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In this paper we continue our development of an exact lattice theory of diffusion-controlled reac-
tions. We show how general theorems drawn from the theory of finite Markov processes may be
brought to bear on the approach elaborated in our earlier work [Phys. Rev. Lett. 47, 1500 (1981);
Phys. Rev. B 26, 4166 (1982}]and, in addition, we exploit well-known diagram and generating-
function methods (in particular, those based on the adjacency-walk matrix) to gain further insight
into the statistics underlying the processes considered in this paper. We consider reactions in which
the diffusing molecule encounters a single reaction center and reacts there, irreversibly, upon first
encounter. We also consider the situation where the diffusing particle may, at any of the sites sur-
rounding the reaction center, form an activated complex with a coreactant situated there and, with
finite probability, be removed irreversibly from the system. In each case we focus on the problem of
reaction efficiency and determine the average number of steps required before a diffusing particle
undergoes, eventually, an irreversible reaction. We report extensive new (and exact) results for hex-
agonal lattices and consider explicitly the role of spatial extent and dimensionality as well as the in-
fluence of passive versus active boundary conditions. By comparing the results obtained for hexago-
nal lattices for d =2 and 3 with those reported earlier for square and/or cubic lattices, quantitative
conclusions can be drawn on the role of lattice valency in influencing the efficiency of reaction-
diffusion processes. A principal, general conclusion of this study concerns the efficiency of reaction
when there exists the possibility of reactant deactivation at the N —1 sites surrounding the reaction
center. We find that a 5% probability of reaction at these adjacent sites effectively erases distinc-
tions between lattices subject to different boundary conditions or characterized by different valen-
cies, i.e., the process becomes kinetically controlled.

I. INTRODUCTION

In this paper we exploit the fact that the theory of ran-
dom walks on lattices with traps provides a valuable
theoretical framework for studying the factors which in-
fluence diffusion-controlled reactions in heterogeneous,
(e.g., compartmentalized) and homogeneous (extended)
systems. Although several problems involving random
walks on lattices decorated with traps are susceptible to
analysis using the method of generating functions, each
new result here (especially for dimensions other than 1=1

and for boundary conditions other than periodic) has usu-

ally necessitated a tour de force of mathematical phys-
ics. ' Alternatively, concrete results for reaction-
diffusion processes in d dimensions and for a wide class of
boundary conditions can be obtained via straightforward
Monte Carlo simulation. Here, however, the centra1
processing unit (CPU) times required for carrying through
such computations and obtaining reliable estimates of the
average walk length escalate rapidly once more than a few
hundred lattice sites are considered. Intermediate between
the two strategies noted above is the procedure introduced
in Refs. 7 and 8 (hereafter referred to as I and II, respec-
tively) wherein d-dimensional walks on finite and infinite
lattices with traps were studied and quantified using an
exact algorithm. Implementation of this algorithm al-
lowed the calculation of exact results for a wide variety of
lattice problems previously resistant to exact or asymptot-
ic analysis; moreover, these results could be generated nu-

merically on time scales essentially negligible with respect
to those required for the corresponding Monte Carlo
simulation. In fact, especially in II, we have stressed that
the plethora of exact numerical results that can be gen-
erated using the algorithm provides, in effect, a bank of
experimenta1 evidence that can be used to guide the
development of analytic theories of lattice statistical prob-
lems; some progress along these lines was reported in II.

The objectives of the present contribution are threefold.
First1y, we wish to establish the relationship between the
classical theory of finite Markov processes and the algo-
rithm reported in I and II; in so doing, we shall place the
approach laid down in I and II within the context of a
general theory, further aspects of which can then be ex-
ploited to study a variety of problems in reaction-diffusion
theory. Secondly, we shall use diagram and generating
function methods (specifically those based on the
adjacency-walk matrix) in conjunction with Markov-chain
results to gain insights into the statistical probabilities
governing site encounters in reaction-diffusion processes.
Finally, we shall take up the specific problem of lattice
valency and determine the extent to which this charac-
teristic feature of a lattice system influences the efficiency
of diffusion-controlled chemical processes. To quantify
our analysis of valency, we shall provide a reasonably
complete description of reaction-diffusion processes on
hexagonal lattices, focusing on the role of dimensionality,
spatial extent, and the influence of boundary conditions.
By comparing the results obtained with our earlier studies
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on square and/or cubic lattices, the interplay between lat-
tice valency and the above variables in determining the ef-
ficiency of reaction-diffusion processes can be studied and
the relative importance of these factors assessed.

The plan of this paper is the following. In Sec. II we
review our approach to the problem of reaction-diffusion
processes on d-dimensional lattices, and illustrate for hex-
agonal lattices how the problem may be formulated and
the calculation of average walk lengths simplified by tak-
ing maximal advantage of the point symmetry of the
underlying lattice. By drawing on known theorems from
the theory of finite Markov processes, we then establish
the rigorous mathematical basis for the results obtained in
our calculations, and thereby give a clearer picture of the
factors which influence reaction-diffusion processes in lat-
ticelike systems. In that section as well we mobilize dia-
gram methods' to construct the adjacency-walk matrix
for the hexagonal lattices studied in this paper. The re-
sults obtained here cast light (we believe) on the statistical
factors involved in constructing purely numerical (Monte
Carlo) estimates of the efficiency of trapping on decorated
lattices. Reasonably comprehensive results for two classes
of reaction-diffusion processes on hexagonal lattices are
presented in Sec. III and comparisons of trapping efficien-
cy in hexagonal versus square and/or cubic lattice systems
are presented and discussed in Sec. IV. Although
representative results are given for the dimensionality
d =3, the primary emphasis in our assessment of the role
of lattice valency will be on two-dimensional systems
since, in our formulation, hexagonal and square lattices
can be placed in exact correspondence, and the con-
clusions drawn are therefore unequivocal.

II. THEORETICAL BACKGROUND

A. Identification of the unit cell (simplex)

Consider a plane (d =2) covered with a number of con-
tiguous regular hexagons. We regard the sites visited by a
randomly moving, diffusing particle to be the vertices of
this array of hexagons with the sides of each hexagon
representing possible paths between sites of the lattice. A
sketch of such an array is given in Fig. 1, where the circles
indicate the lattice sites (vertices). Note the triangular
dashed boundary in the center of the figure. It is evident
that the entire lattice section displayed could be construct-
ed by juxtaposing a number of such triangular units (sim-
plexes), a consequence of the fact that the dual lattice of a
hexagonal system is a triangular lattice. By building out-
ward from a centrally positioned (irreducible) triangular
unit with a centrosymmetric trap, extended triangular net-
works are obtained which have a number % of sites equal
to the square of an integer. Such a construction has two
principal advantages. Since N is the square of an integer,
we shall later (Sec. IV) be able to compare directly results
obtained for hexagonal lattices with those reported previ-
ously for square lattices (in II); there, our objective will be
to determine how the efficiency of reaction-diffusion pro-
cesses depends on the valency v of the lattice assumed
(v=d+1 for hexagonal lattices and v=2d for square
and/or cubic lattices). Secondly, the results generated for
a lattice with a centrosymmetric trap are identical for two

FIG. 1. Diagram of a portion of the general, d =2 hexagonal
lattice. Circles (vertices) indicate lattice sites and connecting

lines (bonds) indicate the paths accessible to the diffusing parti-
cle. Dashed triangle defines the basic irreducible unit of the as-
sociated dual lattice.

important classes of boundary conditions: periodic boun-

dary conditions and nontransmitting boundary conditions,
the latter boundary conditions serving to confine the walk-

er to a finite region of space.
The specifications noted above eliminate certain units

generated from a triangular unit cell. The first three hex-
agonal lattices that satisfy the specifications have N= 1, 4,
and 16 sites, the latter being the first mathematically in-

teresting case (see Fig. 2). The case %=16 will now be
used to illustrate the classification of the (point) symmetry
of the lattice.

LATTICE UNIT BOUNDARY
ATE)

LAT

LE UNIT
ARY

FICx. 2. Construction of the smallest d =2 hexagonal unit
considered in this paper. Irreducible triangular lattice units are
juxtaposed to form the N = 16 hexagonal lattice.

B. Classification of the point symmetry

For definiteness we consider the centrosymmetric site to
be a trap T and we organize the N —1 remaining sites of
the lattice with respect to this site. By inspection, one no-
tices that the triangular unit diagrammed in Figs. 2 and 3
has three Cz (twofold) axes in the plane of the unit and a
C3 (threefold) axis perpendicular to that plane and passing
through the trap T. Using these symmetry elements, one
can distinguish sites of the same symmetry as one moves
radially outward from the central site T. Sites of similar
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symmetry are labeled by positive integers. An example of
a site-classified unit is displayed in Fig. 3. Again by in-
spection one finds that the numerically labeled sites of
Fig. 3 are of two (and only two) distinct multiplicities,
viz. , multiplicity 3 or multiplicity 6, with sites of multipli-
city 3 greater in number. Later we will find that the im-
position of certain boundary conditions can reduce the
symmetry of the lattice; effectively, sites of multiplicity 6
are replaced by sites of multiplicity equal to or less than 3.

The great practical advantage of the symmetry classifi-
cation scheme introduced above is that, with respect to the
eventual computations to be performed, the scheme
reduces significantly the number of independent variables
(and hence the number of equations) to be considered. For
example, in the case diagrammed in Fig. 3, the number of
lattice sites that have to be dealt with explicitly in the cal-
culations collapses from 16 to 5. The site classification
scheme for the unit %=25 is shown in Fig. 4. The same
basic symmetry classification schemes were implemented
for all the hexagonal lattices considered in this paper (e.g. ,
for d=2, up to %=361). The diagrams presenting the
classifications for a11 the units considered for the case of
periodic and nontransmitting boundary conditions are
displayed in Figs. 5(a) and 5(b), with the site specifications
of the smaller units studied forming subsets of the site
specifications of the largest units, N=289 and 361.

and systematic task. For example, to generate periodic
boundary conditions for any of the triangular "unit cells, "
one simply places three identical lattice units against the
faces of the original lattice unit. With the use of this
scheme, if a random walker were on the site "2" marked
by an asterisk in Fig. 3, a step taken across the face of the
original lattice unit would put the walker at another site
labeled 2 on an adjacent unit (since all three faces of the
original lattice unit are identical with respect to sites adja-
cent to the boundary). Consider next the vertex site "4"
marked with an asterisk in Fig. 3; a random walker step-
ping either way off this vertex site would wind up at a site
4 on one of the juxtaposed lattices. Therefore, given the
construction of the basic simplex and the (point-) group
classification of the sites of the lattice described above,
one is led to a natural identification of periodic boundary
conditions for the problem at hand. Inasmuch as we have
specified the trap T to be centrosymmetric, the fate of the
random walker would be the same if it were to have con-
fronted nontransmitting (or confining) boundary condi-
tions. That is, suppose the walker were positioned at a
site labeled 2 in Fig. 3; if the lattice were assumed to be
finite and subject to nontransmitting boundary conditions,

C. Boundary conditions

A further rationale for the classification scheme
described in the two preceding subsections is that, as can
be seen in Fig. 3, every walker's path leading out of or into
the lattice unit is perpendicular to the boundary. This
feature also characterizes the possible exit-reentry trajec-
tories on square lattices, as can be seen from the diagrams
presented in II. The chief advantage of this construction
is that the identification and characterization of a variety
of boundary conditions then becomes a straightforward

Reflected

Q/alkers Paths

C ~
2
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lCz
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Walkers Pa t

C2~ (7~ (7~ (&) (7) ~Ca

FIG. 3. Hexagonal lattice unit of Fig. 2 subject to periodic
boundary conditions with the centrosymmetric trap T and the
site classifications of the 1V —1 neighboring sites indicated expli-
citly. Sites marked with an asterisk are referred to in the text.

FIG. 4. (a) Site classification for the hexagonal lattice unit
with N =25 subject to reflecting boundary conditions with the
equal-probability convention assumed. (b) Site classification for
the hexagonal lattice unit with N =25 subject to reflecting boun-
dary conditions with the clockwise-bias convention assumed.
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an attempt by the walker to step across the boundary
would result in the walker's being reset at the position 2,
thereby leading to the same net result as was described for
the case of periodic boundary conditions.

From the above description it is seen that both periodic
and nontransmitting or confining boundary conditions are
essentially passive boundary conditions and that both situ-
ations have a direct correspondence, in terms of their for-
mulation and interpretation, to boundary conditions im-
posed on square and/or cubic lattices in d dimensions.
However, one encounters a fundamentally new situation
vis a vis square lattices if one permits the boundary to in-
fluence "actively" the trajectory of the random walker.
The simplest new situation involves the case of reflecting
boundary conditions. For the case of square lattices sub-
ject to reAecting boundary conditions, a walker attempting
to step off the lattice (or to step across the boundary) is re-
flected back into the lattice to the next interior site along a
path perpendicular to the unit lattice boundary. For hex-
agonal lattices there is no path perpendicular to the unit
lattice boundary and directed into the unit lattice. In-
stead, upon reflection at the boundary (at least) two fates
are possible for the random walker. For definiteness, con-
sider the random walker moving from the site labeled 2
and marked with an asterisk in Fig. 3 toward the boun-
dary. The simplest possibility upon reflection at the boun-
dary would be that the walker moves to sites "1"or "3"
with equal a priori probabilities. For a walker starting
from the vertex site 4, traversing either outward trajectory
would result in the walker's being reflected upon confront-
ing the boundary to the site labeled 3 adjacent to the origi-
nal site 4. We shall refer to this specification for reflect-
ing boundary conditions (RBC's) at border and vertex sites
as defining the equal-probability convention for RBC's; in
this scenario, the fate of the random walker is inherently
the most "random" upon confronting the reflecting boun-
dary. Figure 4(a) shows how this convention would distri-
bute reflected walker's paths over the entire lattice unit.

Given reflection at a boundary, one might also imagine
that a bias has been imposed on the reflected walker's
motion upon encountering the boundary. For example, a
walker at the marked site 2 in Fig. 3 might be reflected al-
ways to the site labeled 1 upon hitting the boundary, i.e.,
its reflection would be biased in a clockwise direction. If
such a bias is systematically applied to the other border
lattice sites then, for example, a walker at the site marked
2 on the other (vertical) leg of the unit lattice would be re-
flected to the site 3 (up the page in Fig. 3). A walker at a
vertex site 4 would still be reflected to an adjacent internal
site 3. The net consequence of applying reflecting boun-
dary conditions with the clockwise-bias convention is that
sites of multiplicity 6 become unequivalent and, in fact,
become two sites, each of multiplicity 3. Thus, to study
the reaction-diffusion problem generated when a diffusing
particle encounters a reflecting boundary and is biased in
the path it takes upon reentering the lattice, one must first
reclassify the sites of the unit lattice. The procedure for
doing so is straightforward and simply leads to an in-
crease in the total number of lattice sites (and hence equa-
tions) that must be considered explicitly [see Fig. 4(b)].

It is clear from the above discussion (and the one im-
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FIG. 5. {a) Site classifications for hexagonal lattice units with
X= 16, 49, 100, 169, 256, and 361, subject to periodic or confin-
ing boundary conditions. This site classification scheme, and
that shown in {b),also applies to lattice units subject to reflecting
boundary conditions using the equal-probability convention. {b)
Site classifications for hexagonal lattice units with N=25, 64,
121, 196, and 289, subject to periodic or confining boundary
conditions.

mediately following) that a whole class of boundary condi-
tions on hexagonal (and square and/or cubic) lattices
might be designed and easily implemented. Since our
principal goal in this paper is to assess the role of lattice
valency v in influencing the efficiency of reaction-
diffusion processes, the calculations reported later (in Sec.
III) on periodic, nontransmitting [see Figs. 5(a) and 5(b)]
or reflecting [see Figs. 6(a) and 6(b)] boundary conditions
(the latter assuming the equal-probability convention and
the clockwise-bias convention) will be taken as representa-
tive of the sorts of effects one finds upon imposing passive
versus active boundary conditions.
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of the transformation matrix for the class of reaction-
diffusion problems considered here. Consider the lattice
unit of Fig. 3 under the influence of periodic boundary
conditions. Subject to these boundary conditions, when a
random walker attempts to step off the unit lattice, it
lands on a site whose symmetry classification is identical
to the one it just left. Thus, for example, consider a walk-
er positioned on site 1. The walker will have arrived at
site 1 from one of three possible sites: the site labeled T or
either of the two sites labeled 2. When equal a priori
probabilities govern the motion of the random walker, the
attendant probability is just the reciprocal of the lattice
valency: in Fig. 3, v=3 and the probability p; J

———,
' for

i~j No.w, let us assume that the walks to site 1 from the
site T or from either of the sites 2 were realized with equal
a priori probabilities and that except for these one-step
events the walker has lost all memory of the previous his-
tory of the sites traversed. Then, in this Markovian
scenario, the average walk length (n ) & from site 1 will be

&n)1 (&n)T+I)+ (&n &2+1)+ (&n &2+1)

i.e., one step plus the average walk length (n )T from site
T, with the sum weighted by the probability ( —, ) of having
arrived at site 1 from T; a similar description pertains for
nearest-neighbor walks from the sites 2. By inspection of
Fig. 3, the average walk lengths from each of the remain-
ing sites of the unit lattice may be written similarly as

&
= —,'(( &+1)+—,'(& & +1)+—,'(& & +1), (2)

(n)2 3 (&n &i+1)+ 3 (&n &2+1)+ 3 (&n &3+1),

& = —,'(& & +1)+—,'(( & +1)+—,'(& & +1),
(n )4 ((n )3+1)+—((n )4+ 1)+—(&n )&+ 1)

(3)

196

I

FIG. 6. (a) Site classifications for hexagonal lattice units with
N=16, 49, 100, and 169, subject to reflecting boundary condi-
tions using the clockwise-bias convention. (b) Site classifications
for hexagonal lattice units with N=25, 64, 121, and 196, subject
to reflecting boundary conditions using the clockwise-bias con-
vention.

D. Determination of the average walk length

To set the present study (and the earlier studies I and II)
within the framework of the canonical theory of finite
Markov processes, we demonstrate first the construction

The system of five equations, Eqs. (1)—(5), in five un-
knowns may be solved directly via Cramer's rule to obtain
explicit expressions for the unknowns: (n ) T, (n ) &, (n )2,
(n)3, and (n)4. From this determination the overall
average walk length (n ) may be computed from the ex-
pression

(n )T+3(n ) )+6(n )2+3(n )3+3(n )4
(6)

Thus, the straightforward, self-consistent characterization
of the (mean) fate of a random walker as it confronts a
site of given symmetry on a lattice leads at once to an ex-
pression for the overall walk length (n ). If it happens
that the centrosymmetric site T is a deep trap, so that
upon stepping on the site T the walker is irreversibly re-
moved from the stochastic process (in which case the
probability of being trapped at the site T is pT ——1), then
the average walk length from site T is

(n)T=O. (7)

The expression for ( n ) ~ becomes

(n ),=1+ ,
' (n ), , —

with the remaining equations [Eqs. (3)—(5)] for (n )2,
( n )3, and (n )4 the same; ( n ) is then computed from Eq.
(6), upon incorporating the modifications, Eqs. (7) and (8).
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For the problem described above one can also organize
the information describing the diffusing particle's walk
through the lattice in a matrix representation. When the
site T is a passive (neutral) site, i.e., not a deep trap, the
relevant matrix [constructed from Eqs. (1)—(5)] is (n )T——pT(1)+(1—pT)[((n )1+1}]

(n ) &
——s (1)+(1—s)[—,

' ((n ) z.+ I)+ —', ((n )2+1)],
(n )p ——s (1)+(1—&)[—,

' ((n ) $+ 1)+ 3 ((n )2+1}

+ —,((n )3+1}]

( ) = (1)+(1—)[—,(( ) +1)+—,'(( ) +1)]
(n )4——s (1)+(1—s)[—,

' ((n )3+ 1)+—', ((n )4+1)] .

(12)

(13}

(14)

(15)

(16}

probability of the walker being trapped at the auxiliary
site in question. These modifications result in the follow-

ing set of equations:

If the site T is a deep trap, we have, from Eqs. (3)—(5), (7),
and (8),

1 0
1

3

0 0

0 0

1

3

0 0 0

0 (n),
(n),

0 —— +- (n)4

2

3

0

(10)

1

3

0

+ — —— 02 1

3 3

1

3

For future reference, let us define the 5 X 5 matrix appear-
ing on the left-hand side of Eq. (10) as A; the 4X 4 subma-
trix appearing in the lower right-hand corner of this last
equation will be defined as

The corresponding transformation matrix is

o o o
—q 1 —2q O O (n)&

0 —q 1 —q —q 0 (n)2 —1, (17)

0 0 2q 1 q (n)
0 0 0 —q 1 —2q ( ) 1

where we have set q = —,
' (1—s) and t = 1 —pT. If it is as-

sumed that reaction at site T is strictly irreversible, i.e., T
is a deep trap and the average number of steps required
for trapping starting from site T is (n )T ——0, then the
above matrix equation simplifies to

o o o o '()T' o
—q 1 —2q 0 0 (n)t 1

0 —q 1 —q —q 0 (n)q —— 1 . (18}
0 0 —2q 1 —q (n)3 1

0 0 0 —q 1 —2q („) 1

0 0 1

3

The lattice model described above, with T a deep trap,
is a paradigm for an important class of reaction-diffusion
processes, viz. , reactions in which the diffusing molecule
encounters a single reaction center and reacts there, ir-
reversibly, upon first encounter. We should also like to
consider processes where the diffusing particle may, at
any of the sites surrounding the reaction center, form an
activated complex with a coreactant situated there and,
with finite probability, be removed irreversibly from the
system. To develop a lattice model for this situation, we
regard the centrosymmetric site T to be characterized by
an absorption probability pz- (with 0 &pz & 1) with each of
the X —1 remaining sites i to be characterized by an ab-
sorption probability s; (with 0 &s; & 1). Although the gen-
eral case, s;&sj for all i,j, is certainly of interest and could
be treated by the methods described above, in this paper
we shall assume that all s; =s, i.e., we assume a uniform
probability of reaction at each of the % —1 neighboring
sites. Since the probability that a walker is not trapped at
one of these X —1 sites is 1 —s, the equations [Eqs.
(1)—(5)] hsted above may be generalized to deal with the
competitive trapping situation by multiplying each factor
on the right-hand side of each by the factor 1 —s and com-
plementing each equation by the further factor, s(1), the

E. Connection arith the theory of finite Markov processes

The formulation presented in the preceding sections is
based on a self-consistent coding of the fate of a particle
diffusing on a lattice of valency v and dimensionality d,
and encountering there sites of given symmetry and reac-
tivity. We now establish the relationship between this for-
mulation and the theory of finite Markov processes. In so
doing, by virtue of theorems already available from the
theory of Markov processes, we will place the interpreta-
tion of our numerical results on a sound theoretical foot-
ing. Conversely, the extensive numerical results obtained
via implementation of the program described in I, II, and
in Secs. IIA—IIC, provide a bank of experimental evi-
dence which may be used to guide the construction of new
theorems and estimates in Markov chain theory.

To assist the reader in our development, in the discus-
sion we shall refer to the standard text of Kemeny and
Snell for definitions and relevant theorems. We shall
consistently use their notation, except that their Roman
symbols will systematically be replaced by script letters to
avoid confusion with other parts of this paper. The defi-
nitions and theorems cited below will be designated as in
Ref. 9.
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Central to the formulation of Markov chain theory is
the identification of probabilities&, J and the construction
of a transition matrix H. Given a conditional probability
Pr[y

~
~], where ~ and y are statements which are in-

dependent and neither a self-contradiction, the n-step
transition probabilities for a Markov process, denoted by
p;~(n) are (Definition 2.1.2 of Ref. 9)

g; (n)=Pr[/ =a ~/, =a;] . (19)

+T +T~+T +T~+1 +T~+2 +T~+3 +T~+4
D$~DT 6j~D j 6]~62 D]~63 6]~84

+2 +2~+T +2~+1 +2~+2 +2~+3 +2~+4
43 D3 +ST D3~D] d3 +62 63~63 63~84
D4 84~&T S4~D ) 64~62 64~63 84~94

Here, the / is the outcome function, the value of which is
a~ if the outcome of the nth experiment is &J. A finite
Markov process is a finite Markov chain if the transition
probabilities+J(n) do not depend on n (Definition 2.1.3).
Then, the transition matrix H for a Markov chain is the
matrix H with entriesg;J.

Let us now write down the matrix H corresponding to
the problem summarized by Eqs. (1)—(5). Here we consid-
er all possible transitions between sites s; of the lattice di-
agrammed in Fig. 3 (subject to periodic boundary condi-
tions) and specified by the attendant probabilities &,J of
the process s;-~s&. That is, we construct

0 (23)

g
The (~—a)&&a submatrix 0 consists entirely of zeros.
The s)&a submatrix g codes the fate of the random
walker as long as it remains in the transient states. The
a )& (~—a) submatrix A' describes transitions which carry
the random walker from transient states to ergodic states.
Finally, the (~—a) &(~—a) submatrix W codes the fate
of the random walker after it enters an ergodic set. In the
deep-trap problem summarized by the transition matrix
H, Eq. (22), we would then identify

P'=(1),
0=(0 0 0 0),

+—1

(24)

(25)

(only) the centrosymmetric site T of the lattice di-
agrammed in Fig. 3 to be a deep trap, the site T comprises
a (one-state) ergodic set and the sites si, s2, s3, and a4
comprise the transient set. Overall, the set of sites sT, &~,

D3, and a4 comprise an absorbing Markov chain.
Returning now to the transition matrix H, one can

reorganize the information in P' in terms of ergodic sets
and transient sets. In particular, the ergodic sets are unit-
ed as one block division of A~ with the transient sets
comprising the remaining blocks. Supposing there are &

transient states and ~—a ergodic states, H may then be
written as

(20)

For the case in which the centrosymmetric site T is not a
deep trap, the transition matrix H reads

0
0
0

(26)

0 0

0 0 0

0 +1 0

+ —, 0 +—',

0 +3 +1 1

&4

0 0
0 0

01

0 +—1

(21)

0 —, 0 0
1 1 . 1 03 3 3

2 e

0 — 03 3

0 0 1 2
3 3

(27)

1 0 0 0

+3 0 +3
+3 +3 +31 1 1

0

(22)

0 0 + —, 0 +3
0 0 0 +—+—2

In the theory of finite Markov processes, one classifies
the accessible states by distinguishing between two types
of sets, transient sets and ergodic sets. Transient sets are
sets that, once left, are never entered again; ergodic sets,
once entered, are never left again. Thus, if we regard

whereas if T is a deep trap, so that if the process reaches
state T it remains there from that time on, we have

&T &i &2 &3 &4

From the theory of Markov processes we know that in
any finite Markov chain, no matter where the walker
starts, the probability that the process is in an ergodic
state after n steps tends to unity as n~ao (Theorem
3.1.1). Thus, powers of g in the above aggregated version
of H tends to 0 and consequently for any absorbing Mar-
kov chain, the matrix jl —g has an inverse ~ (Theorem
3.2.1 and Definition 3.2.2).

Now, let ~J be the function giving the total number of
times that the walker is in the transient state &J (Defini-
tion 3.2.3), where the totality of transient states is denoted

I.et

gabe

the function giving the number of steps (in-
cluding the original position) in which the walker is in a
transient state (Definition 3.3.4). Then
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The totality of mean values of rzj. for a process starting in
state a; is just the inverse matrix ~ (Theorem 3.2.4), i.e.,

{~;[~J.]1I =~ when a;,a~ Hu, (29)

where g is the column vector,

(31)

With the above definitions and theorerns at our disposal
we are now ready to make contact with the formulation
presented in the preceding section (and in I and II). With
the use of the deep trap problem summarized by the ma-
trix equation (10) as an example, it is evident that the ma-
trix A, Eq. (11),and g, Eq. (27), are related as follows:

(32)

Hence, the fundamental matrix ~ of the theory of Mar-
kov processes is given by

(33)

where, for the problem at hand (Fig. 3 with site az a deep
trap),

J ) D2 D3 D4

3 6 3 3

~=A '= &2 3

3

Q4 3

9 99 2 2

9 6 6
9 6 9

(34)

The interpretation of the elements and row sums of the
matrix ~ follows directly from the definitions and
theorems cited earlier. For example, if a walker starts in
state a3, then it will be in state a3 an average of six times.
Further, the total number of times a diffusing particle
starting in a3 will be in state a&, in state a2, in state a3, and
in state a4, will be given by the row sum 3+9+6+6=24.
In terms of our earlier notation, (n )3

——24.
The above discussion makes precise the relationship be-

tween the formulation of the reaction-diffusion problem
based on a self-consistent coding of the fate of a random
walker as it confronts a site of given symmetry (I, II, and
Sec. IIC) and the traditional theory of absorbing Markov
processes based on the identification of a transition proba-
bility matrix H. It is seen that the correspondence is one
to one, except for two practical details. Firstly, the col-
lapse in the number of variables that one achieves by tak-
ing advantage of the symmetry of lattice sites (see Fig. 3)
as mobilized in Sec. IIC can be understood within the
framework of the theory of Markov processes as

and the totality of mean values of 8 for a process starting
in state a; is given by the row sums of~ (Theorem 3.3.5),
i.e.,

(30)

equivalent to the procedure called "lumping. " In work-
ing through the example using the Markov chain ap-
proach, we implicitly assumed that lumping of states s;
had already been achieved. Secondly, in the formulation
given in Sec. IIC, we designated the average number of
steps taken by a random walker from a deep trap to be
zero, i.e., we set (n ) T ——0. In the Markov approach, the
probability of taking a step from a deep trap (an ergodic
set) to itself again is unity. Thus the (1,1) element in Eq.
(10) is unity, and consequently the (1,1) element of I —3 is
zero, whereas in the Markov formulation the (1,1) element
of H is unity. Provided this different convention for that
single element is kept in mind, however, the correspon-
dence between the two approaches is exact.

co„(a~a') = g co„)(a~a")co((a"~a'), (35)

(36)

co3(a~ e')

COi D~D CO~ D —+6 CO~ & —+ J

(37)

Kasteleyn notes that the structure of these equations sug-
gests the introduction of a matrix with individual ele-
ments co~(a~&'). Upon labeling the points a; of the
graph 6, an %&Xmatrix is defined. The elements of this
matrix in the Kasteleyn notation are denoted a,j,. here, we
shall use the script letter ~,z and define

Jco)(a;~ a ),J (3&)

F Connections with graph theory

In this subsection we will display the relationship be-
tween the methods described in the preceding discussion
and the recursion method for lattice graphs. As will be
seen, the graphical theory provides great insight into the
number of sites visited in a random walk from site s; to
&J and, as a consequence, reveals the underlying theoreti-
cal reason why the direct Monte Carlo simulation of aver-
age walk lengths in reaction-diffusion problems on finite
and infinite (periodic) lattices in d dimensions is so
time consuming.

In what follows, we shall draw upon the ideas laid
down in the seminal review of Kasteleyn. ' To assist the
reader, we shall stay close to the notation used in Ref. 10;
where changes of notation are needed to avoid confusion
with earlier parts of this paper, they will be indicated as
introduced in the text.

Let us consider, for definiteness, the lattice displayed in
Fig. 3 and regard it to be a graph 6 comprised of a certain
number of points. In Kasteleyn's notation these points
would be labeledg;; here, we denote these points using the
symbol a;, the site specification introduced in the previous
discussions. Now, let co„(a~a') define the number of n-
step walks on the graph 6 from the point a to the point
a'. For a conventional graph, it is evident that
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such that

0 if a; and aj are not adjacent

1,2, 3, . . . if s; and &J. are adjacent and

connected by 1,2, 3, . . . lines .
(39)

CO, (~;~&,.)=(~");;. (40)

The resulting symmetric matrix is called the adjacency
matrix of the graph G and is denoted as A or A(G) in Ref.
(10); in what follows, we shall use the script symbols W or
W(G) to denote the adjacency matrix. Then, the number
co„(a;—+&J ) of n-step walks between points (sites) s; and
az is given by the (i,j)th element of the nth power of M,
viz. ~

Finally, the generating function I (a;~ a1;z), where z is
a counting variable, is given by

det( j).J; —zZp )r (~, o, ;z)=[(I—zW)-'],,= " " . (41)
det( jl —zW)

Considering the particular graph 6 defined by Fig. 3,
we now construct the adjacency matrix for the problem.
In the formulation presented in this section, we took ad-
vantage of the symmetry properties of the lattice. Thus,
instead of labeling the 16 sites of Fig. 3 individually, we
coded all sites of the lattice having the same symmetry by
a single variable; instead of 16 sites, we considered as dis-
tinct the sites labeled T, 1, 2, 3, and 4 in Fig. 3. The only
consequence of this simplification is that the associated
adjacency matrix W(G) of the problem is no longer sym-
metric; it is

r

CO&(~ &~ OT )

CO~(Oq~ &T )

CO((&3~ BT )

D4 CO((&4~ Dr )
I

CO)(BT~ 6()
CO((D)~ 6))
CO, (&2~ a&)

CO )(D3~ O ) )

CO)(64~ O ) )

CO~(OT ~ az)

CO ~(6 ]~ 82)

CO~(&2 —+ O2)

CO](&3~ D2)

CO&(64~ 82)

CO, (~T~ a3)

CO ~(6 ~
~ 93)

CO~(Oq —+ a3)

CO~(O4~ D3)

~,(O,~ ~4)

~1(+1~O4)

CO)(&2~ B4)

CO )(D3~ B4)

CO)(&4~ O4)

(42)

1110
0201
0012

(4S)

Since we know (Ref. 9, Theorem 3.2.1) that

K=(I—9)-'=1+9+9'+ . = $ 9", (46)
Ic =0

it is clear that, apart from the factor v, the construction
of powers of M(T), when summed to infinity, should
yield the value of the (i,j)th element of the fundamental
matrix ~ of the theory of finite Markov processes. To
demonstrate this relationship explicitly, we present in

or, explicitly, for periodic (confining) boundary conditions
and no bias (weights) on the motion of the walker,

, &T &]. &2 &3 &4

0 3 0 0 0
1 0 2 0 0
0 1 1 1 0
0 0 2 0 1

0 0 0 1 2
L

It is seen at once, from the discussion presented in Sec.
IIE that

M=vH,
where, again, v is the valency of the lattice considered
(here, v=3). Furthermore, if we consider the case of a
deep trap at the site &z and consider only the nontrapping
sites, the matrix corresponding to 2 is

0200

l

Fig. 7 the results obtained upon constructing the series

~=I+(1/v)M(T)+ [(llv)M(T)]

+ [(1/v)&(T)]'+. . . (47)

for the lattice graph defined by Fig. 3 for periodic (confin-
ing) boundary conditions, equal a priori bias on the walks
from site a; —+ az and T a deep trap; in Fig. 8 calculations
for representative elements of the fundamental matrix are
presented for the next larger lattice, %=25. The asymp-
totes in Figs. 7(a)—7(d) equal the values listed in funda-
mental matrix ~ for the problem N=16 listed in Sec.
HE, viz. , Eq. (34). Similar asymptotic results are ob-
tained upon calculating Eq. (47) for the lattice graph cor-
responding to %=25, but with one important quantitative
difference. Whereas for the lattice of size N =16, approx-
imately 100 steps on the lattice are required to produce an
estimate which is within 1% of the value given in Eq.
(34), when one increases the fundamental unit lattice from
N=16 to 25 many more steps are required to realize a
comparable accuracy; in fact, approximately 100 steps on
the N =2S lattice will bring one to within only S% of the
value for particular elements in the fundamental matrix~ for the problem.

The calculations summarized in Figs. 7 and 8 show in
dramatic fashion why the direct Monte Carlo simulation
of lattice walks is so time consuming. Even for the case
of the smallest lattices (e.g., N = 16 or 2S for d =2 hexag-
onal networks), hundreds of walks must be initiated from
each site of the lattice in order to achieve the accuracy
necessary for reliable estimates of the (ij )th element of
~, (n );, and (n ). For example, to obtain good histo-
grams for the case of a 5&5&&5 cubic lattice with a cen-
trosymmetric deep trap and values of s =0.1 characteriz-
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FIG. 7. Calculated value of the (i,j)th element of the fundamental matrix ~ for the d =2 hexagonal lattice with %=16 as a func-
tion of the number of terms considered in the sum, Eq. (47): (a) (1,1) element, (b) (2,2) element, (c) (3,3) element, and {d) {2,3) element.
Dashed horizontal line in each case denotes the exact value of the element being calculated.

ing the possible absorption of the walker at the remaining
N 1 sites of a p—eriodic lattice, approximately 10000
walkers from each of the X—1 sites of the lattice were
necessary in the Monte Carlo simulation, a numerical ex-

. periment that consumed over 3 h of CPU time; direct cal-
culation of the (n ); and (n ) based on the methods
presented in Sec. II C required less than 3 sec on the same
machine (IBM 370 computer).
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FIG. 8. Calculated value for the (i,j)th element of the fundamental matrix M for the d =2 hexagonal lattice with N=25 as a
function of the number of terms considered in the sum, Eq. (47): (a) (1,1) element, (b) (1,4) element, (c) (6,5) element, (d) (2,2) element,
(e) (6,6) element, and (f) (4,4) element. Dashed horizontal line in each case denotes the exact value of the element being calculated.
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TABLE I. Results for d =2 hexagonal lattices subject to periodic or confining boundary conditions with a centrosymmetric deep
trap (pz. ——1) and with no background absorption (all s;=0). Entries a—k are numbers calculated using Montroll's result, Ref. (1).
The result of Monte Carlo simulation for %= 16 is (n ) =21.62 aud for %=25 is (n ) =37.53 (20000 walkers per site).

16 100 169 256 361 25 121 196

(n) 21.6' 86 6" 204.9' 381.8 621.4' 926.8' 37.5g 257.0' 454 4j

&n),
(n)z
(n),
(n)4
(n),
&n)6
(n),
(n&s
(n),
(n)io
&n)„
&n)&z
&n)&3
(n)„
&n&is
(n)&6

&n &&s

&n&„
(n )~o
&n &„

&n &~4

&n &ps

&n)„
(n)„
&n)zs
&n)„
&n)3o

(n)3z
(n)„
(n)„
(n &3s

(n)3g
(n)„
(n )4o
(n)4,
(n)4,
(n)„
&n)44
(n)„
(n)„
(n &&7

(n &4,

(n )49
(n ),o
&n &5&

(n&„
(n &„
(n ),4
(n)„

15.0
21.0
24.0
27.0

48.0
70.5
78.0
90.0
84.0
82.5
90.0
94.5

100.5
103.5
106.5

99.0
147.0
162.1

189.2
185.1
176.9
195.7
201.3
216.0
222.4
232.2
198.4
203.6
205.8
215.1

221.4
230.0
235.6
241.6
244.6
247.6

168.0
250.5
276.0
324. 1

321.0
304.5
338.9
346.7
374.1

385.1

404. 1

351.0
364.5
362.5
381.1
387.4
404. 1

412.1

425. 1

431.2
440.5
378.6
377.1

385.2
390.3
401.6
409.8
420.9
428.9
437.8
443.6
449.6
4S2.6
455.6

255.0
381.0
419.8
494.5
492.0
465.2
519.5
530.4
574. 1

591.2
622.3
S42.6
566.4
559.9
590.8
597.8
625.5
636.4
658.4
668.3
685.0
601.8
593.8
610.1
611.8
631.4
639.2
657.9
667.5
683.3
691.9
704.3
710.4
719.5
614.8
619.8
621.8
632.4
640. 1

653.5
663.8
677.2
687.5
699.1

707.7
716.6
722.6
728.6
731.6
734.6

360.0
538.5
593.4
700.3
698.2
659.1

737.5
752.3
816.1
840.6
886.8
773.4
809.6
798.1

844. 1

852.3
893.6
908.3
941.6
956.1

982.0
869.5
854.2
880.7
879.1

909.4
917.3
945.8
957.4
981.9
993.4

1013.4
1022.8
1038.7
896.9
909.1
905.7
924.2
928.9
950.0
959.7
980.3
991.8

1010.1
1021.0
1036.4
1045.2
1057.4
1063.4
1072.5
923.3
921.8
930.0
93S.2
948.3

24.0
34.5
36.0
40.5
43.5
46.5

63.0
93.0

101.0
112.0
119.0
130.0
114.0
119.0
121.0
129.0
134.0
140.0
143.0
146.0

120.0
178.5
195.5
217.0
230.2
253.7
226.5
240.5
239.2
257.2
263.9
277.9
284.2
293.7
254.3
252.8
260.6
265.5
275.5
282.6
291.3
297.0
303.0
306.0
309.0

195.0
291.0
319.7
355.3
377.0
417.4
374.1

399.8
394.9
426.7
436.1

461.1
471.6
489.6
435.3
427.3
443.9
446. 1

464.8
472.6
488.9
497.2
509.9
516.0
525.2
448.2
453.2
455.2
465.4
472.7
484.9
494.0
505.3
513.5
522.4
528.3
534.3
537.3
540.3

288.0
430.5
473.6
526.9
559.2
620.8
556.8
596.9
588.0
637.2
650.1

689.4
705.3
734.3
658.3
642.9
670.5
670.4
700.6
709.7
736.0
747.2
768.4
778.1

794.4
686.1

698.4
695.2
713.7
718.7
738.8
748.2
766.7
776.8
792.5
801.1
813.5
819.5
828.6
712.5
711.0
719.1
724.2
736.8
746.5
760.8
772.1

785.8
796.4
808. 1

816.8
825.7
831.7
837.7
840.7
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TABLE I. (Continued).

169 361 121

&n)s6
(n)„
&n &ss

(n)„
(n )60
&n)6i
&n&„
(n)„

&n &6s

&n &„
(n)„
(n)„
(n)„

'20.4
83 5

'198.8
37).6

'606.0
'905.2

958.4
973.9
986.4

1002.0
1014.7
1028.8
1040.0
1051.8
1060.6
1069.5
1075.5
1081.5
1084.5
1087.5

g36. 1

"115.8
'249.8
'442.7
"698.4

843.7

III. RESULTS

We present in this section the results of (exact) calcula-
tions performed to study two types of reaction-diffusion
processes. In the first series, we consider a reactant mi-
grating toward a target molecule in a space of d dimen-
sions and reacting there irreversibly upon first encounter.
That is, we consider the reaction 3 +8—+ C, where A may
be regarded as the diffusing molecule and 8 the coreactant
positioned at the reactive site of the lattice considered.
Secondly, we shall assume that the N —1 sites surrounding
the target molecule 8 (at the reactive site) are not passive
(nonabsorbing or neutral) but may, with nonzero probabil-
ity s, react with the diffusing molecule to form an
excited-state complex resulting in the irreversible removal
of the diffusing reactant from the system. That is, we im-
agine the N —1 sites of the host lattice are also occupied
by B molecules which may compete to a certain extent
(0 & s & 1) with the coreactant positioned at the active site;
here we write, A+B~~[AB]*~C, where [AB]" is under-
stood to be an intermediate activated complex.

We shall examine the efficiency of reaction in each of
the above cases, as monitored by the quantities &n ); and
&n &, as functions of the spatial extent of the system and
of the boundary conditions imposed on the underlying lat-
tice. In the following section, by comparing the results
obtained here for hexagonal lattices with those obtained in
our earlier work on square and/or cubic lattices, definite
(quantitative) conclusions will be drawn on the role of lat-
tice valency (and dimensionality) in influencing the effi-
ciency of reaction-diffusion processes.

In Table I are presented the data on & n ); and (n ) for
hexagonal lattices in d=2 subject to periodic or non-

transmitting (confining) boundary conditions with a cen-
trosymmetric deep trap (pT ——1) and no background ab-

sorption (i.e., we set the probability s; of absorption at the
X—1 background sites to zero). The results laid down in
this table are to be taken in conjunction with Figs. 5(a)
and 5(b) which display the symmetry and site classifica-
tions for the d =2 lattices considered. Taking together the
data given in Table I with the locations of the sites s;
displayed in Figs. 5(a) and S(b), one obtains a very detailed
picture of the interplay between system geometry and re-
action efficiency for the class of reactions considered here.
Also indicated in this table are results calculated using the
asymptotic formula' for d =2 hexagonal lattices subject to
periodic boundary conditions and results calculated via
our direct Monte Carlo simulation for the cases N=16
and 25. The latter (very time consuming) calculations
yield the values &n ) =21.62 and 37.53, respectively, re-
sults which are in excellent accord with the results ob-
tained using the (exact) theory presented in Sec. II. From
the discussion and results presented in Sec. II on these
same lattice systems, we should expect to find that Monte
Carlo calculations on hexagonal systems for N & 25 rapid-
ly become impractical, and we do.

In Table II we consider the consequences of assuming
that the background sites can, with a certain probability,
react with the diffusing molecule A. Setting s;&0 for the
N 1 sites surroundin—g the deep trap (pr ——1), one en-
visions the situation where at any one of the neighboring
sites the molecule A may form an activated complex
[AB]* with a resident 8 molecule, which may either fall
apart (regenerating the molecule A) or react irreversibly
with A to form the product C (i.e., [AB]*~C). The data
displayed in Table II show that the "turning on" of reac-
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TABLE II. Results for d =2 hexagonal lattices subject to periodic or confining boundary conditions with a centrosymmetric deep
trap (pT ——1) and with background absorption (s;&0).

16

(n)
25

(n)
49

&n)

64

(n) (n)
121

(n)
169 196

(n)
256

&n)

289

(n)
361

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.80
0.90

21.60
10.47
6.93
5.18
4.14
3.45
2.96
2.59
2.31
2.08
1 ~ 89
1.60
1.39
1.23
1.10

37.50
13.05
7.92
5.69
4.45
3.65
3.10
2.69
2.38
2.13
1.93
1.63
1.41
1.24
1.11

86.62
16.12
8.92
6.17
4.72
3.82
3.21
2.77
2.44
2.18
1.97
1.65
1.42
1.24
1.11

119.62
16.98
9.17
6.29
4.79
3.87
3.24
2.79
2.45
2.19
1.97
1.65
1.42
1.25
1.11

204.86
18.04
9.47
6.43
4.86
3.91
3.28
2.82
2.47
2.20
1.98
1.66
1.42
1.25
1 ~ 11

256.96
18.38
9.56
6.47
4.89
3.93
3.29
2.82
2.48
2.20
1.99
1.66
1.42
1.25
1.11

381.79
18.84
9.69
6.52
4.92
3.95
3.30
2.83
2.48
2.21
1.99
1.66
1.43
1.25
1.11

454.41
19.00
9.73
6.54
4.93
3.96
3 ~ 30
2.84
2.48
2.21
1.99
1.66
1.43
1.25
1.11

621.38
19.23
9.79
6.57
4.95
3.97
3.31
2.84
2.49
2.21
1.99
1.66
1.43
1.25
1.11

715.64
19.32
9.82
6.58
4.95
3.97
3.31
2.84
2.49
2.21
1.99
1.66
1.43
1.25
1.11

926.77
19.46
9.85
6.60
4.96
3.98
3.32
2.85
2.49
2.22
2.00
1.66
1.43
1.25
1.11

tion centers at the N —1 sites surrounding the centrosym-
metric deep trap has a dramatic effect on the efficiency of
reaction in the diffusion-controlled process being con-
sidered. The average number &n) of steps required for
trapping drops precipitously as s; increases from zero.
Indeed, only a 5% probability of reaction at the N —1 sur-
rounding sites results in a drop in the value of (n) to a
number approaching approximately 20 asymptotically as
the system size increases. Beyond %=100, estimates of
(n ) for the setting of s;=0.05 change by less than l%%uo,

up to the largest lattices considered in this paper
(%=361). In fact, as was demonstrated explicitly in II,
& n ) = I/s in the limit of an infinitely large system.

The results reported in Tables I and II pertain to
periodic or nontransmitting boundary conditions. These
boundary conditions may be regarded as passive in the
sense that they do not seriously perturb the motion of the
diffusing particle. However, situations where the boun-
dary actively influences the diffusion process can also be
studied using the methods laid down in Sec. II, and the re-
sults obtained in calculations of (n ); and (n ) for such
problems are of great interest, given the avalanche of data
on the kinetics of processes in compartmentalized sys-
tems" (micelles, vesicles, and microemulsions). Accord-
ingly, e present results here for two classes of "active"
boundary conditions. In Table III are listed results for
d=2 hexagonal lattices subject to reflecting boundary
conditions and assuming the equal-probability convention
(see Sec. II B). The trap is taken to be a deep trap (pT ——1)
and no background absorption (a set of competing reac-
tion centers) is assumed. Then, in Table IV we examine
the consequences of turning on the %—1 background
sites, i.e., assuming a nonzero probability of reaction at
each of these sites. A corresponding study of reaction ef-
ficiency for reflecting boundary conditions, but with the

clockwise-bias convention assumed in governing the rein-
jection of the diffusing particle into the lattice, is present-
ed in Tables V and VI.

The results presented in Tables III—VI, when compared
against the earlier results reported for periodic or non-
transmitting boundary conditions, Tables I and II, provide
an explicit quantification of the anticipated "focusing ef-
fect" imparted by reflecting boundary conditions. The
principal trends for the case of a passive background (all
s; =0) are conveniently displayed in Table VII. It is seen
there that the results obtained using either convention for
reflecting boundary conditions are essentially the same.
Apparently, the biasing of the first step of the walker as it
is reinjected into the lattice does not affect significantly
the efficiency of reaction at the centrosymmetric site T. It
is also evident, given the data reported in these tables, that
the differences between periodic and nontransmitting (pas-
sive) and reflecting (active) boundary conditions becomes
less and less the larger the size of the system studied.
Since one anticipates that in the "thermodynamic limit'*
of the lattice statistical problem posed here that the boun-
daries should play no role in influencing the reaction-
diffusion processes, this result is certainly sensible. It is
interesting to note that the differences between results cal-
culated using the two (passive versus active) classes of
boundary conditions are already less than 10'Fo for
X) 121; apparently, a lattice of %=121 sites is already
large enough that reaction at a centrosymmetric reaction
center is not significantly perturbed by the boundary con-
ditions imposed.

Also of interest is the extent to which all differences be-
tween lattices, both with respect to their size and with
respect to the boundary conditions imposed, tend to be-
come insignificant once competitive chemical processes
are considered. As is seen in Tables II, IV, and VI,
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TABLE III. Results for d =2 hexagonal lattices subject to reflecting boundary conditions (equal-probability convention} with a
centrosymmetric deep trap {p~——1}and with no background absorption {all s; =0}.

(n)
16

15.2

49

72.5 181.9

169

349.2

25

28.8 102.7

121

230.8

196

418.5

&n&,
(n)~
(n&,
(n)4
&n)s
(n &6

(n)7
&n&s

(n&9
&n &io

(n)is
(n ),4

&n)is
&n &i6

(n)(7
(n)i8

(n)2o

(n &zz

&n),4

(n &as

&n)~6

&n &2s

&n &so

(n)»
(n)s2
(n )ss
&n &s4

(n )ss
&n &„

(n &„
(n &s9

11.0
15.0
17.0
18.0

41.0
60.0
66.3
75.9
70.7
69.7
75.4
79.1

83.1

85.1

86.1

89.0
132.0
145.5
169.4
165.7
1S8.5
174.9
179.9
192.3
197.7
205.4
177.0
181.2
183.3
190.9
196.4
203.1

207.7
211.7
213.7
214.7

155.0
231.0
254.5
298.5
295.6
280.5
311.9
319.0
343.7
353.5
370.2
322.8
334.9
333.1
349.7
355.5
370.0
377.1

388.0
393.1
400.4
346.7
345.7
352.6
357.4
367.0
374.6
383.7
390.8
397.6
402.5
406.5
408.5
409.5

19.0
27.0
28.0
31.0
33.0
34.0

55.0
81.0
87.9
97.1

103.0
111.8
98.6

102.5
104.4
110.5
114.6
118.6
120.6
121.6

109.0
162.0
177.4
196.6
208.5
229.2
205.1

217.5
216.4
232.1

238.0
249.8
255.1

262.6
228.9
227.9
234.4
238.9
247. 1

253.3
260.1

264.8
268.8
270.8
271.8

181.0
270.0
296.6
329.4
349.4
386.4
346.7
370.3
365.9
394.9
403.4
425.9
435.4
451.2
402.4
395.3
410.2
412.3
429.0
436.1

450.3
457.6
468.3
473.4
480.6
413.6
417.8
419.9
428.7
435.5
445.9
4S4.2
463.6
470.9
477.8
482.7
486.7
488.7
489.7

changes in a neutral background by only S% result in a
systematic collapse of results calculated for & n ) to essen-
tially similar values, almost irrespective of the factors cit-
ed above. These results can be used to provide quantita-
tive estimates of the loss in efficiency of the energy-
transfer process in the chlorophyll system in the specific
situation where chlorophyll molecules comprising the an-
tenna system may accidently trap the exciton as it moves
to the preferred reaction center. Conversely, experimental
data on catalyst deactivation can be correlated with the
trends noted above, and the relative importance of dif-
ferent poisoning processes can be quantified. These two
problems are planned to be treated in our subsequent work
and the calculations will be presented elsewhere.

IV. DISCUSSION

In this paper we have examined several factors which
may influence the efficiency of diffusion-controlled reac-
tions and have quantified their relative importance using
an exact lattice-statistical theory. We have considered the
case where there exists a reactive center (B) towards
which the diffusing molecule (A) migrates and reacts
there, irreversibly, upon first encounter. We have also
considered the case where the X—1 sites surrounding the
(centrosymmetric) trap may compete with the centrally
disposed reaction center, i.e., we have dealt with the case
where a diffusing molecule can, with finite probability
(0 (s; & 1), react irreversibly with other molecules (B) po-
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TABLE IV. Results for d =2 hexagonal lattices subject to reflecting boundary conditions (equal-
probability convention) with a centrosymmetric deep trap (pT ——1) and with background absorption
(s,~o).

(n) &n) &n& &n& (n)

121 169

&n)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.80
0.90

15.20
8.89
6.28
4.85
3.96
3.34
2.89
2.54
2.27
2.06
1.88
1.60
1.39
1.23
1.10

28.7S
12.02
7.60
5.56
4.38
3.61
3.07
2.68
2.37
2.13
1.93
1.63
1.41
1.24
1.11

72.50
15.74
8.83
6.14
4.71
3.82
3.21
2.77
2.44
2.18
1.97
1.65
1.42
1.24
1.11

102.67
16.75
9.12
6.27
4.78
3.86
3.24
2.79
2.45
2.19
1.97
1.65
1.42
1.25
1.11

181.87
17.95
9.45
6.43
4.86
3.91
3.28
2.82
2.47
2.20
1.98
1.66
1.42
1.25
1.11

230.85
18.32
9.55
6.47
4.89
3.93
3.29
2.82
2.48
2.20
1.99
1.66
1.42
1.25
1.11

349.17
18.81
9.68
6.52
4.92
3.95
3.30
2.83
2.48
2.21
1.99
1.66
1.43
1.25
1.11

418.45
18.98
9.73
6.S4
4.93
3.96
3.30
2.84
2.48
2.21
1.99
1.66
1.43
1.25
1.1l

TABLE V. Results for d =2 hexagonal lattices subject to reflecting boundary conditions (clockwise-bias convention) with a cen-
trosymmetric deep trap (pT ——1) and with no background absorption (all s; =0).

&n)

(n),

(n),
(n)4
(n),
&n),
&n),
&n)s
(n),
(n)~0

(n)„
(n ),4

&n &&5

(n)is
(n &i7

&n &is

(n)„
&n &so

&n&„
(n &s2

(n &,4

(n)„
(n )zs
&n)„
&n &so

(n)„

15.2

11.0
16.0
14.0
17.0
18.0

72.2

41.0
60.3
59.7
66.2
75.5
71.2
70.8
68.8
78.0
72.6
80.1

77.2
83.8
80.5
84.2
8S.2

100

181.0

89.0
132.2
131~ 8
145.4
169.1
166.0
159.3
158.0
176.6
173.2
180.6
178.3
193.1
189.6
196.3
203.2
177.9
184.9
179.7
186.9
180.2
196.2
184.9
199.4
191.2
205.8
196.1
207.5
202.9
210.5
206.4

169

347.5

155.0
231.2
230.8
254.4
298.2
295.9
281.1
280.1

313.1
310.6
319.5
317.7
344.2
341.3
352.2
368.1

323.5
337.5
334.1

335.8
331.0
353.8
345.3
358.0
351.1
372.8
363.6
377.0
372.0
387.1

381.4

25

28.7

19.0
27.4
26.6
28.1

32.0
29.7
32.9
33.9

64

102.2

55.0
81.3
80.7
88.0
97.8
96.2

102.7
111.0
99.0

104.9
101.1
106.4
102.3
113.4
106.5
115.4
112.0
118.9
115.3
119.1
120.1

121

229.8

109.0
162.2
161.8
177.5
197.1
196.0
208.2
228.5
205.4
219.1
216.7
217.9
214.9
234.4
229.0
238.7
235.5
250.3
246.0
252.9
259.5
230.7
231.1
226.8
240.4
230.1

243.6
233.7
253.0
239.0
256.2

196

416.5

181.0
270.1

269.9
296.7
329.8
328.9
349.1

385.8
347.0
371.6
369.8
367.0
364.7
396.7
392.4
403.9
401.2
426.3
422.5
433.3
448.0
403.8
397.7
394.6
414.7
407.3
416.1
408.4
434.0
422.5
438.7
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TABLE V. (Continued).

&n&s,
&n &,4

(n)„

(n)„
(n)„
(n)„
(n)~
&n)4,
&n &4&

(n &4s

&n &4s

&n &46

(n)4,
&n &4g

&n &4,

&n &so

&n &si

(n)„
(n)„
(n ),4
(n)„
(n &„
(n)„
&n &sa

(n)„
&n &60

(n)6&
(n)62
(n)„
&n &64

&n &6s

49

210.5
211.5

388.8
394.8
349.4
350.3
344.8
360.8
347.8
364.6
350.9
376.2
356.4
380.5
364.6
389.5
370.9
392.5
380.3
397.9
385.8
399.2
393.6
401.7
397.2
401.5
402.5

246.6
262.3
251.7
263.8
258.9
266.6
262.4
266.5
267.5

196

430.0
452.9
442.0
456.8
451.0
466.4
460.1

467.7
473.6
416.1
424.5

417.0
427.2
415.9
439.5
420.2
444. 1

426.0
455.8
432.3
460.2
441.9
468.9
448.5
471.7
458.5
476.9
464. 1

478.0
472.2
480.4
475.8
480. 1

481.1

TABLE VI. Results for d =2 hexagonal lattices subject to reflecting boundary conditions
(clockwise-bias convention) with a centrosymmetric deep trap (p&

——1) and with background absorption
(s;~O).

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.80
0.90

16

&n&

15.20
8.89
6.28
4.85
3.96
3.34
2.89
2.54
2.27
2.06
1.88
1.60
1.39
1.23
1.10

25

28.70
12.02
7.60
5.56
4.38
3.61
3.07
2.68
2.37
2.13
1.93
1.63
1.41
1.24
1 ~ 11

49

(n)
72.20
15.73
8.83
6.14
4.71
3.82
3.21
2.77
2.44
2.18
1.97
1.65
1.42
1.24
1.11

64

(n)
102.25
16.74
9.12
6.27
4.78
3.86
3.24
2.79
2.45
2.19
1.97
1.65
1.42
1.25
1.11

181.03
17.95
9.45
6.42
4.86
3.91
3.28
2.82
2.47
2.20
1.98
1.66
1.42
1.25
1.11

121

229.78
18.32
9.55
6.47
4.89
3.93
3.29
2.82
2.48
2.20
1.99
1.66
1.42
1.25
1.11

169

347.50
18.81
9.68
6.52
4.92
3.95
3.30
2.83
2.48
2.21
1.99
1.66
1.43
1.25
1.11

196

(n)
416.47

18.98
9.73
6.54
4.93
3.96
3.30
2.84
2.48
2.21
1.99
1.66
1.43
1.2S
1.11
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TABLE VII. Comparison of results for d =2 hexagonal lattices subject to various boundary condi-

tions and conventions with a centrosymm. etric deep trap and with no background absorption (all s;&0).

(n )pER (n )R-Epc (n )pER (n )R-cBc

&n &PER &n &PER

N (%) (%)& n &B-CBC'& n )R-Epc

15.20
28.75
72.50

102.67
181.87
230.85
349.17
418.45

&n &PER'

29.63
23.46
16.65
14.52
11.63
10.57
8.98
8.35

29.63
23.33
16.31
14.17
11.22
10.16
8.54
7.91

15.20
28.70
72.20

102.25
181.03
229.78
347.50
416.47

21.60
37.50
86.62

119.62
204.86
256.96
381.79
454.41

16
25
49
64

100
121
169
196

'(n )PER. Average walk length calculated assuming periodic boundary conditions.
( n )R Ppc'. Average walk length calculated assuming reflecting boundary conditions with the equal-

probability convention.
'( n )R cBC. Average walk length calculated assuming reflecting boundary conditions with the
clockwise-bias convention.

sitioned at the X —1 sites. These studies were carried out
specifically for hexagonal lattices in d =2 and 3 subject to
several choices of finite-versus-infinite (periodic) boundary
conditions, and data were presented for (n); and (n).
Again (n); is the average (mean) number of steps re-
quired for a diffusing molecule to react starting from the
site i and (n ) represents the overall mean; these quantities
reflect the efficiency of reaction on the lattices considered.
Implicit in our calculations, though not presented in
tables, were data on the number of times a diffusing parti-
cle, starting from site i, encounters a site j; these data are,
of course, basic to the construction of the (n ); (and (n )).
Rather, we displayed in Figs. 7 and 8, for the representa-
tive cases %=16 and 25, the number of steps required to
achieve the exact value given by the theory of finite Mar-
kov processes. The data presented in these figures were
compiled using the theory underlying the construction and
manipulation of the adjacency-walk matrix for the prob-
lem. The insights gained in performing the latter calcula-
tions are twofold. Firstly, they demonstrate that graph
theories designed to produce estimates of (n ); (or (n ))
when based on only a few (less than 100) terms {walks and
diagrams) are likely to be unsuccessful in reproducing the
exact values reported in Tables I—VI. Secondly, these cal-
culations show plainly why our earlier Monte Carlo nu-
merical experiments were so time consuming; as indicated
in Figs. 7 and 8, hundreds of walks from each site of the
lattice are required to generate reliable (asymptotic) esti-
mates of (n) for %=16 and 25, and from our earlier
work we can document that the situation deteriorates
rapidly with further increase in the size of lattice unit.

The principal usefulness of the analysis presented in
Sec. II is that interrelationships among three different ap-
proaches to the problem of diffusion-controlled reactions
on d-dimensional lattices can be brought out and exploit-
ed. The algorithm (Sec. IIC), reported in I and imple-
mented in II, was deduced originally from a detailed study
of the Monte Carlo results compiled on the general prob-
lem of random walks on finite and infinite lattices with
traps. The general theory of finite Markov processes
turns out to be the underlying theoretical basis for the al-

gorithm and in establishing this connection (Sec. IIE) we
now understand in terms of fundamental theorems why
the algorithm "works" and works exactly. Finally, the
graph theoretical and generating function approach to the
same problem, as implemented in Sec. IIF using the
adjacency-walk matrix W, provides auxiliary information
on and estimates of the number of steps required in indivi-
dual site-to-site displacements on the lattice for the calcu-
lated statistical quantities to approximate the results en-
coded in the fundamental matrix ~ of Markov chain
theory. In effect, the numbers (n); calculated using the
algorithm (or Markov chain theory) represer t an
adjacency-walk calculation in which an infinite number of
such site-to-site steps are taken by the diffusing particle.
In fact, if one associates a mean jump time with each step
taken, the adjacency-walk calculations (as exemplified in
Figs. 7 and 8) hint at the effective time scales required for
equilibrium to be reached in diffusion-controlled reac-
tions.

Given the data reported in our earlier study of square
and cubic lattices (II) and the data on hexagonal lattices
reported here, we can now consider in some detail the ef-
fects of lattice valency v in influencing the efficiency of
reaction-diffusion processes. Considering the d =2 case
first, one anticipates that the smaller valency of the hexag-
onal lattice (v=3) as compared to the square lattice
(v=4) might restrict the efficiency of reaction on hexago-
nal lattices simply because fewer paths to the reaction
center are available to the diffusing particle. To quantify
this, we report in Table VIII a comparison of results ob-
tained for hexagonal versus square lattices for d =2 sub-
ject to periodic and nontransrnitting boundary conditions
with a centrosymmetric reaction center, a deep trap
{pT——1); we consider both neutral backgrounds (all s; =0)
and the case of N —1 competing reaction centers (with all
s;=s&0). The usefulness of the classification scheme
presented in Sec. IIA can now be seen; because of the
manner in which the basic simplex for the d =2 hexago-
nal lattice was constructed, hexagonal and square lattices
characterized by the same overall value of N can be com-
pared directly. From the data given in Table VIII, one
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TABLE VIII. Comparison of d =2 results for hexagonal vs square lattices subject to periodic or confining boundary conditions
with a centrosymmetric deep trap (pz ——1) and with background absorption (s;&0).

Square
lattice (n ),q

s; =0.0
Percent

( n )h,„difference (n ),q

s; =0.05
Percent

(n )h,„difference

s; =0.10

&n & q (n)„,„
Percent

difference

25 5X5

49 7X7

121 11X 11

169 13X13

289 17X 17

361 19X19

31.7
(31.6)'
71.6

(71.6)
209.9
(209.9)
310.6
(310.6)
579.4
(579.5)
748.9
(749. 1)

37.5
(36.1)

86.6
(83.6)
257.0

(249.8)
381.8

(371.6)
715.6

(698.4)
926.8

(905.2)

18.3

21.0

22.4

22.9

23.5

23.8

12.4

15.6

18.2

18.7

19.2

19.4

13.0

16.1

18.4

18.8

19.3

19.5

5.3

3.1

1.2

0.86

0.47

0.41

7.71

8.79

9.51

9.65

9.80

7.92

8.92

9.56

9.69

9.82

9.85

2.7

1.5

0.53

0.41

0.20

0.10

'Numbers in parentheses are the Montroll asymptotic estimates of (n ).

finds that the percent difference in values calculated for
&n ) in the two cases is approximately 18%%uo for the small-
est lattice considered (N =25) but increases only a further
6% when the largest lattices studied here (N =361) are
compared. Although there is a persistent difference be-
tween the values of &n ) calculated for hexagonal versus
square lattices, this difference seems to approach asymp-
totically a value just under 25%. Once again it is worth
drawing attention to the leveling effect produced when the
X —1 surrounding sites are turned on chemically. When
there is a nonzero probability that reaction may occur at
the % —1 neighboring sites, the percent differences
recorded in Table VIII between the two lattices decrease
with increasing lattice size, an effect which becomes more
pronounced the larger the value of the s; =s. Even a 5%
probability of reaction at these X—1 sites collapses the
difference in calculated values of &n) for v=3 vs v=4
for d =2 to within a few percent.

As noted earlier, periodic boundary conditions imposed
on a hexagonal or square lattice with a centrosymmetric
trap are equivalent to nontransmitting (or confining)
boundary conditions imposed on the same lattice. Hence
the results reported in Table VIII are also of interest in
considering reaction efficiencies for a finite cluster of sites
subject to passive boundary conditions. Some conse-
quences of permitting the boundary to influence in an ac-

tive way the fate of a diffusing particle traversing a finite
cluster of sites were explored earlier by considering re-
flecting boundary conditions. Whereas for the case of
square lattices, the imposition of reflecting boundary con-
ditions presented no ambiguities regarding the fate of the
molecule as it reenters the lattice, the situation is other-
wise for hexagonal lattices (Sec. II C). Accordingly for the
hexagonal lattices studied here, two sorts of reflecting
boundary conditions were designed and data were present-
ed for the equal-probability convention and the
clockwise-bias convention. In Table IX we present a com-
parison of the numbers &n ) generated for d =2 for re-
flecting boundary conditions for square lattices (v=4) and
for hexagonal lattices (v=3), the latter subject to the two
conventions noted above. While the numbers &n ) calcu-
lated for reflecting boundary conditions are different from
those calculated for periodic and nontransmitting boun-
dary conditions, it is also clear from Table IX that the
principal trends noted earlier for periodic boundary condi-
tions (Table VIII) pertain here as well. Again we see that
once the chemical reactivity of the N —1 sites surround-
ing the centrosymmetric reaction center becomes a factor
(s =0.05), differences in &n ) for the same lattice subject
to different boundary conditions or differences between
lattices of different valencies but subject to the same boun-
dary conditions tend to evaporate. In the language of

TABLE IX. Comparison of results for d =2 hexagonal vs square lattices subject to reflecting boundary conditions with a cen-
trosymmetric deep trap (p~ ——1) and with background absorption (s;&0).

Square
lattice &n &,q'

s; =0.00

( n )Epc & n & cBc

s; =0.05

(n )sq (n )EPC (n )CBC

s; =0.10

( n ) sq ( n )EPC ( n & CBC

25
49

121
169

5X5
7X7

11X11
13X13

19.1
50.7

170.4
260.9

28.8
72.5

230.8
349.2

28.7
72.2

229.8
347.5

10.1'
146
18.0
18.6

12.0
15.7
18.3
18.8

12.0
15.7
18.3
18.8

6.88'
8.54'
9.48
9.64

7.60
8.83
9.55
9.68

7.60
8.83
9.55
9.68

'Data, taken from Ref. 8.
Hexagonal-lattice walk-length data.

'C. A. Walsh (private communication).
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TABLE X. Comparison of results for d =3 hexagonal vs cubic lattices subject to periodic boundary conditions with a centrosym-
metric deep trap (pT ——1) and with background absorption (s;&0).

Cubic

lattice

27
125

Cubic
3X3X3
5x5x5

343 7X7X7

&n &,„b;,

30.46
157.32

455.27

s =0.0

a
& n )MONTROLL

42. 16
195.18
(157.3)
535.56

n MQNTROLL

& n )MONTROLL

(%)'

27.8
19.4

15.0

s =0.05

&n &..b;.

12.27
17.80

19.17

55
91

285

77.27
131.59
443.37

Hexagonal
85.88

142.09
444.99

10.0
7.4
0.36

15.92
17.37
19.12

Montroll s asymptotic estimate for cubic lattices; &n )MQNTRQLJ 1.5614(1V). Number in parentheses for the 5&&5&&5 cubic lattice is
the result obtained by refining Montroll s estimate [M. D. Hatlee (private communication)]. Corresponding Monte Carlo result for
this case is & n ) =157.5.
"&n &„~,=&n &,„b;, or &n &b,„.

Markov chain theory, introduction of (partial) ergodic
character into the description of the transient states of the
system permits them to become very effective competitors
with the single, purely ergodic state of the problem (the
deep trap).

Many of the studies reported above were repeated for
the dimensionality d =3. The symmetry analysis (Sec.
IIA) and the specification of boundary conditions (Sec.
IIC) goes through for d =3 exactly as for d =2; here,
three-dimensional models are invaluable in facilitating site
classifications for different boundary conditions. Rather
than present extensive banks of data here (these are avail-
able upon request), we simply record in Table X some
representative comparison of cubic (v=6) versus hexago-
nal (v=4) lattices for d =3. For d =3 one loses an im-
portant simplifying feature of the d =2 comparisons; it is
not possible (for a centrosymmetric trap and periodic
boundary conditions) to construct cubic versus hexagonal
lattices with the same overall N. Although exact
correspondences are not possible, an examination of the
data in Table X reveals that the trends identified earlier in
the d =2 case persist here as well. Also listed in Table X
are the differences between the exact numerical results cal-
culated using the theory outlined in Sec. IID and the
asymptotic results calculated using the Montroll theory.
It is interesting, though accidental, that Montroll s esti-
mate' for cubic lattices works better for hexagonal lattices
for d =3 than for cubic ones.

The data presented in this work provide a storehouse of
exact information which can be used to guide the develop-
ment of analytic theories of random walks on d-
dimensional lattices. For example, it had been known
since the earlier, classic studies of Montroll and Weiss'
that the mean number of steps required for trapping on a
periodic lattice from a nearest-neighbor site to a cen-
trosymmetric deep trap is given (in our notation) by'
(n ) i N —1. The results display——ed in Sec. III certainly
confirm this and show further that the mean number of

steps required for trapping on a hexagonal, periodic lattice
from a next-nearest-neighbor site to a centrosymmetric
deep trap is given by (n )2 ——3[(N/2) —1], a result which
follows at once from the above expression for (n )i and
Eq. (8). These analytic expressions for (n)i and (n )2 in
terms of N constitute invariance relations for the lattices
specified above and, as was mentioned in II, can be used
in conjunction with certain decimationlike transforma-
tions to produce analytic expressions for (n ) in terms of
the underlying variables of the problem (e.g., v, d, and N).
The decimationlike transformations introduced in II have,
we believe, a direct counterpart in the theory of finite
Markov processes and we hope to be able to demonstrate
in our subsequent work how theorems on ergodic chains
may be used to simplify the analysis of absorbing Markov
chains (and vice versa).

Finally, we again draw attention to the fact that there
exist several important physical problems for which it is
recognized that the efficiency of the underlying process
can be compromised by competitive trapping mechanisms.
Principal among these are the problems of energy migra-
tion and trapping on chlorophyll networks and those of
catalyst deactivation in partially poisoned supports. With
the results presented in II and in the present study we now
have at our disposal an extensive bank of data on the role
of system size, dimensionality, boundary conditions, and
lattice valency that can be used to guide the construction
of models for these processes; we plan to report these
studies in the near future.
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~~The result (n ) &
N ——1 c—an be derived simply as follows: Let

( n )„be the expected number of steps to the trap, denoted by
0; ( n )0——0. x -y means that x and y are connected by a bond
on the lattice, and v is the valency of the lattice G. Then,

g (n )„=g g —((n )y+1)1

xEG xEG, x-y
x+0

g (n ) +(N —1)——g (n )y,
xGG & y-0

from which the Montroll-Weiss result follows at once.


