(D4)

(D5)

and
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—Plg I, ~ ~ Bu(riz) t)u(ri3)
W32 —— f dzi f drz f dr3hi2hi3

Thus

—egg 0 L t)u (ri2 ) I s Bu (ri 3 )
Wzi+ W3i = f dzi f dry f dr h'„=0,

4 -I —L Bzi o ()zi
(D7)

since the integrand for the r2 integration is odd. This is interesting since separately W2i and W&i are both divergent.
We again have an exact cancellation of spurious divergences.

Next,

—egg 0 L s t)u(rtz) L s t)u(ri3)
W22 + W3$ —— f dzi f dr2h i2 f dr3h i3—L —I az, Zi

ng L ~ Bu(ri2) t. s t)u(ri3)+ dzi d rZh iZ d r3h~)3—L 0 az, zi

The first term vanishes since the integrand for the r2 integrand is again odd. This leaves

3 '2
ntt «s t)u(ri2)

W2+ W3 —— f dzi f d r2h i2

(D8)

0
As L~ ao, the integral in the large parentheses can be shown to equal —2m f (z —z')g i (

~

z —z'
i

)dz' or —2aM (z).
Thus

3

W2 + W3 —— (2ir) f dz[M (z)] (D9)

APPENDIX E: GLOSSARY OF SPECIAL FUNCTIONS

We have

~~(
I
z

I
) = f~", &h(& i &)«

gz( ~z
~

)= f gh(g'~ k)u(g')dg',

gi( iz i
)= f h(g

i
A, )u'(g)dg',

Wi(z) =2 f f(z'
i

A, )(z' —z)dz',

W(z) = f fL, (z')g i( i
z —z'

i
)(z —z')dz',

~(z)= —f fl (z')u(
i
z —z'

i
)(z —z')dz',

0
M(z) = f g i( i

z —z'
i

)(z —z')dz',

&i(z) = —2m- f [p(z+z'
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