PHYSICAL REVIEW B

VOLUME 28, NUMBER 10

15 NOVEMBER 1983

Order, frustration, and defects in liquids and glasses

David R. Nelson
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 19 May 1983)

A defect description of liquids and metallic glasses is developed. In two dimensions, surfaces of
constant negative curvature contain an irreducible density of point disclinations in a hexatic order
parameter. Analogous defect lines in an icosahedral order parameter appear in three-dimensional
flat space. Frustration in tetrahedral particle packings forces disclination lines into the medium in a
way reminiscent of Abrikosov flux lines in a type-II superconductor and of uniformly frustrated
spin-glasses. The defect density is determined by an isotropic curvature mismatch, and the resulting
singular lines run in all directions. The Frank-Kasper phases of transition-metal alloys are ordered
networks of these lines, which, when disordered, provide an appealing model for structure in metal-

lic glasses.

I. INTRODUCTION

Structure in dense liquids and metallic glasses is inti-
mately connected with the difficulty in close-packing
space with tetrahedra.! In simple materials, without
directional bonding, one minimizes the local-energy densi-
ty by forming tetrahedral clusters of four identical parti-
cles. The frustration associated with tetrahedral packings
becomes apparent, however, when twenty tetrahedra com-
bine to form a 13-atom icosahedron. As shown in Fig.
1(a) the twelve particles symmetrically arranged about a
central one are not packed perfectly, because the distance
between these surface atoms is about 5% larger than the
distance to the center. If one tries to move the surface
atoms closer together, still keeping them a constant dis-
tance from the central sphere, the cracks between surface
particles in the symmetrical arrangement coalesce into a
larger open space somewhere on the surface. This excess
“free volume” (which is not large enough to accommodate
a thirteenth surface atom) is an important source of de-
generacy and frustration in dense-random-packing models
of the glassy state. The surface atoms are “frustrated,”
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ICOSAHERON IN FLAT HEXAGON IN CURVED
SPACE SPACE
(a) (b)

FIG. 1. Comparison of the icosahedron in flat space and a
hexagon projected out of a space of constant negative curvature.
Apparent size difference in the disks comprising the hexagon is
an artifact of the projection. In both cases, the distance / be-
tween the centers of the particles on the surface is larger than
the distance d to the center.

because atoms near the gap cannot simultaneously sit at
the minima of pairwise interactions with all their near
neighbors.

Icosahedra should also be prevalent in liquids near the
melting temperature. As pointed out by Frank,?
icosahedral clusters of 13 particles have a significantly
lower energy than more obvious “crystallographic” ar-
rangements, corresponding to nuclei of fcc and hcp crys-
tals.®> Frank appealed to an abundance of icosahedral
clusters to explain the remarkable degree of supercooling
possible in simple liquid metals.* Recently, Steinhardt
et al. have studied bond orientational order in a computer
simulation of supercooled Lennard-Jones liquids.’
Icosahedra dominate at sufficiently low temperatures with
correlations that become comparable to the 864-atom sys-
tem size upon supercooling about 10% below the equili-
brium melting temperature. Extended icosahedral correla-
tions were also found in small “amorphon” cluster models
of structure in metallic glasses.®

To make theoretical progress it is clearly desirable to
parametrize frustration in icosahedra in such a way that it
can be tuned to zero. An important observation was made
by Coxeter,’~° who showed how tetrahedra could be
packed without frustration on the surface S3 of a four-
dimensional (4D) sphere. All 120 particles in this finite
tesselation have icosahedral coordination shells, with no
gaps between the surface atoms. Clearly, curvature can be
used to vary the frustration. This idea has been developed
recently by Kléman and Sadoc, who view dense random
packing as a mapping into flat space of tetrahedra which
tile a space with an appropriately chosen curvature.!”
Mappings from spaces of negative!! and positive'? curva-
tures have been proposed, leading to various kinds of de-
fects, including disclinations. Unfortunately, the ideal
tesselation in hyperbolic space is pathological because
every particle has an infinite number of nearest neighbors
(see below). When the physically more sensible embedding
of the finite space S3 is used, the mapping introduces not
only disclinations, but also ambiguous regions of overlap
between squashed 4D spheres.!3

In this paper, we use the idea of an ideal S3 tessellation
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in a slightly different way: Supercooled liquids and me-
tallic glasses are viewed as defected states of icosahedral
bond orientational order. At higher temperatures a
variety of disclination lines [each characterized by an
SU(2) matrix charge] are present, and the incompatibility
of flat space with tiling tetrahedra is hardly noticeable.
As one cools the melt, defect lines with opposite charges
pair gradually until an excess of one particular species be-
comes evident. This excess is associated with the curva-
ture difference between the “ideal” space S3 and ordinary
three-dimensional (3D) flat space. At low temperatures
the defects form networks much like the Abrikosov flux
lines in type-II superconductors. Because an isotropic cur-
vature mismatch plays the role of an applied magnetic
field, the lines run in all directions. The “Frank-Kasper”
phases of complex alloy systems'* are in fact ordered ar-
rays of these lines with a spacing determined by the curva-
ture ‘“incommensurability.” Upon disordering a Frank-
Kasper disclination network, one obtains an attractive
model for a metallic glass. Although we refer to the ideal
curved-space tessellation of S3 to determine an excess de-
fect density, the cooling process is to be carried out in flat
space. Mappings of squashed 4D spheres into flat space
are avoided. This point of view, which was summarized
in a previous publication,!> will be developed here in de-
tail.

To clarify the statistical mechanics of disclination lines
in 3D flat space, we have found it helpful to consider
analogous defect descriptions of liquids in two dimen-
sions. Here, analytical theories of freezing are possi-
ble,'%!7 based on defect-pairing ideas suggested by Koster-
litz and Thouless.!® The obvious analog of the icosahed-
ron in two dimensions is a hexagon composed of six iden-
tical triangular packing units. Unlike the icosahedron,
however, the hexagon can be periodically extended to tile
the plane. To introduce frustration, one imagines that
particles are packed in a space of constant negative curva-
ture.”” As shown in Fig. 1(b), cracks then open up be-
tween six particles symmetrically arranged around a cen-
tral atom to form a hexagon. The free volume associated
with these cracks tends to zero as space becomes flat.

The relationship between frustration and curvature in
two and three dimensions is summarized in Fig. 2. When
embedded in S3 the distance / between surface atoms in an
icosahedron is related to the distance d to the center by
(see Sec. III)

cos(kl)=1—(1—V'5/5)sin*(«kd) , (1.1
where k! is the radius of the sphere. The parameter d is
the particle diameter for hard spheres, a typical interparti-
cle spacing for softer potentials. When k tends to zero, we
recover the flat-space ratio

1/d =4/(10+2V'5)"2~1.051462 . (1.2)

As illustrated in Fig. 2(a), one can adjust //d to unity by
taking

kd =k,d =cos [ +(1+1/5)]=0.628319 . (1.3)

The quantity k5 ! is the radius of the ideal tesselation of

S3 and defines an intrinsic frustration length scale in 3D
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FIG. 2. Ratio I/d plotted as a function of the curvature pa-
rameter kd for (a) an icosahedron in S3 and (b) a hexagon in a
space of constant negative curvature.

flat space. Distances in a two-dimensional (2D) space of
constant negative curvature are determined by the metric
in polar coordinates’

d?s =d?r +[sinh(kr)/k]*d?¢ , (1.4)

where the parameter k measures the deviation from flat
space. Upon defining / and d as in Fig. 1(b), one finds a
formula analogous to Eq. (1.1), namely'®

cosh(kl) =1+ 3sinh*(kd ) . (1.5)

As shown in Fig. 2(b), I exceeds d for k>0, and one can
mimic frustration in 3D flat space by choosing kd to be
comparable to, say, the value in Eq. (1.3). Alternatively,
one can take kd << 1, and expand about the analytical
theories of freezing!®!” in flat space.

Figure 3 shows schematically a tangled mass of +72°
disclination lines in a dense liquid in 3D flat space, re-
garded as a medium with a high degree of local
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FIG. 3. Low-energy defect lines (+72° disclinations) in an
icosahedral medium. Solid and dashed defect lines pass through
particles with anomalous coordination numbers Z=£12. Parti-
cles not sitting directly on one of the lines have Z=12
icosahedral coordination shells.
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icosahedral orientational order. As discussed in Sec. III,
these lines carry SU(2) matrix ‘“charges,” which play a
role analogous to the Burgers vectors carried by disloca-
tions in a crystalline solid. The laws of combination for
the lines are determined by SU(2) matrix multiplication:
If two lines characterized by charges a and 8 come to-
gether at a node, the line which results is characterized by
a charge®®

rvy=aB.

The analogous rule for dislocations involves ordinary vec-
tor addition of the Burgers vectors.?! Unlike the situation
for dislocations, the matrix laws of combination for dis-
clinations in an icosahedral medium are non-Abelian and
depend on details of the way in which the defects are
brought together.”® One can, however, derive meaningful
rules of combination for eight separate classes of defects.
Equation (1.6) should be interpreted and saying that a and
3 combine to give a defect in the same class as y. This in-
terpretation removes the ambiguity associated with the or-
der of matrix multiplication. At low temperatures, we ex-
pect the physics to be dominated by the class with the
lowest energy, corresponding to rotations of +72° about
one of the symmetry axes of the icosahedron. Figure 3
shows a representative sampling of the way in which these
defect lines can be combined together. Isolated +72° dis-
clination lines, which stop or start inside the medium, are
impossible.

In two dimensions, liquids can be regarded as “hexatic”
fluids interrupted by point disclinations, which are local
points of five- and sevenfold symmetry in an otherwise
sixfold medium.'® The law of combination is given by ad-
dition of charges of, say, —1 and +1 associated with
seven- and fivefold disclinations, respectively. A micro-
scopic definition of point disclinations results from apply-
ing the Dirichlet construction to a 2D particle configura-
tion?? and looking for coordination numbers which devi-
ate from six. This “S-7 construction” (which “triangu-
lates” the medium by assigning a set of nonoverlapping
bonds connecting neighboring particles) is a seductive way
of thinking about the statistical mechanics of 2D materi-
als.”> The dislocation-disclination theory of 2D freezing
can be formulated entirely in this purely topological
way.* In a high-temperature liquid, one has a dense
“plasma” of 5’s and 7’s, which must somehow pair to
form a solid at temperatures. Dislocations in the solid are
5-7 disclination dipoles.

In Sec. III we describe an analogous microscopic con-
struction for disclination lines in three dimensions, which
generalizes early work by Frank and Kasper.!* One first
divides a particle configuration into tetrahedra via the
Voronoi construction?? and then considers the environ-
ment of each near-neighbor bond. Most bonds in a dense
liquid will be surrounded by five tetrahedra. Links of plus
and minus disclination lines are associated with four- and
sixfold tetrahedral bipyramids, respectively. The way in
which anomalous links combine to form various coordina-
tion shells corresponds to the “nodes” possible for dis-
clinations in an icosahedral medium. One is led to a
natural association between defect lines and lines of
anomalous coordination number in a nominally 12-

(1.6)
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coordinated medium. This association is illustrated in
Fig. 3, where, in particular, +72° disclination lines are as-
sociated with lines of coordination number Z =10 and 14
respectively. The “canonical Kasper polyhedra” (exclud-
ing the icosahedron), which are the building blocks of the
Frank-Kasper phases, are nodes for —72° lines, and are
associated with coordination numbers 14—16."* The cor-
responding “antidefects,” formed from links of +72° dis-
clination line, have coordination numbers 10, 9, and 8, and
display coordination shells which are canonical “hole” po-
lyhedra discussed by Bernal.?>?> When these holes are
filled with metalloid atoms, one arrives at structures
which are believed to be quite common in metallic
glasses.?

As discussed above, we would like to regard super-
cooled liquids and metallic glasses as defected icosahedral
liquid crystals with, however, a global excess of defects
with a particular sign due to the curvature incommensura-
bility. In a 2D space of constant negative curvature, the
excess is fixed by the curvature and surface area per parti-
cle. Indeed, a straightforward consequence of the Gauss-
Bonnet theorem is that the average coordination number
Z exceeds six,!>?’

Z=6+3s*/m, (1.7

where s is the surface area per particle. Evidently, there is
a curvature-induced excess of sevenfold disclinations, in
contrast to 2D flat space, where there are equal numbers
of 5’s and 7’s. The corresponding quantity in three di-
mensions is the average number of tetrahedra § packed
around each bond. Although the curvature incommen-
surability of flat space forces this quantity to exceed 5, the
value for an icosahedron, the deviation from 5 is, in gen-
eral, sensitive to the details of the particle packing. It is
possible, however, to define an ideal tetrahedral flat-space
packing via a relaxation process into the fourth dimen-
sion. Subject to some plausible assumptions, we find that
on the surface of a sphere S3 with radius xk~! the ideal
value of 7 is (see Sec. III)

27 —3kv /d
cos™N3)—Fk/d

Fideal (K) = (1.8a)

where v is the volume per particle and d is the particle
separation determined by the pair potential. Although
there are small corrections to this formula for finite k due
to the finiteness of the space (of order 0.05% when k =«,),
we expect that it becomes exact in the flat-space limit
k—0, where

Fidgeal =27 /cos ™ (§)~5.104299 (flat space) . (1.8b)

This result is identical to one obtained for a “statistical
honeycomb” model by Coxeter in 1958.” The value of 7 in
the Frank-Kasper phases with large unit cells agrees with
Eq. (1.8b) to within a few parts in 10* (see Table IV).
There appears to be a systematic decrease of § towards
Jideat When dense-random-packing models are relaxed in a
soft potential. We expect that a similar decrease occurs in
liquids cooled below the equilibrium melting temperature.
In this sense the Frank-Kasper phases, if one ignores their
crystallinity, approximate an “ideal glass.”?®
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In 3D spaces with arbitrary curvature, the average coor-
dination number Z is related to § by*?

Z=12/(6—7), (1.9)

which gives Z e = 13.397 in flat space. The icosahedral
coordination Z =12 is recovered when §=5. Although it
is possible to force g to be six by working in a hyperbolic
space, note from (1.9) that the corresponding coordination
number must be infinite. Note also that in three dimen-
sions it is g, rather than the coordination number, which
plays a fundamental role.

The disclination lines shown in Fig. 3 should be con-
trasted with the “odd lines” defined by Rivier.? Rivier’s
lines thread odd-membered rings in Voronoi polyhedra.
The only thing conserved along them is their “oddness.”
Although the odd lines may be useful in understanding in
covalently bonded materials, they are in our view an awk-
ward way to describe simple liquids and metallic glasses.
Since 12 odd lines meet at the center of every icosahedron,
such “lines” would have to fill all the empty space in Fig.
3. Icosahedral disclination lines thread rings in Voronoi
polygons whose coordination differs from 5. At low tem-
peratures, the anomalous ring coordinations four and six
dominate, and are conserved along plus and minus dis-
clination lines, respectively. Following speculations by
Anderson,?® Rivier has argued that the singular behavior
of transport coefficients in supercooled liquids is associat-
ed with a Kosterlitz-Thouless disclination pairing transi-
tion.’® A sharp pairing transition seems unlikely, howev-
er, because of the excess —72° disclinations produced by
the curvature incommensurability. Indeed, barring
cooperative phenomena associated with rearrangements of
these lines, one might expect the glass transition to be gra-
dual with simple Arrehenius divergences in transport
coefficients at sufficiently low temperature. Our point of
view also differs from interesting work by Ninomiya, who
regards glasses as a mixture of four-particle tetrahedra
and six-particle octahedra.’! Although the Voronoi con-
struction used here is ambiguous for assigning near-
neighbor bonds within a perfect octahedron, an infini-
tesimal perturbation allows a unique decomposition into
four distorted tetrahedra.

Toulouse has commented on the analogy between frus-
tration in spin-glasses and the effect of parallel transport
on vectors in curved space.>? The picture of frustration in
real glasses developed here is in fact closely related to
“uniformly frustrated” spin-glass models.>»** XY spins
on a square lattice described by the nearest-neighbor Ham-
iltonian

H=—JZ cos(@,-——Hj—f,'j)
i,j)
provide one of the simplest such models. Here, 6; is the
angle each spin makes with some reference axis, and the
frustration is the same for every elementary plaquette P,

fat+fn+fa+fan=r. (1.11)

The frustration ensures an excess of Kosterlitz-Thouless
vortices with a particular sign, and the model provides a
description of superconducting films in a perpendicular
magnetic field.>* Provided the excess vortex density is low

(1.10)
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(fo<<1), so that the discreteness of the lattice can be
neglected, this model is similar locally to liquids on sur-
faces of constant negative curvature, except that disclina-
tions play the role of vortices. A heuristic argument lead-
ing to an analogous model for the frustration associated
with icosahedra in flat space is given in Sec. III. The uni-
formity of the frustration in these models is a consequence
of the unformity of space.

Order and frustration in 2D liquids are discussed in
Sec. II. We urge readers primarily interested in three di-
mensions to at least skim this section since it will be used
to illustrate a number of concepts useful in three dimen-
sions. In addition to liquids in spaces of constant negative
curvature,> we shall discuss the finite icosahedral tiling of
the positively curved surface of a 3D sphere S2 by 12 par-
ticles. The homotopy (rules of combination) for defects in
this space turns out to be identical to the homotopy for
rotational line defects in a 3D icosahedral medium. When
more than 12 particles are packed into S2, the resulting
incommensurability mimics 3D flat-space frustration, ex-
cept that it occurs on a finite manifold.!*> Results for 3D
flat space will be derived in Sec. III. In addition to dis-
cussing how to parametrize order and frustration, we
describe macroscopic and microscopic ways of thinking
about icosahedral disclination lines. We emphasize the
important role played by the Frank-Kasper phases and
speculate on the behavior of disclination lines in melts
near the glass transition. The relevance of Eq. (1.8a) to
computer simulations of particles embedded in S3 is dis-
cussed as well. The homotopy group for disclination lines
in cubic liquid crystals is discussed in Appendix A. These
defects play a role in tilings of S3 which are incommensu-
rate with another, 8-particle, cuboctahedral regular po-
lytope discussed by Coxeter.®® They also occur in materi-
als with cubic bond orientational order*® in 3D flat space.
Finally, in Appendix B we compare the disclination lines
in metallic glasses and the Frank-Kasper phases with pro-
posals for similar structures in the blue phases of
cholesteric liquid crystals.>”38

II. TWO DIMENSIONS

A. Defects in flat space

We are beginning to develop a fairly detailed theoretical
and experimental understanding of liquids cooled on flat,
2D surfaces.’® Although first-order freezing transitions
are certainly possible, liquids can also freeze via a se-
quence of two continuous phase transitions.* To under-
stand this latter possibility, it is necessary to make a dis-
tinction between translational and orientational order. In
contrast to crystalline solids, which display both kinds of
order, phases of matter with no translational order, but
with extended correlations in the orientations of local
crystallographic axes (defined by clusters of near-neighbor
bonds) are possible.

Figure 4 shows the result of carrying out the Dirichlet
construction in a computer simulation of a dense liquid,
and in a solid at a lower temperature.*! The anomalous 5-
and 7-coordinated particles, shown as asterisks and dia-
monds, can be viewed as microscopically defined point



28 ORDER, FRUSTRATION, AND DEFECTS IN LIQUIDS AND GLASSES 5519
L3 = T g v L N T
:’:x ae* 0,("°°)Ko°,( :9 : ooooooooooooo * R oo
° ° ° X * ° o ° ° o 6 00 °° 0 o o o
o ox 2. o x o cee X % e oo oo, 0 13 o o
° ° ° 0o °° o o x * o ° ° s o o *
xoox ot o X X co e Sx e oy o * °°°°°°°°°° IR °o°; u°x°
e © o ° o * o x ° ° ° ° o
X o0 o0 0 4o ° ° @ o 0@ o e 0 %, o o, o0 0 o °
° . X o e o ° ° ° ° * %
* * e x ° o, ° * % s 0 ® x
° ° * 3 o ° ° ° ° ° o ° o
° ° ° o ° * ° ° ° % o ° o * o
* o x * ° o o X¥o x ° x ° * © x ° x N R
o ° * o o ° o o b 1 °° ¥o° % ° 0 0o 0 %o * o
° ° oy o ° *x® o 0 , X o o o o o o & ‘° Ko . . Y o o o ¥
* 9y . © T %6 ¥ o o X e, Xe ° x o © o o o o PRI
° R x°°s(°,( L * o o ° * o o 6 ©°° ° 5 0 0 o0 ° o ©° 0
N cox®°® °, e X * . o o 6 6 600 o 0 0 o0 © o o oo
x o * o o o . .
°o*° ° ° o ° o o °
° . x°0 e ° °
° ¥o0 o x° oo, To e d oo o T T e e 28T 0 % e e e oo e oo 0000,
* x o 0 % 0 0% "o J Boo o0 000 0 00 ® o g0 o oo ;o
AN RO RS : ° )
e X x® e ¥ oo ° 0% ol BT 00606 o o0 o © 65 0 5 2906 ° o o o
ox o e o N 5 o % 5 00 ® 606 o 6o . N
° * ° ° * ° % o .° o P oo ° ° o 4 x
o 0 ° o o o ° X B B *o°°
o X' Lo . ° e *x %, o x ° % 6 .o ¥ o o 5000 ©° oo
* o xo o ° ° R ° © 0790 ° 50 6 oo g0 o
X o o, o ° - ° et e fece e * o e e e e e
o * o
° ° e ° oa": AR o“);o ooooo
oo o ok o0 e e e e e c 0o o, R
x ° Dtho*"*”°° °°°°°°° X o > 0 060 0 6 o © o0 ° o0
° x . ¥ o o © ¥ ° 000 000 0 o
¥ =7 O =5
HOT COLD
(a) (b)

FIG. 4. Computer-simulation “snapshots” of (a) hot and (b) cold arrays of particles. Dirichlet construction has been used to

highlight 7- (*) and 5- (Q) coordinated particles.

disclinations. Clearly, the 5’s and 7’s in the high-
temperature “plasma” phase must somehow annihilate to
form the low-temperature solid. This can happen abrupt-
ly, via a first-order transition, or more gradually, via a
two-stage pairing process.!® In the latter scenario, dis-
clinations first pair to form 5-7 dipoles at a liquid-to-
hexatic transition temperature T;. These dipoles can be
regarded as dislocations with a Burgers vector related to
the dipole moment by a 90° rotation.?* The dislocations
then pair at a lower temperature T, to form a crystalline
solid.

Both of the pairing transitions discussed above can be
continuous, with the latent heat one usually associates
with freezing spread out over an intermediate hexatic
phase. The hexatic phase differs from an ordinary fluid
due to an extra term in its long-wavelength free energy,
namely :

F=3K, [ | Vo) |%d% . 2.1
Here, 6(T) is the angle a near-neighbor bond makes in
respect to some reference axis, modulo 60°. A nonzero
stiffness constant K, in Eq. (2.1) means that hexatics
behave in many respects like sixfold liquid crystals. A
useful measure of the degree of hexatic order in an isotro-
pic liquid is the order parameter'®

Pe(r)=exp[6i6(r)] .

An orientational correlation length £4(T) can be defined
via the decay of

Go(r)=(P(Me(0)) ~e
Near the disclination pairing transition, £¢(T) diverges,'®

E6(T)~exp(const/ | T—T; | 1/?) . (2.4)

(2.2)

—r/ELT) 2.3)

Both dislocation and disclination point defects are pos-
sible in 2D crystals. Formally, one says that the stable

point defects are given by the homotopy group®
771([T2 XSO(Z)]/([Z XC6)) .

Here, T,XSO(2) represents the semidirect product of
translational (7',) and rotational [SO(2)] symmetry groups
of an isotropic liquid, and ?, X C¢ signifies the corre-
sponding discrete symmetry groups of a hexagonal-close-
packed solid. According to Mermin,?° there are at present
unresolved difficulties in using homotopy theory in this
way. In this paper, we shall ultimately sidestep such is-
sues by regarding disclinations as the fundamental defects
at all temperatures. A set of disclinations can be uniquely
associated with every particle configuration using the Dir-
ichlet construction. The standard defects in a crystalline
solid are then regarded as composite objects.?> Two dislo-
cations, represented by 5-7 disclination dipoles, appear in
the upper right corner of Fig. 4(b). Three such disloca-
tions, when arranged in a configuration with no net dipole
moment, can be used to represent vacancies and intersti-
tials. Grain boundaries are linear arrangements of the
form —5-7—5-7—5-7—. A high-temperature liquid is
simply a dense plasma of disclinations. As will be dis-
cussed in Sec. III this point of view has a natural generali-
zation into three dimensions.

(2.5)

B. Negative curvatures

The 2D hyperbolic space H2 is defined by the metric in
Eq. (1.4), where the frustration parameter x is related to
the Gaussian curvature K by’

k=V —K .

Here, r and ¢ are polar coordinates which reduce to ordi-
nary flat-space polar coordinates in the limit k—0. It is
straightforward to integrate the metric (1.4) and find the
geodesic distance I,, between two particles with polar

(2.6)
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coordinates (7,,¢,) and (74,¢;),
cosh(xl,, ) =cosh(kr, )cosh(kry)

—sinh(kr, )sinh(kry )cos(d, — ) . (2.7)

Applying this formula to n particles (n > 6) symmetrically
arranged around a central atom to form an n-fold regular
polygon, we set r,=r,=d, I, =I,, and ¢, —¢, =27/n,
and find

cosh(kl,)=1+[1—cos(27/n)]sinh*(xd) , (2.8)

which reduces to Eq. (1.5) for the special case of a hexa-
gon. There is clearly an infinite sequence of special,
“commensurate” curvatures «, such that an n-fold
polygon can be decomposed into n equilateral triangles.
Setting /, =d in Eq. (2.8), we find

k,d =cosh™[cos(27/n)/(1—cos(2m/n)] , 2.9

which gives k¢d =0, x7;d =1.09055, kgd =1.52857, «kod
=1.85508, etc. As discussed in the Introduction, we shall
be primarily interested in curvatures such that « is inter-
medate between k¢ and «.

When the curvature is incommensurate, the free-energy
Eq. (2.1) describing hexatic order must be modified at suf-
ficiently long wavelengths. Indeed, it is difficult to mea-
sure all bond angles with respect to a common “reference
axis” outside of flat space. The reference axis changes
when parallel transported, and will not, in general, return
to its initial value when carried around a closed path.*>*3
It is helpful to rewrite Eq. (2.1) in terms of a unit vector
1(r) directed along a bond centered at T,

F=3K, [(@n))d% , (2.10)
with the understanding that directions related by a 60° ro-
tation are equivalent. A natural generalization into
curved space is

F=%K4 [(3in/+T}in**gd*x , 2.11)
where the T; are connection coefficients which allow for
parallel transport,**3 and the element of area V'gd?x is
given by the determinant g of the metric tensor g,~j.9 For
the polar coordinates » and ¢ used above (with d2x
=dr d¢), we have’

1 0

0 sinh*(kr)/k* =sinh’(kr) /i .

g=det (2.12)

If we work, instead, in a local Cartesian coordinate system
(x!,x2) centered at the origin, it is straightforward to
show that

8ij =5;j—K2xixj+O(x4) (2.13)
and

M= —Kx/+0(x3) . (2.14)

Equation (2.11) is reminiscent of the gradient free ener-
gy for a superconductor in flat space,44
2
F
2m

. 2
v_;—‘;-x],p d2r (2.15)
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where ¥(r) is the superconducting order parameter and
A(r) is the vector potential. To make the connection ex-
plicit, set

YO =n(T)+inX7T), (2.16)
and note that F; may be reexpressed as
2
# ;e
=5 a,-nj—%A,-ejknk dr . (2.17)

Comparing Eq. (2.17) with Egs. (2.11) and (2.14), we see
that a flat-space superconductor looks locally like a hexat-
ic in a curved space with connection coefficients

£
ic

where €;; is the 2X2 antisymmetric tensor €,, = —¢€,, =1.
The curvature acts in some ways like a uniform magnetic
field directed normal to the surface. Taking 4; =~ He;x',
corresponding to a uniform magnetic field of strength H,
we see that both T'}; and ['%; are linear in x, although
their tensor structure is different. More precise connec-
tions of this kind are embodied in the fiber-bundle ap-
proach to gauge-field theories.*

According to Eq. (2.11) the free energy will be mini-
mized when neighboring bonds are aligned after parallel
transport to, say, the midpoint of the geodesic line joining
them. It is impossible to make the covariant derivative in
(2.11) vanish everywhere, however. Consider the effect of
parallel transport of the bond vector 1 around the closed
loop shown in Fig. 5. This operation can be viewed as an
attempt to construct a field of “aligned” bond vectors. It
is well known, however, that the resulting vector © will
differ from 1’ by an amount*?

Ank= Img

Thi=———diex , (2.18)

— 1Rk n'e (2.19)
where a is the area of the loop and €™ =¢,,,. The quantity
Rk, is the 2D Riemann curvature tensor*>*

R) = —kHguSkm —8imOut) - (2.20)

With the use of the Cartesian form (2.13) for the metric
tensor, it is straightforward to show that the angle be-
tween il and 0 '=1+ A1 is

Af~ |ixX1'|=—«x’a+0[(xk%)]. (2.21)

oy

\
il

FIG. 5. Path around which the unit bond vector T is carried
via parallel transport. On a curved surface T is carried into a
different vector i ' upon completing the closed circuit.
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It is natural to associate this angular deficit with N, dis-
clinations of magnitude —2 /6 contained within the con-
tour. The corresponding defect density is

ng=Ny/a=3k>/7 . (2.22)

Curvature forces disclinations into the material in the
same way that a magnetic field forces Abrikosov flux vor-
tices into a superconducting film with a large London
penetration depth.*> Note also the similarity between the
closed loop in Fig. 5 and a frustrated plaquette in a spin-
glass.

The curvature-induced excess disclinations rule out the
possibility of extended hexatic order. To discuss what
happens when such systems are cooled from high tem-
peratures, we abandon the hydrodynamic description
(2.11) and work directly with the Dirichlet construction.!®
When carried out in curved space, this procedure triangu-
lates any particle configuration with a grid of geodesic
near-neighbor bonds. According to the Gauss-Bonnet
theorem, the integral Gaussian curvature of one of these
geodesic triangles is’

[ (—=)Vgd*x=A+B+C—m,

Aypc

(2.23)

where A4, B, and C are the angles subtended by the vertices.
Ignoring edge effects it is straightforward to show from
(2.23) that the average coordination number Z is related to
the curvature as in Eq. (1.6)."° The more general analysis
of Gaspard et al.,’’” which accounts for bonds at the
boundaries, leads to the same result. The density of excess
sevenfold disclinations predicted by this microscopic ap-
proach is

ng=(Z —6)/s=3k*/m, (2.24)

in agreement with Eq. (2.22).

At high temperatures the excess sevenfold disclinations
superimposed on a dense 5-7 plasma should be hardly no-
ticeable. As a system cools, this excess will become im-
portant when sufficient numbers of 5’s and 7’s have
paired. The liquid-to-hexatic transition, assuming this
occurs in flat space, will be smeared when the flat-space
correlation length (2.4) becomes comparable to the spacing
between the excess disclinations with density ny. A simi-
lar smearing of the Kosterlitz-Thouless vortex pairing
transition occurs in superconducting films in the presence
of an applied magnetic field.*

There are two possibilities in the limit of very low tem-
peratures. If the kinetics of disclination motion are fast
compared to the cooling rate, one might expect the excess
disclinations to form a “crystalline” superlattice with a
spacing d* consistent with the sevenfold tesselation of
space predicted by Eq. (2.9),

d*k=1.09055 . (2.25)

Such an “Abrikosov flux lattice” would be like the
icosahedral arrangement of fivefold vertices embedded
among many sixfold vertices in the positively curved sur-
face of a geodesic dome. As we shall see, the Frank-
Kasper phases represent a similar solution to the problem
of frustration in 3D flat space. A soft interparticle poten-
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tial would presumably be required to pack an integral
number of particles into the superlattice interstices for ar-
bitrary incommensurate curvatures k¢ < K < K7.

A second possibility is displayed in Fig. 6, which shows
a particle configuration obtained via Bennett’s packing al-
gorithm*’ for hard disks with xd =0.6.*® Figure 6 is a 2D
analog of dense random packing. The coordination-
number histogram in the inset shows that most particles
have coordination number six with a curvature-induced
asymmetry between the remaining 5’s and 7’s. The degree
of disorder in the figure is presumably related to number
of unpaired 5’s. We would expect particle configurations
like Fig. 6 when systems are cooled rapidly compared to
the time necessary to equilibrate disclinations. We shall
argue that metallic glasses provide an example of this
second possibility in 3D flat space.

Unpaired disclinations have a drastic effect on transla-
tional order. Note from Fig. 7(a) that Burgers circuits
around an isolated disclination fail to close by larger and
larger amounts with increasing radius. As illustrated by
the relaxed threefold disclination in a square lattice shown
in Fig. 7(b),*® this behavior can be associated with a cloud
of unpaired dislocations surrounding every disclination.
The separation between these dislocations defines an in-
trinsic translation correlation length £%. It is straightfor-
ward to show that the intrinsic translational and orienta-
tional lengths possible in a system with incommensurate
curvature are related by!%4°

Er=(&ad)'> .

Here we have defined an intrinsic orientational correlation
length £2 by

Ee=nq ',

and ignored the possibility of commensurate superlattices.
According to Eq. (2.26), translational order is broken up
on a much finer scale than orientational order by the ex-
cess disclinations.

Measurements of shear viscosities in disordered particle
configurations like Fig. 6 would be quite illuminating. In
analogy with flat-space theories of liquid viscosities,”® we
expect that shear stresses relax at a rate proportional to
the concentration of free dislocations, regarded as 5-7 dis-
clination pairs. This dislocation density should be con-
trolled by the small concentration of fivefold disclinations
evident in Fig. 6. One might expect liquids cooled in
metastable equilibrium to exhibit an Arrhenius divergence
in the shear viscosity 7,(T),

E,/kgT (2.28)

(2.26)

(2.27)

ns(T)"’e

where E, is the activation energy of a 5-7 pair. It seems
unlikely that isolated disclinations can relax shear stresses.
If this point of view is correct, “glassy” particle configu-
rations (consisting of a disordered array of excess seven-
fold disclinations) could have essentially infinite viscosi-
ties.

There may also be a connection between unpaired dis-
clinations and phonon localization. In the high-frequency
ballistic limit one might expect phonon trajectories to fol-
low the local crystallographic coordinate axes. As shown
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FIG. 6. Sequentially deposited hard disks projected out of a space of constant negative curvature. Successive disks with identical
diameters (kd =0.6) are brought in so as to just touch the growing cluster at a point as close as possible to the center (see Ref. 48).
Anomalous 7- (*) and 5- ({) coordinated particles in this glassy configuration are highlighted. The same algorithm produces a hcp
lattice in flat space. Histogram shows the asymmetry between 5’s and 7’s.

FIG. 7. (a) Sevenfold disclination in a triangular solid, to-
gether with Burgers circuits which fail to close by an amount
which depends on their size. Trajectory marked with arrows
shows how a ballistic phonon is deflected by the disclination. (b)
Dislocation cloud surrounding a threefold disclination in a
square lattice.

in Fig. 7(a), these trajectories are bent by disclinations the
way light is bent when it passes near the sun. It seems
plausible that phonons localize in a disordered medium at
high frequencies (as seems to be the case in 3D flat
space’!) because of their inability to penetrate a random
disclination array.

C. Positive curvatures

Flat space can, of course, also be made incommensurate
by imposing a positive curvature. Virtually all the formu-
las in the preceding subsection can be taken over, with the
replacement

K2— —k?,

(2.29)
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where k! now represents the radius of the sphere S2.

There are three commensurate positive curvatures,
ksd=1.10715, ksd=m/2, and k3d=cos~'(3), corre-
sponding to icosahedral, cuboctahedral, and tetrahedral
tesselations of 12, 6, and 4 particles, respectively. Spaces
of positive curvature are of course finite, and hence pro-
vide less insight into frustration in infinite 3D flat space
than a space of constant negative curvature. The 12-
particle tessellation of S2, however, is in many ways quite
similar to the ideal 120-particle tessellation of S3 dis-
cussed in the Introduction.!® It is of some interest to dis-
cuss defects in this simple space, and the role they play for
positive curvatures such that 0 <k < ks.

Figure 8 shows the Dirichlet construction applied to 12
particles embedded in the surface of a sphere. The ground
state for simple pair potentials is surely an icosahedral ar-
rangement where every particle has five near neighbors.
Figure 8 shows an excitation consisting of two 4-6 pairs.
In analogy with flat-space configurations such as in Fig.
4(b), it is tempting to regard this excitation as a disloca-
tion pair in an icosahedral “crystal.” Isolated 4’s and 6’s
would be viewed as disclinations. These ideas can be ex-
plored further by applying the defect homotopy theory
summarized in the illuminating review article by Mer-
min.?° This is a continuum approach which focuses on
properties of large loops surrounding point defects. Its
utility when applied to a finite space of 12 particles is cer-
tainly questionable. Nevertheless, insights not obvious us-
ing the more microscopic Dirichlet construction approach
are possible. The same defect algebra applies, moreover,
to icosahedral line defects in 3D flat space.

To make contact with flat-space formulas such as Eq.
(2.5) it is convenient to decompose the symmetries of the
surface of a sphere into “translational” and “rotational”
parts. The set of translational motions possible for a point
on a sphere may be denoted SO(3)/SO(2). The symmetry
group of rotations about this point is SO(2). In an
icosahedral solid, these combined symmetries [comprising
the group SO(3)] are broken down to the discrete sym-
metries of the icosahedral point group Y. The homotopy
group analogous to Eq. (2.5) is thus

m(SO(3)/Y)=Y". (2.30)
The 60 symmetry operations of the icosahedral point
group are summarized in Fig. 9, which shows the six five-
fold rotation axes, ten threefold rotation axes, and 15 two-
fold rotation axes of an icosahedron drawn in projection.
The homotopy group Y’ of defects in this curved-space

FIG. 8. Dirichlet construction applied to 12 particles embed-

ded in the surface of a sphere. Heavy solid lines enclose two 4-6
pairs.
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“crystal” is given by the lift of the icosahedral subgroup Y
of SO(3) into SU(2).2® The possible point defects are
characterized by the symmetry operations of the perfect
crystal. These in turn are labeled by a rotation axis # and
an angle of rotation @. Two SU(2) matrices,

U(R,0)=exp(5iwh-&)=cos(+®)+i sin( o)A &
(2.31a)
and

U(R,0+360°)=—-U(#,0), (2.31b)

are associated with each element of Y, where & is the vec-
tor of Pauli matrices. When two defects characterized by
matrices U(#,0,) and U(#,,w,) combine, the resulting

defect is described by the matrix
U(ﬁ,w)zU(ﬁl,wl)U(ﬁz,wz) . (232)

It follows from (2.31a) and the properties of Pauli ma-
trices that

©=2cos ™ [cos(5w;)cos(5w;) — A} - Aysin( 4w, )sin( +w,)]
(2.33a)
and
A =[sin( +®;)cos( 3 @,)A; +cos( 5w )sin( ;)7
—sin(Fo,)sin(F0,)R X #]/sin(+w) . (2.33b)

Defects in the same homotopy class can be transformed
into each other. When the defect « is carried around the
defect B the resulting defect is?°

a=p"lap.

It is the class structure of the non-Abelian group Y’ rather
than the individual SU(2) matrix charges which deter-
mines how defects combine. The laws of defect combina-
tion are given by the class multiplication table of Y’. The

(2.34)

FIG. 9. Symmetry axes of an icosahedron drawn in projec-
tion about the fivefold symmetry axis labeled “0” at the origin.
The vertex opposite “0” is not shown.
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nine classes corresponding to the 120 elements of Y’ are

Co={1}, Co={-1},
€ s={U(#;,72°) ,U(Ay, —72°),i =0, ...,5},
Z s={U(7;,288°),U(#;, —288°),i=0,...,5},
€i={U(#;,144°),U (R;, — 144°),i =0, ..., 5} ,
2= {U(#;,216),U(f;, —216"),i=0, ..., 5} ,
€ 3= (U, 120“),U(m,.,—120°),i=1, ..., 10},
& 3={U(m;,240°),U (;, —240°),i =1, ..., 10} ,
€,={U([;,188),U(l;,—180"),i=1, ..., 15} ,

where 7}, #;, and I; denote five-, three-, and twofold rota-
tion axes in Fig. 9. The class Z consists of a 360° rota-
tion, while the classes €s, €s, €2, and €2 correspond
respectively, to rotations of +72°, +288°, +144°, and
+216° about a fivefold symmetry axis upon traversing a
closed counterclockwise path about a defect. The classes
€5 and € ; denote rotations of +120° and +240° about a
threefold symmetry axis, while %, is composed of +180°
rotations about twofold rotation axes. The class %
denotes configurations homotopic to the identity.

The symmetry elements in flat space analogous to the
elements of Y’ may be denoted (b,e™™/3), where b
denotes the Burgers vector of a dislocation and e"/3
denotes the rotation #, associated with a disclination
with charge n in, say, a triangular solid. As pointed out
by Mermin, the conjugacy class of an elementary disclina-
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iiﬂ/S)(_b’,einﬂB)-l:(_%ng+g’eiiﬂ/3) ,

(2.35)
indicating that an isolated disclination in a triangular
solid is in the same class as that disclination plus a dislo-
cation with an arbitrary Burgers vector. The defect in Eq.
(2.35) is the result of taking an elementary disclination,
and then “translating” it to another position via the extra
half-rows of atoms associated with a dislocation. Rota-
tions of +72° about a fivefold symmetry axis (correspond-
ing to the class €'5) play the role of elementary disclina-
tions in a 2D icosahedral solid. In a way reminiscent of
Eq. (2.35) the conjugate defects are simply +72° rotations
associated with translations to one of the other fivefold
rotation axes of the icosahedron.

Table I shows the class multiplication table for Y'.!
The classes appearing in a given entry summarize the pos-
sibilities which result when two classes are brought togeth-
er.?’ Disclinations of +72° and —72° represent, respec-
tively, the 4’s and 6’s shown in Fig. 8. Table I suggests
that we can regard these defects as fundamental and re-
gard all other defects as composite objects. Indeed, de-
fects in any of the remaining classes can be obtained by
forming judicious combinations of +72° disclinations.
The 5’s and 7’s in Fig. 4 play a similar role. It seems
reasonable that 4’s and 6’s can continue to be regarded as
the fundamental excitations when more than 12 particles
are packed into S2 to obtain an incommensurate tessela-
tion. Indeed, the 14-, 15-, and 16-particle coordination
shells of the canonical Kasper polyhedra discussed in Sec.
III B form a kind of Abrikosov flux lattice of 6’s embed-

(B',eimr/ﬁi)(o’e

tion (0,e *i™/3) consists of defects of the form?2°

ded in a matrix of 12 5’s.

TABLE 1. Class multiplication table for the group Y.

We shall view microscopically

€o %o € Z; ¢} ¢? %5 Z, €,
€o %o Zs %5 ¢? ¢} Z, %5 %>
< 12€0+5€¢s 1280+5%Fs €s+%: Zs+¢? 5% 5+5¢2 5Zs+5¢2 €i45¢2
s +E3+3€3 +Fi+3T;3  +3C3+2€,  +3T342€, +3€:42%, +3T34+2€, +3€3+3%;+4%,
2. 12€0+5€s Ts+ €2 Cs+ €3 S5Zs+5F2  5€s+5€%  S5CI+5€2
Ci+3€: +3T3+2%, +3€342%€: +3C342€, +3C3+2€, +3%3+3F+4%,
< 1260+%s  1280+Cs  5Cs+5€%  5Ts+5€%  5€s+5%;
5 5€24+3%, +5€34+3%;  +3F342€2 +3€:3+2€; +3€;3+3F;+4%,
7 12604+Fs  5Ts+5¢%F  5s+5¢1  5€s+5%s
s +5€34+3C;  +3€34+2%, +3%342%, +3€3+3F+4%,
20%0+5¢s  20B0+5Fs S5SCs+5Fs
€ +5FI+6€; +5CI+6F; +5€i+5%2
+@3+4C,  +C3+4€,  +6€;34+6T344%,
20%0+5% s 5%5+5?25
Z, 5€3+6%; +5¢3+5¢2
+%Z;3+4%, +6(53+6?3+4(52
30% 0+30% o+ 10€ s
€, +10% s+ 10€2+10%2

+6F 3+ 6% ;+4%F,
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TABLE II. Sixth-rank spherical harmonics used to define the icosahedral order parameter (3.1).

Y6m(07¢)=

m=—6,—5, ..

13 (6—|m | )
4r (64 |m | )

., +6

(=)™, m>0

172
] Pl™1(cos@)e™®x 1, m<0

PY(x)=-(231x5—315x*+105x2—5)
Pl(x)=(1—x%)1221(33x5-30x >+ 5x)
Pi(x)=(1—x2) (33x*—18x2+1)
Pi(x)=(1—x%)*218(33x%—9x)
Pé(x)=(1—x2P?232(11x2—1)
Pi(x)=(1—x2)’210395x
PS(x)=(1—x2)"10395

defined lines of four- and sixfold symmetry in a very simi-
lar way in 3D flat space.

III. THREE DIMENSIONS

A. Order and frustration

Icosahedral bond orientational order has been explored
in bulk supercooled liquids and glasses by Steinhardt
et al.> With every near-neighbor bond (defined, e.g., via
the Voronoi construction??) we associate the set of /=6
spherical harmonics compiled in Table II,

Qom(T) =Y, 6(7),6(1)] ,

where 6(T) and ¢(T) are the polar angles of the bond mea-
sured with respect to an external coordinate system. A ro-
tationally invariant icosahedral correlation function analo-
gous to Eq. (2.3) is®

(3.1

s
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FIG. 10. Icosahedral correlation length for the supercooled
Lennard-Jones system studied in Ref. 5. Temperature is
displayed in units appropriate to supercooled argon, and o lo-
cates the minimum in the pair potential. Equilibrium melting
temperature for this constant-density simulation is indicated by
the arrow.

47 ok R
Gﬁ(r)=§ > (Qem(TIQEm(0)) . (3.2)

m=—6

The range of G¢(r) measures the degree of alignment of
neighboring icosahedra. In a high-temperature isotropic
liquid, G¢(r) decays exponentiall to zero, i.e., and Gg(r)
~exp(—r/&g), where the orientational correlation length
&6(T) is comparable to an interparticle spacing. As shown
in Fig. 10, £4(T) increases with decreasing temperatures in
a supercooled Lennard-Jones liquid until it becomes com-
parable to the 864-particle system size at about 10%
below the equilibrium melting temperature.’

One also expects icosahedra in metallic glasses. As il-
lustrated in Fig. 11, icosahedral coordination shells lead
naturally to peaks at o, 1.620, and 1.90 in the radial dis-
tribution function,’? where o is the nearest-neighbor dis-
tance. These distances are consistent with the split
second-peak structure observed via x-ray scattering in the
radial distribution function of, for example, amorphous
Co-P.! Correlations among icohsahedra in some standard
models of metallic glasses were analyzed in Ref. 5. Al-
though only modest correlations appear in relaxed Finney
dense-random-packing models, there are rather striking
correlations in alternative amorphon cluster models® of
glass structure.

A question left open in Ref. 5 is the extent to which
frustration inhibits extended icosahedral correlations. The
largest orientational correlation length we can reliably
read off Fig. 10 is only ~3—S5 particle diameters. An in-
trinsic frustration length scale can be extracted by refer-
ring to the ideal tessellation of $3.7~° Points X on the
surface of a 4D sphere of radius k—! are conveniently
parametrized using polar coordinates,

FIG.

11.
tances in an icosahedron. Orthonormal triad (T,ﬁ,'ﬁ) associat-
ed with an icosahedron with this orientation is also shown.

Nearest-neighbor and next-nearest-neighbor dis-
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kX =[cos¢ sin@ sin(«r ),sing sinf sin(kr),
cos@sin(kr),cos(kr)] , (3.3)

where (7,0,¢) play a role similar to ordinary polar coordi-
]

cos(klyp ) =cos(kr, )cos(kry ) +sin(kr, )sin(kry )[ cosB,cos6), + sind, sind, cos(d, —dp)] .

The 20 tetrahedra in a symmetric, icosahedral cluster of
13 particles divide the 47 of solid angle surrounding the
central particle into 20 equal pieces. This is true in both
flat and curved space. It follows that angles between the
12 radial bonds are the same in S3 as in flat space. Thus,
we can take for angular coordinates of two neighboring
radial bonds (6,,¢,)=(0,0) and

(0p,05)=(cos™[(14+3V'5/5)/2],0) ,

just as in flat space.® If the length of the bonds is d, we
find from Eq. (3.4) that the geodesic distance between the
surface atoms / is related to d as in Eq. (1.1) in the Intro-
duction. The frustration length scale associated with Eq.
(1.3) is very short,

Ky 1=1.591549d . (3.5)

Based on the discussion of 2D incommensurate curvatures
in Sec. II, it seems unlikely that the icosahedral orienta-
tional correlation length £ can be more than a few times
this intrinsic length scale.

The icosahedral order which does occur in supercooled
liquids and metallic glasses is more complicated. Slowly
varying icosahedral order at low temperatures can be
specified by a position-dependent orthonormal triad of
unit vectors [T( r),m(T),n(T)]. A convention for relating
these unit vectors to the orientation of a locally defined
icosahedron is shown in Fig. 11. In the absence of frus-
tration, we would expect a coarse-grained free energy
similar to one discussed for cubic bond order in Ref. 36.
In a “one-Frank-constant” approximation, this takes the
form3¢

F=3K, [(|VT |24 |V@|2+ | Vi |2d* . (3.6)
In analogy with Eq. (2.17) we try to model the frustration
discussed in the first paragraph of this paper by modify-
ing the gradients, making, for example, the replacement

3; 1M,/ — M} I* . (3.7)

If the model is embedded in S3, we must also introduce

connection coefficients,
8;l/—3; 1/ — M} 1*+ T, 1% . (3.8)

In a local Cartesian-coordinate system (x!,x2,x3), the
metric tensor is*?

8y =8y +1*x'x/+ O((kx)*) , 3.9
and the connection coefficients are>*
T =k®8x/ 4+ 0 (k*x3) . (3.10)

The requirement that there be no frustration when the
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nates in flat space. It is easy to show using this 4D
embedding of S3 that the geodesic distance I,, between
two points (r,,0,,4,) and (ry,60;,0,) is given by

(3.4)

f

curvature assumes its commensurate value k, determines
the matrix vector potential in Eq. (3.7) to lowest order in
X,

M ~k28;x7 . (3.11)
A model for frustrated icosahedral order in flat space is
thus
3 . ;
F=3K, [ 3 @nl—Mjnkyd’r, (3.12)
a=1

where Mj given by (3.11), and where we have introduced
the notation

A,=1, B,=m, f,=10. (3.13)
Defects must be introduced because it is impossible to
make the term in parentheses in Eq. (3.12) vanish every-
where. The defect concentration is determined by the

“Riemann curvature tensor” associated with My ,*?

Rigm =03 M}, — 3, Mi;+0 (k3) ~ k2884 — 8im i) -
(3.14)

Equation (3.12) bears some resemblance to the
Ginzburg-Landau gradient free energy for an extreme
type-II superconductor in a uniform magnetic field.*#* M}
is like a vector potential. It is straightforward to con-
struct a “soft-spin” version of Eq. (3.12), using the
icosahedral Landau theory described in Ref. 5. Because
an isotropic curvature incommensurability plays the role
of a “magnetic field,” we would expect the lines of singu-
lar flux run in all directions.

B. Defects

Defects in liquids with local icosahedral order are
singular lines where the icosahedral part of Qg,, (f) drops
to zero. These can be understood by referring to the ideal
tessellation of S3. The symmetry operations of a struc-
tureless 4D sphere comprise the rotation group SO(4).
This can be decomposed into rotational and translational
parts just as in our discussion of S2 in Sec. II C, where
SO(4)/S0O(3) and SO(3) represent translational and orienta-
tional symmetry operations acting on a reference point,
respectively. The six generators of SO(4) are analogous to
the six generators of translations and rotations in flat
space. The 120-atom icosahedral ‘“crystal” imposes
discrete rotational and translational symmetries on SO(4).

We shall only discuss rotational defects. These disclina-
tion lines are a direct result of the inability of flat space to
accommodate an icosahedral solid. Their algebra is
described by the homotopy group
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Y'=m(S0(3)/Y) . (3.15)

We expect that these defects are fundamental in the sense
that they can be used as building blocks for composite
translational defects analogous to dislocations in a flat-
space crystalline solid. This assumption was checked ex-
plicitly for the icosahedral tessellation of S2 in Sec. IIC.
A microscopic geometrical construction for decomposing
an arbitrary particle configuration into disclination lines
will be given below. Orientational order in flat space will
be decorrelated on a scale comparable to or smaller than
the spacing between the disclinations induced by the cur-
vature incommensurability. Translational order will be
broken up on an even finer scale [just as in two dimen-
sions; see Eq. (2.26)], which provides another reason for
only discussing defects in the orientational part of the
ideal tessellation of S3.

The properties and class multiplication table of the
homotopy group Y’ were discussed in Sec. IIC. The class
multiplication table again summarizes the defect-
combination laws and now determines, in particular, the
allowed nodes in networks of disclination lines. A typical
network is shown in Fig. 3. The physics at low tempera-
tures should be dominated by lines in the class €5, com-
posed of +72° rotations about a fivefold symmetry axis.
These appear as solid (—72° rotations) and dashed (4 72°
rotations) lines in Fig. 3. Other defects represent larger
rotations, and will have higher energies. When more ener-
getic defects are suppressed, the relevant entry in the class
multiplication table (see Table I) is

CsXECs=12€ o+5C s .

The term proportional to € reflects the fact that the
solid and dashed lines can annihilate each other provided
the rotations are about the same axis. Note, however, that
pairs of low-energy lines can combine to produce not only
the identity, but also another low-energy line, which ac-
counts for the three-line nodes in Fig. 3. Consider, for ex-
ample, the bubbles terminating in points denoted Z11 and
Z13 in Fig. 3. The SU(2) matrix multiplications which al-
low these nodes are

U(72°,74)U(—T72°7y)U(72°,7)=E

(3.16)

(3.17)
and

U(—72°,7)U(72°,7g)U(—T72°,s)=E , (3.18)

where the rotation axes 74,7, and #,; are shown in Fig. 9,
and E denotes the unit matrix. Similar matrix multiplica-
tions correspond to the three- and four-line —72° disclina-
tion nodes shown in Fig. 3. Ignoring high-energy lines is
similar to neglecting multiply charged four- and eightfold
disclinations in 2D flat space. It is easy to show using
Table I that these more exotic excitations can be regarded
as bundles of appropriately chosen low-energy lines.

A microscopic construction for disclination lines in any
3D particle configuration is summarized in Fig. 12. Fol-
lowing early work by Frank-and Kasper,'* we first parti-
tion space into tetrahedra by assigning near-neighbor
bonds via the Voronoi construction. Links of plus or
minus disclination line are assigned to bonds depending on
their local environment. A ‘disclination-free” bond is
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surrounded by five tetrahedra and plays a role analogous
to the six-coordinated particles in two dimensions. The
excitations analogous to 7’s and 5’s in two dimensions are
the bonds surrounded by six and four tetrahedra. All
bonds in the ideal tessellation of S3 are spindles for five-
fold bipyramids, composed of perfect tetrahedra. Al-
though bipyramids of perfect tetrahedra are impossible in
flat space, less distortion is required for fivefold bipyram-
ids than for four- and sixfold bipyramids. As discussed in
Ref. 14, sixfold bipyramids require less distortion than
fourfold ones. Other kinds of bipyramids represent more
exotic excitations.

Frank and Kasper give a proof that a link of sixfold
line cannot simply terminate at an atom whose remaining
bonds are fivefold. Such an atom would have coordina-
tion number Z=13.1% (There are other ways to make
coordination shells with Z =13; see below.) It is easy to
repeat the Frank-Kasper argument and show that a four-
fold link terminating at a particle whose remaining bonds
are fivefold (corresponding to Z=11) is also impossible.
Lines of six- and fourfold links are the microscopic analog
—72° and + 72° wedge disclination lines in an icosahedral
medium.

A number of standard coordination polyhedra have
simple representations in terms of this construction. The
canonical Kasper polyhedra'* are shown in Fig. 13 togeth-
er with their representation as nodes for —72° disclination
lines. Upon filling the free volume at the surface of an
icosahedron with an extra atom, one obtains a particle
with Z =13 characterized by ten fivefold bonds and one
fourfold bond interposed between two sixfold ones. It is
natural to suppose that Z =13 atoms will often occur in
pairs, terminating the bubbles of two solid lines and one
dashed line shown in Fig. 3. A small bubble corresponds
to an interstitial in the ideal icosahedral solid.

The antidefects of the canonical Kasper polyhedra,
which are nodes of +72° disclination line, are shown in
Fig. 14. The resulting Z =10, 9, and 8 coordination shells
are the canonical hole polyhedra discussed by Bernal.?>?
The antidefect of the bubble consisting of two Z=13
atoms is formed by first removing one particle from an
icosahedral coordination shell to form a Z =11 coordina-
tion shell. The particle at the center then has eight five-

A
H —7
f'V.ef‘)ldA : no disclination
bipyramid \*1 line on AB
S
A
sixfold - 72° disclination
bi pyramid 4& line on AB
fourfold +72° disclination
bipyramid line on AB

FIG. 12. Microscopic construction for disclinations in a
medium composed of tetrahedra.
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FIG. 13. Coordination shells of the canonical Kasper polyhe-
dra together with their representation as links of —72° disclina-
tion line. Open circles represent particles at the centers of the
coordination shells.

fold bonds, together with a sixfold bond interposed be-
tween two fourfold ones. A bubble terminated by two
Z =11 particles is shown in Fig. 3. A small bubble of this
kind can be viewed as a vacancy in a perfect icosahedral
solid.

In every case, the nodes for these geometrically defined
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FIG. 14. Coordination shells associated with the canonical
Bernal holes and their representation as links of +72° disclina-
tion line. Open circles represent the particles which fill these
holes.
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disclination lines agree with the combination laws predict-
ed by the homotopy group Y’. The Z=13 and 11 ver-
tices, for example, are allowed by the SU(2) multiplica-
tions displayed in Eqgs. (3.18). It is instructive to evaluate
the bond spherical harmonics displayed in Table II for the
z=14 and 10 particles discussed above. It is natural to
take the z axis to be along the two links of disclination line
in each case. Averaging over the bonds, one finds that
icosahedral order parameter defined in Ref. 5 vanishes in
the sense that only Qg is nonzero, reflecting a purely uni-
axial symmetry. Thus, lines of six- and fourfold bipyram-
ids can be regarded as zeros in the icosahedral part of the
order parameter in Eq. (3.1). By following the rotations
of pentagonal bond spindles surrounding the two colinear
sixfold bonds of a Z=14 Kasper polyhedron, one sees
that these sixfold bonds are indeed segments of —72° dis-
clination line. A similar construction shows that the two
colinear fourfold bonds in the Z =10 coordination
polyhedron in Fig. 14 are segments of +72° disclination
line.

C. Dense random packing and the Frank-Kasper phases

The microscropic defect construction described above
can be applied to dense-random-packing models. Figure
15 shows the distribution of edges per face for Voronoi
polygons in a dense-random-packing model® constructed
by Ichikawa® for amorphous iron films using Bennett’s
packing algorithm.*’” Also shown are results for this
model after relaxation in a soft potential.’® It is easy to
show that the number of edges on a particular face of a
Voronoi polygon is the same as the number of tetrahedra
surrounding the bond bisected by that face. Thus Fig. 15
is a direct measure of the distribution of defect line in the
packing. As originally emphasized by Bernal,?® fivefold
bipyramids dominate in dense random packing. Note,
however, that there are more links of sixfold than fourfold
disclination line. This is a direct result of the curvature
incommensurability, and is quite similar to the asymmetry
between 7°s and 5’s displayed in Fig. 7. When the original
model is relaxed. the number of fivefold bonds increases at
the expense of the number of anomalous bonds. It is

50— 50—
E40— € 40—

8 ] g

b @

8 30l & 30}

20— 20—

10— 10—

3 4 5 6 7 8 3 4-5 6 7 8
q q
UNRELAXED RELAXED

FIG. 15. Edge-per-face histograms for Voronoi polygons in
the unrelaxed and relaxed Ichikawa-Bennett dense-random-
packing model. Note the similarity with the histograms in Fig.
6.



28 ORDER, FRUSTRATION, AND DEFECTS IN LIQUIDS AND GLASSES

TABLE III. Percentages of g-fold bonds in relaxed and unrelaxed Ichikawa-Bennett and Finney

dense-random-packing models (all values in %).

n3 ny ns ne ny ng
Unrelaxed Ichikawa-Bennett 7 18 37 28 8 1
Relaxed Ichikawa-Bennett 2 16 53 27 2 0
Unrelaxed Finney 5 19 40 29 6 1
Relaxed Finney 2 20 43 32 3 0
Liquid argon 7 20 36 27 8 2

tempting to regard the relaxation as an annihilation four-
and sixfold links of disclination line. The more exotic
three- and sevenfold links also participate in this pairing
process.

Table III compares the results displayed in Fig. 15 with
the same information for Finney’s unrelaxed®’ and re-
laxed®® ball-bearing dense-random-packing model. Al-
though the changes are not as large as in the Bennett-
Ichikawa model, the trend toward increasing the number
of fivefold bonds is the same. It seems plausible that
Bennett’s model has more fivefold bonds (and hence more
icosahedral order) because the method of construction is
biased toward perfect tetrahedra.

A bee crystal can also be analyzed in this way. Al-
though there are no fivefold bonds, there is again an
asymmetry in the eight sixfold and six fourfold bipyram-
ids associated with every Wigner-Seitz cell. Every atom
has coordination number Z =14. Close-packed fcc crys-
tals are a special degenerate case. The existence of perfect
cuboctahedra of six particles makes the assignment of
bonds via the Voronoi construction ambiguous. There are
similar ambiguities with the Dirichlet construction for
square lattices in two dimensions. In both cases the ambi-
guity is removed by applying an infinitesimal shear stress.
The coordination number of an fcc crystal then becomes
14, with the same fraction of six- and fourfold bonds as in
the bcec case.

Because of the asymmetry between —72° and + 72° dis-
clination lines, the pairing process suggested by Fig. 15
cannot be carried to completion. There must be residual
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excess of unpairable sixfold bipyramids. This is precisely
the situation found by Frank and Kasper in their pioneer-
ing study of complex alloy structures.!* A number of
crystalline phases with large unit cells, particularly in
transition-metal alloys, consist of atoms with Z=12
icosahedral coordination shells interrupted by atoms with
Z=14—16. The atoms with Z > 12 combine to form a
contiguous disclination network threading through an oth-
erwise icosahedral medium. Table IV summarizes the
properties of some typical Frank-Kasper phases. In 415
compounds the disclination network consists of three
orthogonal grids of Z =14 atoms. The o phase of, e.g.,
Co-Cr, consists of parallel lines of Z =14 atoms threading
perpendicular planar networks of Z =14 and 15 particles,
while the 162-atom unit cell of Mg;,(Al,Zn),o is dominat-
ed by a disclination network consisting of interconnected
dodecahedra.

The information in Table IV is taken from the Frank-
Kasper papers.’® The average number of edges per face of
the Voronoi polygons 7 in these phases was obtained from
the average coordination number Z using the formula

g=6—12/Z. '(3.19)
This result follows directly from a generalized Euler rela-

tion for a network of Voronoi polygons quoted by Fin-
ney,*” namely

>(6—i)F;=6(N,+1), (3.20)

where F; is the number of faces with i sides and N, is the

TABLE IV. Distribution of 12-, 14-, 15-, and 16-coordinated particles in the Frank-Kasper phases.

Atoms
per
unit
Name Examples cell Z=12 Z=14 Z=15 Z=16 Z q
AlS Nb;Sn 8 2 6 0 0 13.500 5.1111
B-W
Laves phase Mg,Zn, 12 8 0 0 4 13.333 5.1000
p phase Fe;Wg 13 7 2 2 2 13.385 5.1035
o phase Co-Cr 30 10 16 4 0 13.467 5.1089
B-U
P phase Mo-Ni 56 24 20 8 4 13.429 5.1064
— Mg;,Aly 162 98 12 12 40 13.358  5.1017

Mg3Znyg
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total number of atoms. Upon defining
g=2iF; / F;
i
and neglecting unity relative to N, on the right-hand side
of (3.20), we have
6—g=6N, / >F .
i
If Z; is the coordination number of the jth atom, we have
SF=337;, (3.23)
i J
since there are two atoms associated with every face.
Equation (3.19) follows from (3.23) and (3.22) if we set
Z=32Z;/N, . (3.24)
J

(3.21)

(3.22)

Note from Table IV that g is always about 2% larger than
five in the Frank-Kasper phases. This excess is a direct
measure of the number of anomalous sixfold bonds.

D. Relaxation to an ideal glass

In two dimensions the number density of excess dis-
clinations in a space of constant negative curvature is
fixed by the topological constraint Eq. (2.24). In three di-
mensions the analogous quantity is §—5. Although this
deviation cannot, in general, be expressed in a compact
form analogous to (2.24), it can be calculated exactly for a
configuration we will call an ideal glass. Consider first an
arbitrary array of identical particles interacting via a sim-
ple pair potential in 3D flat space. Although the bonds
joining near neighbors divide space into tetrahedra, the
curvature incommensurability ensures that not all tetrahe-
dra will have equal edges. The strains embedded in disor-
dered particle configurations can be relaxed by allowing
motion into an extra dimension. The disclinations shown
in Fig. 7, for example, could clearly lower their energy by
buckling out of the 2D plane. Imagine a similar relaxa-
tion into a fourth dimension for 3D particle configura-
tions under the constraint of constant coordination-
number topology. No near-neighbor bonds, as defined by
the Voronoi construction, can be broken. The result will
be a crinkled 3D surface with local regions of positive and
negative curvature. The bonds in this relaxed configura-
tion will be more nearly equal than in the initial, flat ar-
rangement. We define an ideal glass to be that configura-
tion in flat space which is able to equalize all near-
neighbor distances via the above relaxation process. Al-
though the initial particle configuration is frustrated, the
frustration is removed after relaxation since all particles
then sit at the minima of their neighbors’ pair potentials.

The value of g for this special configuration follows
from a formula from the Regge calculus, namely*?

Sisi=3 [ PRVgdx, (3.25)
7

where /; is the length of the jth bond and the integral is
over the scalar curvature “’R of the 3D surface. The
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quantity §; is the deficit angle associated with the jth
bond. The Regge calculus is a tetrahedral discretization
procedure for integrals on curved manifolds, which be-
comes more and more accurate with increasing numbers
of mesh points. The space enclosed by a tetrahedron is re-
garded as flat and the curvature is concentrated on the
bonds.*® For an ideal glass in flat space both the scalar
curvature and all the deficit angles in Eq. (3.25) are zero.
After relaxation, all the /; are equal and the §; vary in
sign and magnitude from bond to bond. We expect that
the integral curvature, at least in the limit of very large
system size, remains zero. The assumption is that in the
initial flat-space integral curvature is encoded into the
bond topology, and that as many regions of positive as
negative curvature are generated by the relaxation process.

The angular deficit 65 associated with five perfect
tetrahedra packed around a 'bond is shown in Fig. 16.
This is the mismatch which results when the five tetrahe-
dra are taken apart and reassembled into flat space. One
clearly has

8s=27—5y , (3.26)
where y is the dihedral angle of a perfect tetrahedron,
y=cos~ (). 3.27)
The result for a j-fold bond is
8j=2m—jy . (3.28)
Inserting this result into Eq. (3.25), we have
(3.29)

J j

where F; is the number of i-fold bonds and d is the com-
mon value of all bond lengths /; determined by, say, the
minimum in the pair potential. Referring to Eq. (3.21),
we see that g after relaxation is

Fideat =27/cos ™1 (3) . (3.30)
Since the relaxation process preserves the bond topology,
this is also the value of g for an ideal glass in flat space.
Equation (3.30) agrees with the statistical honeycomb
model of Coxeter, which assumes a network of identical
Voronoi polygons with fractional numbers of faces.”’
Figure 17 shows the values of g for the Frank-Kasper
phases listed in Table IV as a function of the size of the
unit cell. All values of g are remarkably close to the
ideal-glass result with the accuracy increasing with unit-
cell size. As the number of atoms in a unit cell gets
larger, the system is better able to approximate the irra-

A\
Y,

FIG. 16. Defect angle 8 for five perfect tetrahedra.
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FIG. 17. Value of g for the Frank-Kasper phases as a func-
tion of the unit-cell size.

tional value (3.30). In this sense, we can regard an ideal
glass as a Frank-Kasper phase with an infinitely large unit
cell.

It is interesting to repeat the above argument for parti-
cles embedded in a space of constant positive Gaussian
curvature k2. Prior to the relaxation, the integral on the
right-hand side of Eq. (3.25) assumes the value

LORIP—3=672/k (3.31)

where we have inserted the integral curvature of a 4D
sphere,*?

GR=6/k?, (3.32)

and the surface area 27«3 of a 4D sphere of radius k.

Assuming that this value is unchanged by the relaxation
process, we find that

Tigeat =27 /y)(1 =37 /kdNy) , (3.33)

where N =Y F; is the total number of bonds in the sys-
tem. Using Eq. (3.23), we see that N, is related to the
average coordination number Z and the total number of
atoms N,. We have
Ny=+N,Z . (3.34)
Inserting (3.34) into (3.33) and using Eq. (3.19) to elim-
inate Z in favor of G4, leads to an equation which is
easily solved for G4, One arrives in this way to the re-
sult Eq. (1.8a) quoted in the Introduction. The assump-
tion that the integral curvature remains unchanged under
relaxation is surely suspect in finite spaces like S3. We
would expect deviations of order 1/v/N,. This approxi-
mation is exact, however, for the ideal 120-particle tessel-
lation since the tetrahedra formed by the near-neighbor
bonds are already perfect. Inserting the curvature and
volume per particle of the ideal tessellation into (1.8a), we
find that
Tidea =~4.997717 . (3.35)
The small deviation from the exact result G;gea =35 for an
icosahedral lattice is related to Regge’s discretization pro-
cedure.
Equation (1.8a) can be applied to computer simulations
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of finite numbers of particles embedded in S3. This has
already been done for particles in S2 as an alternative to
periodic boundary conditions.®*® Such a simulation could
be used to study the glass transition in three dimensions
with the advantage that crystallization into lattices with
cubic symmetry is automatically inhibited. For particle
numbers such that

120<N, < o , (3.36)

the curvature is incommensurate, and the ground state
will be populated by an unpairable excess of icosahedral
disclinations. An approximate estimate of the factor kv /d
for N, particles gives

27 —3(6.46/N2"?)
cos~ ()~ 1(6.46/N2)

‘Tideal(Na )= (337)

For simulations of, say, 864 particles, which are well
within the limitations of modern computers,” we find

Tideal (864)=~5.078 , (3.38)

which is rather close to the result (1.8b) for an infinite
number of particles in flat space. _

Figure 18 summarizes results for § and Z in a variety of
different flat-space systems. Starting with a computer
simulation of liquid argon,®! these systems become pro-
gressively more ordered as g decreases. Note that the re-
laxed Ichikawa-Bennett model is further down on the
curve than a perfect bee crystal or an fcc crystal subjected
to an infinitesimal shear stress (7=5+ and Z=14). The
Frank-Kasper phases are clustered about the ideal-glass
value. This progression can be viewed as a gradual pair-
ing of plus and minus disclination lines until only —72°
disclinations are left in the “Frank-Kasper limit.” We ex-

Z =12/(6-9)
iquid Argon
Unrelaxed dense tia 9
random packing ~—
14— Relaxed dense
random packing
} Frank-Kasper Phases
13—
12—
A
T oL | |

5.0 5.1 52 1§

FIG. 18. Coordination number Z vs g for different kinds of
particle configurations.
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pect that increasing the number of 4-6 pairs will increase
Z (and, hence §) because there are many more coordina-
tion shells possible with multiple four- and sixfold bonds
for Z > 14 than for Z <14. If one excludes cooperative
rearrangements of the lines, there need not be a sharp
phase transition associated with this process. The ideal,
“fully paired” structure is presumably quite similar locally
to a Frank-Kasper phase. It need not be crystalline, how-
ever.

As the disclination network tries to become progressive-
ly more ordered, there are nontrivial kinetic constraints
due to entanglement of defect lines in a non-Abelian medi-
um.?’ When two non-Abelian defect lines attempt to
cross, they cannot simply break and reform. Instead, they
are joined by an umbilical defect ¥y =aBa~!8~!, where a
and 3 are SU(2) matrices in 7,(SO(3)/Y) characterizing
the crossing lines, and ¥ is the matrix describing the um-
bilical defect.’’ When two low-energy lines corresponding
to rotations about different axes in an icosahedral medium
cross, they always produce another low-energy line. If for
example, a=U (#y,—72°) and B=U (#5,—72°), straight-
forward matrix multiplication gives

y=Ul(#y, —T12°)U (A5, —T2°)U YRy, —72°)U ~ (75, —72°)
=U(fy,—T72°) . (3.39)

The rotation axes 7, 75, and 7, are defined in Fig. 9.

Chemical short-range order, believed to play an impor-
tant role in metallic glass formation, provides another im-
portant kinetic constraint. In metal-metalloid glasses, the
minority metalloid constituents are believed to be sur-
rounded by compact eight- and nine-particle coordination
shells.?® In amorphous Co-P, for example, every phos-
phorous atom is surrounded by a nine-atom cobalt coordi-
nation shell. These coordination shells are, in fact, just
the three-and four-line nodes for +72° disclinations
shown in Fig. 14. Thus, seeding cobalt with phosphorous
atoms amounts to seeding the material with nodes for dis-
clination lines with the “wrong” sign—Ilines which would
annihilate with their antidefect in the ideal-glass state.
The chemistry of alloys which readily form Frank-Kasper
phases presumably favors lines with the “right” sign.

It remains to be seen if a detailed and quantitative
theory of glasses and supercooled liquids can be construct-
ed using the ideas presented in this paper. It is neverthe-
less encouraging that, because the frustration scale «; ! is
so short, the defect density in a medium of icosahedra
must be very high. In the Frank-Kasper phases, approxi-
mately 40—60 % of the atoms occupy defect sites. Speci-
fying a disordered array of disclination lines essentially
specifies the positions of all atoms up to small vibrations.
Perhaps one can begin to understand why glasses appear
disordered, and have, at the same time, a very low entro-
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APPENDIX A: DEFECTS IN A CUBOCTAHEDRAL
MEDIUM

In two dimensions there are an infinite number of regu-
lar polygons which give rise to an infinite number of com-
mensurate particle packings as one varies «d in surfaces of
positive and negative curvature. The situation is quite dif-
ferent in three dimensions, where there are only a finite
number of Platonic solids. The most interesting case after
the 13-particle icosahedron is a central atom surrounded
by a six-particle cuboctahedral coordination shell. It is
straightforward to show using the metric (3.4) that the
eight tetrahedra which comprise a seven-particle cuboc-
tahedron acquire equal edges when

kd =kd =5m7~1.57 . (A1)

At this special curvature a 8-particle regular tessellation
of $3 is possible,®° such that each particle sits in a cuboc-
tahedral environment. The required curvature is signifi-
cantly larger than the icosahedral value (1.3). For curva-
tures such that

Ky <<k <K, (A2)

or, equivalently, computer simulations of N, particles in
S3 such that

8<N, <120, (A3)
the structure of the ground state can conveniently be
described in terms of line disclination defects in a cuboc-
tahedral medium.®? The algebra of these defects is given
by the homotopy group '

m(8)(3)/0)=0’ (A4)
where O is the point group of the octahedron, and O’ is its
lift into SU(2).

The same homotopy group describes line defects in a
liquid crystal composed of molecules with a cubic symme-
try.2> Cubic bond orientational order, in liquids composed
of isotropic particles, is also a possibility. As pointed out
in Ref. 36, cubic crystalline solids disordered by a random
array of dislocation loops should display a residual resis-
tance to torsion not present in an isotropic liquid. The re-
sulting anisotropic liquid is a cubic analog of the 2D hex-
atic phase. Line defects in such materials should form
closed loops with combination laws given by (A4).

Figure 19 shows the three fourfold, four threefold, and
six twofold symmetry axes of a cuboctahedron drawn in
projection. The eight classes of O’ are, in the notation of
Sec. IIC,



FIG. 19. Symmetry axes of a cuboctahedron drawn in projec-
tion about the fourfold axis labeled “1” at the origin. Vertex op-
posite “1”” is not shown.
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—
—

s {—1}’

{
={U(n,,90° U(A;, —90°) ,i=1,...,3},

@ 4={U(7;,270°), U (#;, —270°) ,i=1,...,3},
€i={U(#;,180°) ,U(f;, —180°) ,i=1,...,3},
€ 3={U(m;,120°) ,U(#;, —120°) ,i=1,...,4},
={U(m,,240) U(m;, —240°) ,i=1,...,4},

={U(J;,180°) ,U(];, —180°) ,i=1,...,6} .

The class multiplication table is displayed in Table V.
The class €4 (consisting of +90° disclination lines) is the
analog of the class of low-energy +72° disclination lines in

an icosahedral medium. According to Table V,
C4X € 4=6€ o+ C€5+3C;, (A5)

so two low-energy lines cannot combine to form a third
one. Unlike the icosahedral case, three-line nodes in a net-
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work of low-energy lines are impossible. As in the
icosahedral case, more exotic defects can be made ap-
propriately chosen bundles of low-energy lines.

Just as for icosahedral disclination lines, it is difficult
for two low-energy cuboctahedral lines corresponding to
rotations about different symmetry axes to cross. The
umbilical defect which results (see Sec. II C) is a 120° rota-
tion about a threefold symmetry axis. If, for example,
a=U(#,—90°) and B= U (7>, —90°), the resulting umbil-
ical defect is

y=aBa~ B~ '=U(#,, —120°) . (A6)

APPENDIX B: COMPARISON WITH THE BLUE PHASES
OF CHOLESTERIC LIQUID CRYSTALS

The free energy of a cholesteric nematic liquid crystal
is, in the one-Frank-constant approximation,”38

F=%Kf(ainj—40€ijknk)2 , (B1)
where 1 is a unit vector directed along a local uniaxial
symmetry axis. This free energy is clearly a specialization
of Eq. (3.12) to the case of a single unit vector, with

M =qo€k - (B2)
Sethna has, in fact, interpreted the operator acting on 1 in
Eq. (B1) as the covariant derivative appropriate to a
curved surface with both curvature and torsion.5
Meiboom et al.3”3% have argued that the blue phases of
cholesterics are a regular array of disclination lines. Net-
works of coreless + 1 disclinations are threaded by a con-
jugate defect network of ordinary —+ nematic disclina-
tion lines.’® Kléman!! has suggested that a similar conju-
gated network of disclination lines should appear in
glasses.

TABLE V. Class multiplication table for the group O’.

(go 70 %4 74 (gi %3 73 %2
70 (go 74 (g.‘ %% ?3 ng (gz
& 6Co+¥€3 6ZC o+ €3 Cat+Ca 4% 4+2% AZ ,+2%€ 2€343%,
4 +3%,; +3%, +2%, +3%;3+ %,
7z 6€o+¥€3 CatCa AZ 4 +2% 4% 4+2%€» 2€31+3¢,
4 +3%, +2%, +3%+ %€,
%2 6%0—{-6?0 3%3-}-373 3%3—}-373 4%4-{-474
4 +2E3+ €, +2%,
8€ o+2€2 8Fo+2%¢2 4€ 4+4€,
Cs +3€,3+%; +9%3+3%; +4%,
+ng +%2
z 8L o+2%€2 A€+ T,
3 +3%3+73+Cg2 +4%,
12€ 0+ 12%,
P +2¢€34+6%;

+6%;3+ %€,
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Although this is apparently not what occurs in the
Frank-Kasper phases, there is something reminiscent of
twisted cholesteric order in the 1D three-stranded “Bernal
spiral” particle packing shown in Fig. 20.> Bernal associ-
ated these arrangements of perfect tetrahedra with “col-
ineations” of particles he found throughout his dense-
random-packing models.?> A recursion relation which
generates the nth particle of the spiral given the preceding
three-particle positions is

- 2V3

Xp 23"71—-1""3511—24‘Xn—3i 3d (Xp_3—Xn_2)

X(Xpy_2—Xn_1)> (B3)
where the plus and minus signs give right- and left-
handed spirals, respectively, and d is the particle spacing.
Coxeter has shown that this spiral has an irrational pitch.’
Following the spiral along one of its strands for 10 links,
one returns to the original configuration shifted by about
6% deg about the spiral axis. Remarkably, this spiral fits
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FIG. 20. Three-stranded spiral formed by a 1D array of per-
fect tetrahedra.

perfectly into the 120-particle commensurate tessellation
of §3.%°7

True cholesteric order, however, would require an ex-
cess of, say, right-handed spirals over left-handed ones. It
is hard to see an energetic reason why structureless parti-
cles should exhibit a chiral broken symmetry. It can, in
fact, be shown that the ideal 120-particle tessellation of S3
is a “racemic” mixture of equal numbers of left- and
right-handed spirals. By allowing cholesteric molecules to
follow either the left- or right-hand set of spirals, one ob-
tains a perfect blue-phase liquid-crystal texture in $3.5*

1P. Chaudhari and D. Turnbull, Science A 199, 11 (1978).

2F. C. Frank, Proc. R. Soc. London Ser. A 215, 43-(1952).

3The energy of a 13-atom icosahedron is lower than the corre-
sponding fcc or hep clusters by 3.58¢ for a Lennard-Jones po-
tential where € is the Lennard-Jones energy parameter. The
difference arises because 42 bonds in an icosahedral cluster
are approximately at the minimum of the pair potentials, as
opposed to 36 bonds in fcc or hep 13-atom clusters.

4D. Turnbull, J. Chem. Phys. 20, 411 (1952).

5P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev.
Lett. 47, 1297 (1981); Phys. Rev. B 28, 784 (1983).

6M. R. Hoare, Ann. N. Y. Acad. Sci. 279, 186 (1976).

7H. S. M. Coxeter, Ill. J. Math. 2, 746 (1958).

8H. S. M. Coxeter, Regular Polytopes (Dover, New York, 1973).

%H. S. M. Coxeter, Introduction to Geometry (Wiley, New York,
1969).

10M. Kléman and J. F. Sadoc, J. Phys. (Paris) Lett. 40, L569
(1979).

11M. Kléman, J. de Phys. 43, 1389 (1982); in Continuum Models
of Discrete Systems, edited by O. Brulin and R. K. T. Hsieh
(North-Holland, Amsterdam, 1981); J. Phys. (Paris) Lett. 44,
L295 (1983).

123, F. Sadoc, J. Phys. (Paris) Collog. 41, C8-326 (1980).

13J, F. Sadoc and R. Mosseri, Philos. Mag. B 45, 467 (1982).

14F. C. Frank and J. S. Kasper, Acta Crystallogr. 11, 184
(1958); 12, 483 (1959).

I5D. R. Nelson, Phys. Rev. Lett. 50, 982 (1983).

16B. 1. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121; 41,
519(E) (1978); D. R. Nelson and B. I. Halperin, Phys. Rev. B
19, 2457 (1979).

17A. P. Young, Phys. Rev. B 19, 1855 (1979).

18], M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).

19D, R. Nelson, in Topological Disorder in Condensed Matter,
edited by F. Yonezawa and T. Ninomiya (Springer, Berlin,
1983).

20N. D. Mermin, Rev. Mod. Phys. 51, 591 (1979).

21A. M. Kosevich, in Dislocations in Solids, edited by F. R. N.
Nabarro (North-Holland, Amsterdam, 1979), Vol 1.

223ee, e.g., R. Collins, in Phase Transitions and Critical Phenom-
ena, edited by C. Domb and M. S. Green (Academic, New
York, 1972), Vol. II. As explained in this reference, the Dir-
ichlet and Voronoi constructions generalize the idea of a
Wigner-Seitz cell to 2D and 3D disordered particle arrays.
With this definition, bcc and fcc lattices have, respectively,
coordination numbers 14 and 12. As discussed in Sec. III, the
coordination number of an fcc lattice becomes 14 upon appli-
cation of an infinitesimal shear distortion.

23]. P. McTague, D. Frankel, and M. Allen, in Ordering in Two
Dimensions, edited by S. Sinha (North-Holland, Amsterdam,
1980).

24D. R. Nelson, Phys. Rev. B 26, 269 (1982).

25J. D. Bernal, Proc. R. Soc. London Ser. A 280, 299 (1964).

26See, e.g., F. Spaepen, in Rapidly Quenched Metals, edited by B.
Cantor (The Metals Society, London, 1979).

27J. P. Gaspard, R. Mosseri, and J. F. Sadoc, in Proceedings of
the Conference on Structure of Noncrystalline Materials,
Cambridge, England, July, 1982 (in press).

28The importance of the Frank-Kasper phases in understanding
disclination models of glass has also been pointed out by J. F.
Sadoc, Orsay report (unpublished).

29N. Rivier, Philos. Mag. A 40, 859 (1979); in Trans. Metals Soc.
AIME (Fall Meeting, 1982), edited by V. Vitek (in press).

30p. W. Anderson, in Ill-Condensed matter, edited by R. Balien,
R. Maynard, and G. Toulouse (North-Holland, Amsterdam,
1979).

31T, Ninomiya, in Topological Disorder in Condensed Matter,
edited by F. Yonezawa and T. Ninomiya (Springer, Berlin,
1983). In two dimensions, the analogous approach is to re-
gard disordered materials as mixtures of triangles and
squares. See R. Collins, Proc. Phys. Soc. London 83, 553
(1964).

32G. Toulouse, Commun. Phys. 2, 115 (1977).



28 ORDER, FRUSTRATION, AND DEFECTS IN LIQUIDS AND GLASSES

333, Villain, J. Phys. C 10, 1717 (1977); C 10, 4793 (1977); C 11,
745 (1978); E. Fradkin, B. A. Huberman, and S. H. Shenker,
Phys. Rev. B 18, 4789 (1978).

348, Teitel and C. Jayaprakash, Phys. Rev. B 27, 598 (1983).

35Although there are no physical examples of materials on sur-
faces of constant negative curvature, the mean Gaussian cur-
vature on a porous surface like Vycor glass is negative.

36D. R. Nelson and J. Toner, Phys. Rev. B 24, 363 (1981).

37S. Meiboom, J. P. Sethna, P. W. Anderson, W. F. Brinkman,
Phys. Rev. Lett. 46, 1216 (1981).

383, Meiboom, M. Sammon, and W. F. Brinkman, Phys. Rev. A
27, 438 (1982).

39W. F. Brinkman, D. S. Fisher, and D. E. Moncton, Science
217, 693 (1982).

40For recent experimental evidence supporting continuous melt-
ing into a hexatic phase for xenon films on graphite, see T. F.
Rosenbaum, S. E. Nagler, P. M. Horn, and R. Clarke, Phys.
Rev. Lett. 50, 1796 (1983). For experimental evidence of a
two-layer, hexatic liquid-crystal film, see J. Budai, S. C.
Davey, D. E. Moncton, and R. Pindak, Bull. Am. Phys. Soc.
28, 332 (1983).

41These figures are taken from a computer simulation of parti-
cles interacting with a repulsive 1/r potential by R. Morf.

42L. D. Landau and E. M. Lifshitz, The Classical Theory of
Fields (Pergamon, New York, 1971), Chaps. 10—12.

43C. W, Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(W. H. Freeman, San Francisco, 1971).

44M. Tinkham, Introduction to Superconductivity McGraw-Hill,
New York, 1975).

451. M. Singer, Physics Today 35(3), 41 (1982); see also W.
Drechsler and M. E. Mayer, Fiber Bundle Techniques in
Gauge Theories, Vol. 67 of Lecture Notes in Physics (Springer,
Berlin, 1977).

46D, S. Fisher, Phys. Rev. B 22, 1190 (1980), and references
therein. There is also a close analogy with rotating superfluid
He*; see W. F. Vinen, in Superconductivity, edited by R. D.
Parks (Dekker, New York, 1969), Vol. 2.

47C. H. Bennett, J. Appl. Phys. 43,2727 (1972).

5535

48This figure was prepared by M. Rubinstein; see M. Rubinstein
and D. R. Nelson (unpublished).

49H. Suzuki, in Topological Disorder in Condensed Matter, Ref.
31.

0A. Zippelius, B. 1. Halperin, and D. R. Nelson, Phys. Rev. B
22,2514 (1980).

51G. S. Grest, S. R. Nagel, and A. Rahman, Phys. Rev. Lett.
49, 1271 (1982).

52J.-F. Sadoc, J. Dixmier, and A. Guinier, J. Non-Cryst. Solids
12,46 (1973).

53A useful source of geometrical information on the icosahedron
is CRC Standard Mathematical Tables, edited by S. M. Selby
(The Chemical Rubber Co., Cleveland, 1970), pp. 15 and 16.

54We have used the standard result that F,’-‘j =gk’I“,~j, ; where

Tyr=5(0igy +9;81—3,8;;)
(see Refs. 42 and 43).

33R. Yamamoto, H. Shibuta, T. Mihara, K. Haga, and M. Doy-
ama, in Proceedings of the International Conference on Rapid-
Iy Quenched Metals, edited by T. Masumoto and K. Suzuki
(Japan Institute of Metals, Sendai, 1982), Vol. 1.

56T. Ichikawa, Phys. Status Solidi 19, 707 (1973).

57). L. Finney, Proc. R. Soc. London Ser. A 319, 479 (1970).

58J. Andrew Barker, J. L. Finney, and M. R. Hoare, Nature 257,
120 (1975).

%0ur value Z=13.38 for the u phase of Fe;W is different
from the result Z =13.2 quoted in Ref. 14.

60J. P. Hansen, D. Levesque, and J. J. Weis, Phys. Rev. Lett.
43, 979 (1983). For packings in S3, see A. L. Mackay, J.
Phys. A 13, 3373 (1980).

61A. Rahman, J. Chem. Phys. 45, 2585 (1966).

62For curvatures k> kx, the ground state is better described in
terms of an excess of + 72° icosahedral disclinations.

63]. Sethna (unpublished).

641 am grateful for discussions with D. Eardley on this point.
See also J. P. Sethna, D. C. Wright, and N. D. Mermin, Phys.
Rev. Lett. 51, 467 (1983). For a closely related calculation in
SO(3), see exercise 10.17 in Ref. 43.



