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The principle of augmentation, used to introduce inner-atom core structure into slowly varying
basis functions, is applied to Gaussian orbitals to define a new basis set for highly accurate total-
energy calculations for atomic clusters within the density-functional formalism. Diffuse Gaussian-
orbital tails are matched continuously and differentiably to inner-atom numeric radial functions at
the atomic-sphere radius. Major advantages of Gaussian-orbital basis sets are acquired without the
need for numerous Gaussians of large exponent for the core region. The numeric functions used in-

side the atom permit essentially exact solutions for that region. Procedures are described which re-
cover use of the efficient integral algorithms for the Gaussian-orbital-tail matrix elements. The in-

teractions over the structured inner-atom region are treated by efficient integrand smoothing and in-

tegration procedures for the sphere. The new augmented Gaussian basis removes the primary limi-

tations on the use of Gaussian orbitals for heavy atoms. As an illustration the method is applied to
the copper dimer in an all-electron framework within the local-spin-density approximation (LSDA).
The calculated binding energy, equilibrium separation, and first ionization potential of Cu2 are
within 2% of experiment within the Xa model. Excitation energies are better described within more
recent refined exchange-correlation functionals. These a11-electron results show the LSDA model
predicts a slightly contracted bond length for Cu2, consistent with bulk LSDA calculations for the
3d transition-metal series.

I. INTRODUCTION

Among ab initio Hartree-Fock and configuration-
interaction (CI) calculations for finite atomic clusters, by
far the majority are formulated in terms of Gaussian-
type-orbital (GTO) basis sets. The motivating factor for
this choice is the existence of explicit formulas for the
basic integrals of the secular matrix. ' A limitation on the
use of Gaussians for heavy atoms is the large number of
primitive Gaussians required to describe the rapidly vary-
ing orbital structure in the core region. Indeed it has been
pointed out that focus on this problem has often been to
the detriment of the description of the valence states. The
accentuation of this difficulty for atoms of the transition-
metal series has led to new efforts to improve all-Gaussian
basis sets. An alternate way of dealing with the basis size
problem replaces the core part of the basis by a pseudopo-
tential, as exemplified in the calculations on Cu2 carried
out by Pelissier.

The use of GTO basis sets within the local-spin-density
approximation (LSDA) has lagged these developments in
the quantum-chemical field. Following their introduc-
tion for first-principles band-structure calculations
numerous GTQ studies have been carried out. The use of
GTQ basis sets in local-density molecular calculations was
initiated in the work by Sambe and Felton. %'ith refine-
ments introduced by Dunlap and co-workers, particularly
with variational fit procedures, the GTO method has pro-
vided reliable spectroscopic constants in a number of Xa
calculations. The GTO approach has also been used in
local-density calculations' with all matrix elements

evaluated by Gaussian integral algorithms" without in-
voking charge or potential fits.

Evaluation of the Coulomb energy due to the interelec-
tronic repulsion remains the rate-determining step in all
current linear variational methods, regardless of basis, just
as the multicenter r &z' matrix elements have been the ma-
jor problem in ab initio calculations. With Gaussian orbi-
tals, electron repulsion matrix elements can be obtained in
integral form, and this is the major motivation for adopt-
ing the basis. But only the overlaps among diffuse orbital
tails pose any difficulty; in the LSDA the intrasite terms
can be efficiently treated by alternate means. Thus reten-
tion of a Gaussian representation for the orbital descrip-
tion inside the atom becomes a liability in the LSDA.
Numerical radial functions, ' ' however, are known to be
near optimum for spanning the inner-atomic region.

In the present approach, a partitioned basis set is intro-
duced to optimize both the orbital description over all
space and the treatment of resulting matrix elements.
Diffuse Gaussians are used to span the interstitial volume,
and numerical-radial functions are used for the orbital ex-
pansion in the nominal atomic-sphere region (a representa-
tion which permits an exact description of the core wave
functions). Rather than continuing the numerical orbital
form outside the atomic spheres, as in various linear com-
binations of atomic orbital (LCAO) methods, ' each
(valence) function is matched (along with higher deriva-
tives) to a sum of diffuse Gaussian functions at the sphere
boundary. This is much in the spirit of the linear com-
bination of muffin-tin orbitals (LCMTO) approach,
especially more recent variations' ' where the nonlinear

1983 The American Physical Society



28 AUGMENTED GAUSSIAN-ORBITAL BASIS FOR ATOMIC. . . 5537

II. AUGMENTED GAUSSIAN ORBITAL BASIS SET

The augmented Gaussian orbitals are defined in a spa-
tially partitioned form by Eq. (1):

@,(rj), ~ r, ~

&R~p

X,(a, r)= '

GJ(a, rj ), jrj f)RJp.

parameters determining the form of the Hankel-function
"tail" are selected to give atomiclike behavior to the basis
function about its defining site.

From similarities to band-structure methods wherein
slowly varying interstitial basis functions are augmented
by numeric functions inside the atomic spheres (e.g. , aug-
mented plane wave, ' spherical wave, ' and Gaussian
wave ), this set of localized functions will be referred to
as an augmented Gaussian basis (AGB). The concept of
augmentation is basic to the majority of new techniques
for carrying out local-density calculations. The main pur-
pose here is to combine it with the advantageous charac-
teristics of Gaussian orbitals in order to facilitate treat-
ment of clusters involving heavy (transition-metal) atoms.
Though not as simple as the pseudopotential method, the
augmentation procedure as used here is an all-electron
method (the frozen-core approximation is not evoked)
thus allowing a wider class of systems to be addressed reli-
ably. Since the choice of Gaussian-orbital tails for the
basis functions outside the spheres permits the use of ex-
plicit formulas for the evaluation of most matrix ele-
ments, a major part of the calculation can be carried out
essentially analytically. Equally important is the charac-
teristic of reliability guaranteed by the Gaussian basis.
Simple procedures, such as "freeing" the most diffuse
Gaussian in each I channel, give excellent convergence
properties. ' This provides a basis-extension procedure
which is both systematic and reliable, and avoids many of
the problems associated with alternate basis sets.

as the atoms are moved apart. Alternately, the sphere ra-
dii can be increased as the cluster expands. In practice,
changing the sphere radii simply means calculational ef-
fort is shifted from one region to another.

The basis function outside the defining sphere (the orbi-
tal tail) is an expansion in Gaussian functions,

GJ(r)= gaj'exp( a—;r ) r'Yi ~ (r) . (3)

The linear coefficients for a given set of exponential pa-
rameters are determined by the match of the inside and
outside functions and successive derivatives at the sphere
radius. Optimization of the fit to PJ(r) continued outside
the sphere is obtained by varying the exponents (and recal-
culating the linear coefficients). In contrast to the
LCMTO approach, no energy derivative function P is
used, nor is matching of the Gaussian tail to inside func-
tions at other sites carried out; rather the tails simply
overlap other sites. The task of the orbital tails is to
provide adequate variational freedom in the valence space,
and the definition for a minimal atomic basis has been
given above. To supplement this set, free diffuse Gauss-
ian tails can be included, just as in the usual LCGTO
method, and the inside function corresponding to each is
just the continuation of the tail into the defining sphere
(PJ =G~, for r &R~ ).

For illustrative purposes an augmented Gaussian orbital
g representing the 4s orbital in copper is plotted in Fig. 1.
The tail representation is also shown extended back to the
defining-sphere origin. The effect of the augmentation
procedure on the tail orbital is then apparent as the differ-
ence (X—6) (nominal sphere radius —1.8 a.u.). The cor-
responding kinetic energy-density contributions r V 7 and
r V G are illustrated for the same 4s AGB orbital in Fig.
2. From these figures it is clear that an advantage can be
acquired if the rapidly varying parts of 7 and V X inside
the atomic spheres are dealt with separately from the

Here rj = r —Rz is the vector specifying a point at r rela-

tive to the defining site j which is located at RJ, and Rp is
the nominal radius of the atom at site j. The orbital form
inside the sphere is simply (now taking r to denote the lo-
cal rj)

@,(r)=f, (r)Y, ~ (r") .

4.0

Since this set must span the core region, a logical choice
for the minimal basis portion of the basis set consists of
the numerical solutions to the radial differential equation
using the spherical component of the potential inside the
spheres. In Appendix A, an alternate form is described
which makes a useful connection with other current linear
combination of Gaussian-type orbitals (LCGTO) calcula-
tions. The atomic sphere introduced in defining the basis
should not be taken to imply any shape approximation in
the potential function. The spatial partitioning is only a
construct used to gain calculational advantage. Most sim-
ply, a set of nonoverlapping spheres are defined (of equal
or comparable volume) with the cluster in its configura-
tion of smallest volume, and these radii are kept constant

—1.0

0.0 2.0

FIG. 1. Augmented Gaussian orbital, rg, representing 4s
atomic orbital of copper. Orbital tail function, rG, is shown ex-
tended back to origin.
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5.0 The correction integral

I, =&@, IH lcj&„—&G, IH IG, &„

h g. nd X are both centered on site i,treats the case w ere; a
and
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FIG. 2. Kinetic energy functions for coppco er 4s augmented
Gaussian or ita, rb 1 V g and orbital tail, r V 6, shown contin-
ued back to origin.

and V G. In Sec. II procedures areslow y va ying parts 6
described which use this partitioned form of the
gain a vand tages in matrix element evaluation.

III. MATRIX ELEMENTS

(4)

Evaluation o ma rix ef t elements of the Hamiltonian is
'

d out b first introducing a partitioning o space
ic s heres and the interstitialinto nonoverlapping atomic sp eres an

~

]volume outside. If H represents an operator of the Hami-
tonian then

=&G IH I G, &n, +g&& IH I&j& „

I,=&+, IH IG, &„—&G, IH IG, &„

en g- is centered on site i,Is the proper correction w en g;
~ ~ ~

in both E s.. (6)which differs from site j. The first term
' q.

matrix element con-and (7) clearly represents the correct m
here i and the second term removes the

overcounted contribution from the "glo a in eg

ith re ard to effi-The advantages of this procedure wi rega
'

nt matrix element evaluation are c ear in that the diffi-cien ma rix
5) has been re-

cutt

in egralt
'

t al on the left-hand side of Eq.
ls. For Hp ace y a1 d b combination of simple integra s. 'n therepresenting mos o et f th operators in the Hamiltonian,

global integral $ G
)
H

~

G & is readily evaluated using
'

h f r Gaussian functions, and theintegral alogrit ms or
' ', t e

remaining terms ont s on the right-hand side of Eq. 5 are e i-
s here.ciently eva uate y1 d b standard procedures for the sp ere.

Writing the correction term for sphere k in the orm

I= f (7;Hgj —G;HGj)dr, (g)
Qk

ka further nice property becomes ppa arent. As r~Ro, the
'z 1 to zero by construct of the basis,integrand uni orm y goes o

hea characteristic w ic canh' h an be exploited to optimize t e
sphere integration.

When H re resents the electronic Coulom potentia oren rep
exc ange-corre a

'
h - lation potential function, the in eg g-

for Gaussian functions cannot be direct y app ie,rit ms or au
d

'
1 rocedures described subsequen y a

for the ma-evaluate the global integrals. The expressions for
trix elements o ef th Hamiltonian are summarized in Ap-
pendix B.

b i t Q denotes integration over the regionwhere su scrip
inte ration'de the atomic spheres and subscript k in egoutsi e e a

over the kth sphere. Equation (4) simp y1 breaks the in-
tegral over a space o11 s ace to show the explicit form for 7 in the
interstitia vo ume.

' '
1 1 e. Next each Gaussian orbita; is con-

d
'

t all the atomic spheres, the interstitia in egratinue in o a
involving the Gaussians is extended to cover a sp

1 d d for the overcounted contri-corrective terms are inc u e
butions inside the spheres. Explicitly,

&+i I
H

I
&j & ca

= & Gi I
H

I Gj & oo

+g(&X, IH IXj&„„—&G, IH
I Gj&n„.

k

IV. CHARGE DENSITY AND POTENTIAL

During iterations to self-consistency, the electron-
is calculated from the effectiveelectron repulsion energy is ca cu

r ) determineintere ec rot 1 tron electrostatic potentia «r,
i n. Withfrom the charge density of the previous iteration.

eigenvectors 4'„( r ) given by

+„(r)=QC;"X,(r),

Note that the matrix element contributio
'

n from s here kp
h ) 'd ntically zero, unless the defining site

of either X; or 7~ is sphere k. This simply re ects a
r for tail-tail overlap insidethere is no correction necessary

the sp eres. nh . 0 the other hand, the extension o t e
Gaussian tail into its own de in' g pfinin s here invokes correc-
tive terms of two sorts represented below by Ii and I2.

n (r) =gfk+C;"CJ X;(r)XJ(r) .
k l,j

(10)

The evaluation of V„(r) is typically the bottleneck in
full-potential cluster calculations. In rydbergs,

is determined for the state specified by occupation num-
bers (fi, j,
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V (~) 2f n (r)
Ir —xI

V„(x ) =2+fk+C;"C~"f d r

=gfk gC;"Cj"u;j ( x ), (12)

where

In the present approach, potential evaluation is efficiently
carried out in much the same way as described for the ma-
trix elements. The density is partitioned into an all-
Gaussian part by the extension of the orbital tails into
their defining spheres, with correction components for the
overcounted density inside the spheres. Explicitly,

X;(r )X, ( r)

Ir —xI
6;(r)Gj(r)=2 dr

Ir —x
I

X;(r)X,.(r)—6;(r)6,(r)
k Ir —xI

(13)

The first integral on the right-hand side of Eq. (13) is
treated by an adaptation of the McMurchie-Davidson al-
gorithm for electron-nuclear matrix element evaluation. "
The second term is a multicenter potential expansion due
to the charge inside the atomic spheres. This density in a
given sphere comes from the product of basis orbitals, at
least one of which is defined on the given site, corrected
for the extension of the corresponding orbital tail back
into that site. If neither X; nor Xj have their origin in
sphere k, then the correction density in that site is seen to
vanish. Combining Eqs. (12) and (13), the electron-
electron Coulomb potential may be written

V„( )=2'„yCnCn f ' ) j d +2+ ~ ~C„C„X; r Xj( ) 6;(r)G—j(r)
n ij I

r —x
I k n ij Ir —xI

=uG(x)++uk(x),
k

(14)

where uG(r ) is the potential due to the Gaussians extended
over all space and the contribution from sphere k is de-
fined as

nk(r)
uk(x)=2 f„dr,"Ir—xI

where

where the N„and G„are atomic basis components of IXI
defined in Eq. (2), and a„are nominal atomic occupation
numbers. This choice for no(r) is readily seen to mini-
mize the structure in the l =0 channel of

n,"(r)=nk(r ) —no(r) (18)

and preserves the property that n,"(r)~0 as r~RO. A
partial-wave decomposition of n,"(r ) is then carried out in
each sphere and the corresponding electrostatic potential
evaluated on a radial mesh of, typically, 10—40 points.

nk(r) =gfn+C;"Cj"[X;(r)Xj(r)—6;(r)GJ(r)] (16)
n i,j

is the correction density in sphere k. Before evaluation of
the potential due to this charge, the sharp structure in the
core region is first diminished by subtracting from Eq.
(16) (and adding back in separately) the density

no(r) = ga„f (0&'„6„')dQk, —

That part of the spherical density subtracted out, no(r),
is treated separately with evalulation of the corresponding
potential on a logarithmic radial mesh. The potential due
to the density n,"(r ) can be expressed as a point multipole
expansion for r )Ro,

uk(r)=ggr, I'I.(r")lr'+', (19)

where Ql" is the L-multipole moment (I. = l, m) of the re-
duced correction density given in Eq. (18).

V. ELECTRON-ELECTRON
AND EXCHANGE-CORRELATION

INTEGRAND SMOOTHING

A. Electron-electron matrix elements

With V„(r ) determined, the procedure for partitioning
gives the matrix elements

v,', =&6,
I v„IG, &„

+X(&X I V- IXj&n, &6
I v-—

I Gj&n„)

The magnitude of V„ in the core region results in large
contributions to the sphere matrix elements of Eq. (20).
These are efficiently handled by evaluation of l =0 terms
over a logarithmic radial mesh. While V«( r ) is smooth
over Ql, the presence of large structure inside the spheres
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l

also poses a problem with evaluation of the global matrix
elements, Eq. (20). Integrand smoothi. ng techniques are
usefully applied here by noting that the potential function
V„ in the global integrand of Eq. (20) can be modified at
points inside the spheres as long as the modifications also
enter the corrective second terms of the parentheses,
which remove the overcounted interaction in the spheres.
In particular, a fictitious slowly varying potential V„can
be introduced, i.e.,

v,",'= (G, I v„, I G, ) „
+g((x, I

V..Ix, )n„—(G;
I
v,. IG, ),„) . (24)

Since in this case we are dealing with a local function of
the density, it is most convenient to simply continue the
Gaussian tails into their defining spheres (replacing the 4
representation) and use the resulting smooth density in
Eq. (23) to define a fictitious potential, V„„

Vq ——(G;
I V„ IGJ)

+g(&x, I V„Ix, )n„—&G,
I v„IG, &n, )

where

V„,(r) = V„,[nG(r)],
(2l) where

nG(r)=gf gC; Cz G;(r)GJ(r) .
m i,j

(25)

(26)

V„(r), r en,
V„(r)= (22)

( rk) vo(rk )+ VG(rk) r ++k

Here Vo(rk) denotes the l =0 component of V„(rk) in
sphere k. It is convenient to choose VG(rk) as a combina-
tion of two Gaussians with coefficients chosen to match
Vo(rk) smoothly at Ro. Then V„(r) is smooth over all
space, and the global integral is efficiently and accurate-
ly evaluated using Gaussian quadrature over a suitably de-
fined coordinate system; in the two-center case, prolate
spheriodal coordinates are well suited.

Of course the real density n (r) =nG(r) for r in Ql, and
nG(r) differs from n (r) inside a given sphere in that the
radial functions N; for that site are replaced by the con-
tinuation of the Gaussian tails 6; into the sphere. Then
the exchange-correlation matrix element with smoothing
of the global integrand is

v„"'=&G,
I v„, IG, &„

+g((x,
I
V„, Ix, &„„—(G,

I v„, IG, &„,). (27)

VI. TOTAL ENERGY CALCULATION

V„,(r)= tn(r)e„, [n(r)]J .
Bn(r)

(23)

The form of V„,(r) is too complex for direct use of the
Gaussian integral algorithms, and since V„,( r ) varies
roughly as n '

( r ), rather large structure occurs in the
core region. Again, the matrix element is partitioned:

B. Exchange-correlation matrix elements

The exchange-correlation potential in the I.SDA is
given by

n+(r ) =gf„—
I
4„—(r)

I
(28)

where the f„+are occupation nu—mbers describing the state
of interest. The total energy in the I.SDA is given (in
rydbergs) by

The solutions 4„—(r) of the density functional single-
particle equations are obtained by diagonalization of the
secular matrix, and the majority (+ ) and minority ( —)

spin densities corresponding to the ground state are given
by

ZkE[n]=To[n]+ fn(r) ~ V„(r)+e„,[n+(r), n (r)]—2+
k Ir —RI, I

dr++
i+j ij

(29)

(3l)

where the kinetic energy term is defined

To[n]=——gf'&K I
~'I P: &- (30)

S, Pf

and e„,( nn +) is the exchange-correlation energy density for a homogeneous spin-polarized electron gas of majority
(minority) spin density n+ (n ).

The evaluation of the matrix elements of the Hamiltonian forms the essential part of the energy integral evaluation in
the linear variational approach, and this has been described for all components of Eq. (29), except the term involving e„,.
The latter is treated by extending the Cxaussian tails into their defining sites and using the Cxaussian density, Eq. (26), as
the argument of e„, in the global and correction integrals.

E„,=— n re„n+ rn r r

=fnG(r)e„, [nG (r), nG (r)]dr

+p f In (r)c„[n+(r),n (r)]—nG(r)E„, [nG (r), nG (r)]Jdrk .
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The kinetic energy, electron-nuclear energy, and electro-
static electron-electron energy components of E[n], Eq.
(29), are given in Appendix C.

VII. RESULTS
Cu 'Z'

2 g

The class of systems for which this technique was de-
vised involve transition-metal atoms. The copper dimer is
a member of this class which is both well characterized
experimentally and widely studied theoretically. The Cuq
system has emerged as a benchmark for various theoreti-
cal techniques due to the relative simplicity of its bonding
and the availability of a good experimental data base. Im-
portant for the present work is the existence of recent
studies carried out within the LSDA.

As a test of procedures in this approach, components of
the total energy were calculated with the segmented form
of the AGB (see Appendix A) and compared with the
same quantities in a separate LCGTO calculation using
the same primitives (but without the augmentation step).
This benchmark verified the procedures and established
the level of accuracy of this approach to one part in 10 in
energy. So the comparison with other works in the fol-
lowing serves as a more broad assessment of the general
LCCxTO method as applied to Cuz.

Focus is placed on the ground state, but results are also
given for some ionized and excited states of Cuz. The
question of the sensitivity of results in the LSDA to the
specific form of exchange-correlation functional is also
addressed. Calculations have been carried out using the
Slater Xa model and the more recent functional of
Vosko, Wilk, and Nusair (VWN); some results using the
earlier LSDA functional of Gunnarsson and Lundqvist
(GL) are also included.

The primitive Cxaussian basis set used was derived from
the 14s9p5d atomic basis set of Wachters ' with limited
extension and optimization of the most diffuse pair of s
and p exponents and extension in the d channel by addi-
tion of the diffuse primitive suggested by Hay. Solution
of the LSDA equations for the copper atom 2S(3d' 4s')
state with all primitives free gave a total energy 0.0760
a.u. above the exact numerical Xa result ( —1638.3304
a.u.), and the resulting eigenvector provided the linear
coefficients for the minimal basis components in the con-
traction to [14s 1 lp 6d /6s 5p 3d] form. Test calculations
for the dimer including further freeing of primitive func-
tions, modification of the most diffuse exponents, and ad-
dition of an f-polarization function established the con-
vergence level of the [14s 1 ip6d/6s 5p3d] basis at a few
hundredths of an eV in binding energy. No frozen-core
approximation was used; the AGB procedures for sub-
tracting the atom density permit explicit core treatment
with numerical convergence and stability to one part in
10.

A. Ground state of Cu2

Self-consistent calculations for the 'Xg+ ground state of
Cu2 were carried out for various internuclear separations.
The curve of binding energies in the Xa model is plotted
as a function of bond length in Fig. 3. The associated
spectroscopic constants are summarized along with results

3.0 4.0 5.0 6,0

FIG. 3. Ground-state binding-energy curve for Cu2 within
the Xa model. Arrow on abscissa denotes experimental bond
length (4.20 a.u.).

TABLE I. Comparison of various LSDA calculated spectro-
scopic constants for Cu2. D„binding energy; R„equilibrium
separation; and co, vibrational frequency.

Calculation

Experiment'
LMTO-GL
AGB-VWN
AGB-Xa
LCAO-Xa-numerical'
LCAO-Xa-STO'

'Reference 34.
"Reference 46.
'Reference 47.

D, (eV)

2.03
2.30
2.65
2.16
2.10
2.22

R, (a.u.)

4.20
4.31
4.10
4.12
4.20
4.27

cc) (cm )

265
280
330
290
286
268

from other LSDA works and compared with experiment
in Table I. The results for the Xa model are in better
overall agreement with experiment than are those for the
more refined functionals. This signifies various types of
errors in the atom and dimer are canceling. The GL and
VWN functionals (only the AGB-VWN results appear in
Table I; AGB-GL results are almost identical) overbind
more as a result of less complete error cancellation be-
tween atom and dimer. This characteristic, which is also
reported for first-row molecules, ' ' is discussed in
some detail in Ref. 36. It is noted here that the total ener-

gy for the copper atom in the VWN model is approxi-
mately 0.57 a.u. further from experiment than that ob-
tained in the GL model, consistent with the trend in the
calculations of Wilk and Vosko. The characteristic for
LSDA vibrational frequencies to lie above experimentally
observed values is also evident in Table I. Connected with
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TABLE II. Convergence of binding energy at 8=4.2 a.u.
with extension of augmented Gaussian basis set. Successive
most diffuse primitive functions are denoted s,s', s" in the I=0
channel; similarly for p, d, and f.

Basis E (eV)
B' —1.50
B+s —1.57
B+s+s' —1.61
B +s +s'+p —1.72
B +s +s'+p +p' —1.82
B +s +s'+p +p +d —2.12
B+s+s +p+p +d —2.11
B+s+s'+p+p +d+d —2.15
+ +s +s'+p +p'+d +d'+ f

'B stands for the minimal basis set of occupied atomic orbitals
for each site.

the tendency to overbind in the LSDA is the prediction in
the AGB results of a bond length which is about 2%
smaller than experiment. This reduced bond length ' is
consistent with the reduced values for Wigner-Seitz radii
found in LSDA calculations for crystals of the first-
transition-metal series. The large bond-length contrac-
tion which is observed at the CI level when 3d electrons
are correlated suggests that the characteristic energetic
favoring of d electrons in the LSDA (Ref. 44) is the cause
of the shortened bond length observed in the AGB re-
sults. Relativistic effects have been estimated" to fur-
ther contract the bond by approximately 0.13 a.u.

The AGB results with the GL functional are essentially
the same as those with the VWN model. Differences with
the spectroscopic constants in Harris and Jones's LCMTG
results are probably connected with limitations in the
original LCMTO basis. For the Xa model, the AGB- and
LCAO-numerical orbital results (Table I) agree in all
quantities to better than 3%%uo. Possible origins for the
small differences are the smaller basis set and frozen-core
approximation used in the LCAO work. The influence of
basis incompleteness is well known, and the shifts associ-
ated with the frozen-core approximation produce larger
equilibrium separations than all-electron LSDA calcula-
tions. On the other hand, the special segmented form of
the AGB used in this work can only be as complete as the
full-Gaussian set of primitives from which it is construct-
ed. To assess completeness with this form of the AGB,
convergence studies were carried out by systematically
freeing the most diffuse set of primitive Gaussians in s, p,
and d channels, adding f orbitals, and varying exponents
of the most diffuse tail orbitals. Results given in Table II
establish the level of basis convergence in binding energy
at a few hundredths of an electron volt. It is frequently
the case in linear variational total-energy calculations for
atomic clusters and solids" that the structural parameters
are rather accurately predicted with a limited basis. In the
AGB approach, minimal basis set calculations give an
equilibrium separation R, of approximately 4.16 a.u. (0.04
a.u. greater than the converged value), although the
binding energy is approximately 0.6 eV above the con-
verged result.
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FIG. 4. Correlation diagram of one-electron energies for
spin-polarized copper atom and Cu2 with atoms at equilibrium
separation.

B. Description of bonding in Cu2 within LSDA

Bonding in Cu2 is traditionally pictured as involving a
4s-4s bond with the d orbitals filled and relatively inert.
Bauschlicher et al. have also emphasized the importance
of 4s to 4p excitations in the CI framework. In the
LSDA, moderate s-do. hybridization occurs. The AGB
one-electron energy-correlation diagram for the dimer at
equilibrium separation is given in Fig. 4. The spin-
polarized atomic 3d and 4s states are observed to give rise
to a singlet molecular state characterized by a low-lying
6og level, primarily of 4s parentage, with a higher mani-
fold of levels of mainly d origin (the lowest unoccupied
level, 7o.„,lies above the scale of Fig. 4).

In Figs. 5 —8, contour plots of the orbital density,

~

P;(r)
~

(in the x-z plane with atoms on the z axis), are
given for each valence molecular 1evel in the Cu2 spectrum
of Fig. 4. The bond densities correlate well with a simple
description given by the one-electron-level structure. The
orbital density of the 6o'g level (Fig. 5) shows the max-
imum bond density between the sites (contour 9). This
state is characterized by a strong bonding combination of
s-s and do-do molecular orbitals (eigenvector coefficients
of symmetry orbitals of the 4s, most diffuse free s, and 3d
origin are -0.5, 0.3, and 0.6, respectively). In the
higher-energy manifold of levels of d-orbital parentage,
the 3m„ is most stable. Although the 3m.„bond density in
the plot plane is larger [contour 7 in Fig. 6(a)] than that of
any other states in the d-bonding group, the magnitude is
about five times smaller than the density at the bond
center for the 6og state. The 5-bonding state (Fig. 7)
shows still less overlap density. Figures 6(b) and 7(b)
show the antibonding states corresponding to the bonding
orbitals in Figs. 6(a) and 7(a). The LSDA picture shows
that both dm-drr and d5-d5 bond densities are relatively
weak in Cuz compared with that of s-s and der-der bonds.
But as is evident in Fig. 8, the bond density of the 7rrs
state [Fig. 8(a)] is quite weak. Orthogonality of this state
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FICx. 5. Contour plot of orbital density,
~

twr) ~, for 6crs
state of Cu2 at equilibrium separation. The plane intersects
atoms, and adjacent contours differ by a factor of 2, with initial
value =0.0001 (contour 1).

to the 6ag results in a destructive superposition between
the s-s and the do.-do. bonding molecular orbital com-
ponents reducing the bond density along the internuclear
axis. The resulting orbital density of the 7o.

g state is
much like a hollow toroid with reduced d3, 2 lobes at
the atom sites aligned along its axis [Fig. 8(a)j. The
highest occupied state, 6o.„, is characterized as a simple
antibonding combination of d 2 2 orbitals on each site

[Fig. 8(b)]. To summarize, the picture of bonding in Cu2
within the LSDA is one of s-s and der-do. hybridized
bonds providing the major stability in Cu2 with weaker
contributions from dm-dm and d5-d5 bonds. Intercom-
parison of the orbital-force components of the Hellmann-
Feynman force also indicates the 60.

g density is the major
contributor, however, all valence-orbital forces are attrac-
tive at equilibrium separation and fall in the range of ap-
proxirnately 1.5—2.7 hartree/bohr.

C. Ionized and excited states of Cu~

Calculations within the LSDA for states above the
ground state of a given symmetry are formally beyond the
regime of applicability of density-functional theory, how-
ever, experience shows the errors are often reasonably
small. Relaxation within the LSDA can also be influ-
enced by the removal of symmetry restrictions, ' but for
this study, symmetry equivalence of the copper sites is as-
sumed (D I, symmetry). First it should be noted that the
Xo. model with a=0.7 already provides accurate first and
second ionization potentials (IP) for the copper atom. To-
tal energy separations between states of Cu" and Cu" +'
(n=0, 1), as calculated with several LSDA models, are
compared with expeirment in Table III. At least for this
typical value of cx, the simpler scaled exchange-correlation

(b)

FIG. 6. Orbital density contours of (a) 3m.„and (b) 3~g mole-
cular orbitals of Cu2. Degenerate components normal to the
plane also exist. Contour values are as given for Fig. 5.

approximation of the Xcx model gives more accurate
atomic-ionization energies than the more detailed LSDA
functionals of GL and VWN.

Within the LSDA, the highest occupied state according
to orbital energy is the 6o.„which is predominantly d-like
(Fig. 8). The energy of Cu2+ ( X~+) produced by removing
one electron from this state is not the lowest ionized state
however; the latter is obtained by ionizing a 7a.

g electron
to give a Xg Cuq+ state. Energy differences calculated
for these states are compared with experiment in Table
IV. The VWN and GL models overestimate the first IP
by 1.1—1.3 eV while the Xa results is within approximate-
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FIG. 7. Orbital density contours of the (a) 16g and (b) 16„
states of Cu~. Each has a degenerate component for which the
plot plane is a nodal surface. Contour values are same as for
Fig. 5.

FIG. 8. Orbital density contours of the (a) 7og and (b) 6o„
states of Cu2. Contour values are same as noted in Fig. 5.

ly 0.15 eV of experiment. From the study of Post and
Baerends, ' ionization from the 70g level to produce the

Xg+ state is not affected by symmetry breaking so the cor-
responding results in Table IV should be reliable. Howev-
er, the 6o.„ ionization energy is reported ' to increase by
approximately 1.8 eV. This shift would place the X+„

state of Table IV well in excess of the first ionization po-
tential.

In Table V excitation energies for symmetry-allowed
transitions 7cr+~7o.„' and 3m.

g
—+7o„' are summarized for

ACERB calculations using the Xcx and VWN functionals.

Experiment'
Xa
V%'N
GL

'Reference 52.

First IP
(eV)

7.72
7.73
8.35
8.58

Second IP
(eV)

20.21
20.70
21.64
21.99

TABLE III. First and second ionization potentials (IP) of
copper atom calculated within Xu, GL, and VWN models using
the AGB approach. Experimental data from Moore. '
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TABLE IV. Ionized state energies (in eV) of Cuq relative to
'X~ ground state calculated within the Xa, GL, and VWN
models. Experimental' first IP equals 7.37 eV.

Cu2+ state

Xa
VWN
GL

'Reference 34.

2@+
8'

7.52
8.45
8.67

2y+
Ct

8.34
9.24
9.55

Experimentally, two close-lying excited states are observed
at approximately 2.54 and 2.60 eV above the ground
state. The VWN results are in better agreement with ex-
periment than the Xa model in this case; however, the
separation of the two states is too large (-0.2 eV) for
both functionals. The lower-energy transition, which in
this work is associated with states that are predominantly
s-like, is not expected to be influenced much by symmetry
breaking, however, the 3mg~7o. „' transition, involving an
initial state with large atomic d character, is reported to
be significantly affected in Hartree-Fock calculations.

VIII. SUMMARY

TABLE V. Excitation energies of Cuq calculated within the
Xa and VWN models. Assignment of excitations taken from
calculation.

Excitation

Experiment'
Xa
VWN

'Reference 54.

(7o.g 7o.„' )

2.54
2.12
2.31

(3m' 7o'„)

2.60
2.30
2.50

The calculations carried out for Cu2 confirm the expect-
ed advantages of the AGB approach, viz. , (a) high accura-
cy and efficiency in the calculation of the electron-
electron electrostatic matrix elements, and (b) reduced
storage requirements and computation times stemming
from the reduction in the number of Gaussian functions
to a few diffuse orbital tails. These advantages are
achieved while maintaining the principal desirable charac-
teristic of the Gaussian-type basis, i.e., the use of integral
formulas for valence-orbital tail interactions. The replace-
ment of core Gaussians by numerical radial functions al-
lows further improvement in the description of the inner-
sphere part of the wave function. In the alternate mode of
using a full-Gaussian basis in a segmented manner, by
partitioning into compact and diffuse (tail) segments, basis
convergence typical of all-Gaussian (LCGTO) schemes is
obtained. However, as only the orbital tail functions enter
the calculation as Gaussians (the remainder being treated
as numerical functions), the full calculational advantages
of the augmentation procedure apply.

The results obtained for Cu2 using different model
exchange-correlation functionals show that the Slater
scaled-exchange Xa model gives a more accurate descrip-
tion of ground-state spectroscopic constants than recent
functionals with more accurate descriptions of the correla-

tion energy in the LSDA. The Xa model even gives a
better first ionization potential for the dimer (as it does
for the copper atom); for excitation energies of Cuz, it is
somewhat less accurate than the V%'N model. Binding
energies for first-row dimers to the right of Be2 similarly
show closer agreement with experiment in the Xa
model, "but it is observed that the predictions within this
functional are less systematic from member to member in
the series.

The results of the AGB calculation suggest that the
LSDA predicted bond length of Cu2 is 2%%uo shorter than
experiment. This finding differs from the results of other
calculations, but it is consistent with the reduced lattice
constant found in bulk LSDA calculations.

A number of extensions of the AGB approach can be
carried out to achieve even further efficiencies. Among
them, the incorporation of developments to eliminate ex-
plicit treatment of the core appears most promising.
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APPENDIX A: SEGMENTED GAUSSIAN BASIS SET

P(r) =r' g c;exp( a;r )—
i=1

Ng

+ gdexp( pr )—(A 1)

where there are N, "compact" Gaussians, characterized
by a; )a, =——ln(~/R o )/R o and Xd "diffuse" Gaussians
with p; ~a, . The critical exponent value a, depends
upon the parameter r defining the tolerance for vanishing
of the Gaussians at the sphere radius Ro. If the full ex-
pansion Eq. (Al) is identified with P(r) of Eq. (2), and the
diffuse set in Eq. (Al) with the tail function in Eq. (1), it
is clear that the AGB form is attained. The compact set
of Gaussians is treated just as the numerical form of P, so
that the large number of primitives is effectively reduced
to the much smaller set of diffuse Gaussians, thus remov-
ing a major limitation in the LCGTO method.

The basis composed of functions of this form can be
described as a "segmented" Gaussian basis, but it should
not be confused with the segmentation introduced in some
ab initio work. ' The segmented form of the AGB is obvi-
ously not as accurate for the core region, or for the isolat-
ed atom case where the numerical solutions are exact

It is possible to cast full-Gaussian expansions of atomic
orbitals into the AGB form if members of the basis are
separated into compact and diffuse sets. The AGB pro-
cedures then can be directly used. This not only permits a
useful contact with existing calculations employing full-
Gaussian basis sets, but also provides valuable internal
consistency checks between quantities calculated numeri-
cally and by formula. In a full-Gaussian basis, an atomic
radial function can be written

' N
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within the LSDA framework. In the context of the
present study, however, the cross checks afforded by this
form were deemed so i1nportant to establishing the accu-
racy of the method that the segmented form of the AGB
was used. The present approach was verified by compar-

ison of results from minimal basis set calculations for Cu2
using the segmented AGB with results from calculations
using the same set of primitive Gaussians without the
augmentation procedure. The agreement in total energies
was to millirydberg accuracy.

APPENDIX B: MATRIX ELEMENTS

Some matrix elements for which Gaussian global integral algorithms" are used include overlap

&& I&j&.=&G IGj&.+r(&& I&j&Q, —&G IGJ&Q» (Bl)

electron-nuclear

X; g gz ——gZ &G
f fr —R

f
'fG&& —g(&X f fr —R

f
'fgj&n

m I —Rm ~ m k

(B2)

and kinetic energy

+ g (&&
I

~'
I &j &n„—& G

I

~'
I Gj &n, )

k
(83)

APPENDIX C: ENERGY EXPRESSIONS

We have

s, n

s, n

1. Kinetic energy

(Cl)

(C2)

= —yf„'yC, Cj &G; fr'
f G, &„+g(&&;f'|)'f&, &n„—&G; I~'I Gj&n, )

s, n l,j k
(C3)

The global integral in Eq. (C3) is evaluated using the algorithms of McMurchie and Davidson, " and the «m»»ng
terms are calculated by standard procedures for the sphere.

2. Electron-nuclear energy

We have

Zm
Ez, =——2 f n(r) g dr

m fr —R
(C4)

= —2+f„'gC, C, QZ I ' ' dr
sn ij m fl —R

(C5)

= —2g f„'gC;"'C,"' gZ j ' dr+ g J (X;Xj G;Gj)g — dr
6;GJ m

i,j
(C6)

The global integration over the extended tails is carried out using Gaussian integral algorithms" and the sphere integra-
tions involving the correction density interacting with the nuclear electrostatic potential are carried out numerically.
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We have

3. Electron-electron electrostatic energy

F.„=—, I n(r)V„(r)dr
= —, g f„'gC; C J X;V„(r)X dr

s, n i j
=-'Xf:X«CJ ~~

sn ij
where VJ, the electron-electron matrix element, is given in Eq. (21).

(C8)
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