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Free-electron theory to first order in an empty-core pseudopotential, with radius determined spec-
troscopically, is found to predict successfully equilibrium spacings and bulk moduli for the rare-
earth metals. This provides also a simple two-body interaction, second order in the same pseudopo-
tential, for calculating other elastic and vibrational properties. For the light actinides a tight-binding
f-band theory is formulated, leading to interatomic matrix elements of the form
Vifm="1smtrs’/md’. Coefficients 74, are derived and r, values fit for the light actinides. Spin-
orbit coupling is included and a bandwidth obtained from a second-moment analysis to be used with
the Friedel model for the density of states in the calculation of energetics. It is found necessary to
include also the next-order correction to the interatomic interactions, a repulsion proportional to
#%r/°/md'? which, though small, is significant for the bulk modulus. With the use of pseudopoten-
tial core radii fit to the equilibrium spacing, the bulk moduli and thermal-expansion coefficients are
predicted. All contributions can be written as two-body interactions, but adjustment is needed before
using them to calculate properties. Inclusion of intra-atomic exchange fails to predict localization

15 JULY 1983

for americium.

I. INTRODUCTION

A few years ago Moruzzi, Williams, and Janak' carried
out a first-principles, self-consistent calculation of the en-
ergy bands for a major segment of the simple and transi-
tion metals in the Periodic Table. These were carried out
as a function of volume and the total energy summed to
obtain predictions for the equilibrium density, the
cohesion, and the bulk modulus, all in reasonable accord
with experiment. These results showed that the density-
functional theory of the electron-electron interactions and
the corresponding one-clectron description, the principal
approximation required to make these calculations possi-
ble, was adequate for understanding at least the ground-
state properties of these systems.

During the same period Andersen® developed the
atomic-sphere approximation and muffin-tin orbital
theory, also based upon density-functional theory, which
predicted the same quantities much more directly and
much more simply. The interpretation of the electronic
structure in terms of the atomic-sphere approximation was
explored extensively by Pettifor.> It is found that many of
the details of the band structure are quite inessential to the
prediction of these cohesive, or bonding, properties.

More recently Harrison and Froyen*® combined one of
the features of Andersen’s muffin-tin orbital theory with
the older transition-metal pseudopotential theory>® to ob-
tain a very much simpler, and perhaps more physical, for-
mulation of the d-band structure of transition metals. In
this formulation the electronic states are separated into lo-
cal, nonoverlapping d states and free-electron states with
coupling between them. The muffin-tin orbital theory, in
contrast, treated all states on a similar footing in terms of
s, p, or d symmetry. Still more recently Harrison and
Wills” and Chelikowsky® found that the bonding proper-
ties of simple metals could be very well described in the
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context of Fermi-Thomas theory. This was a sufficiently
great simplification to bring the calculation of elastic and
vibrational properties of simple metals down to the level
where they could even be carried out by hand.

The present study has a twofold purpose. The first is to
extend the Harrison-Froyen theory to the light actinides,
systems where f bands play the role which the d bands
play in transition metals. This is achieved by including
the effects of spin-orbit coupling and the effects of
nonorthogonality in shifting the band center, neither of
which were included in the earlier theory. The second
purpose is to combine the simple theory of the f bands
with the simple Fermi-Thomas theory of the free-electron
component to obtain an elementary systematic theory of
the f-shell metals.

We have reason to be optimistic about this separation of
contributions for the light actinides since a similar effort
by Johansson and Skriver’ has indicated that a model for
the actinides based upon the Friedel Model'® for the f-
band density of states and Murnaghan’s phenomenological
equation of state for the electron gas was quite consistent
with the results of the full calculations by Skriver, Ander-
sen, and Johansson.!! Johansson and Skriver took Th, Pa,
and U to be tetravalent, but we treat them all the same, as
trivalent.

We begin in Sec. II with a direct application of simple-
metal theory'? to the rare-earth metals and heavy ac-
tinides, where any effect of the f states on the bonding is
suppressed by the localization of the electrons. We find
that the theory applies as well as it does for the simple
metals, though states in the rare-earth metals unquestion-
ably contain considerably more d character. Pseudopoten-
tial parameters obtained from the first ionization potential
of the atom are close to those we obtain by requiring that
the theory lead to the correct equilibrium spacing of the
metal. We list the pseudopotential core radii so derived
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28 ELECTRONIC STRUCTURE OF f-SHELL METALS

and test the model by prediction of the bulk modulus for
these systems. Finally, we see that we may describe other
properties of the metals using the simple Fermi-Thomas
form,

Vold)=Z%%cosh’kr,e ~*%/d ,

for the two-body interaction.

We then turn to the analysis of the f bands for the light
actinides. In Sec. III we derive formulas for the inter-
atomic matrix elements between f states and give the pa-
rameters needed to evaluate them; this follows closely the
earlier theory for d states. In Sec. IV we derive the matrix
elements associated with spin-orbit coupling and the need-
ed parameters. These together are enough to allow an ele-
mentary band calculation for the f-like states. However,
we only use them in Sec. V to evaluate the second moment
of the f bands, and we then use that second moment to de-
fine the f-band width in the Friedel model for the density
of f states. In Sec. VI we proceed to higher order in the
coupling to obtain the shift in the center of gravity of the
f band, and we collect all contributions to the energy in
Sec. VIL. In Sec. VIII we construct the state of each ac-
tinide, both with and without f-band localization, and cal-
culate the bulk modulus and thermal-expansion coefficient
for each observed state. In Sec. IX we see how these terms
in the energy can be represented as two-body interactions.
In Sec. X we introduce intra-atomic exchange and consid-
er criteria for a ferromagnetic state and for f-state locali-
zation.

II. APPLICATION OF SIMPLE-METAL THEORY

We begin with a direct extension of the simple-metal
theory, given in Ref. 5, to the f-shell metals, leaving out
any role of the f states. This is treating the sd-electron
gas the same as an sp gas for a simple metal. It is not ob-
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vious that this is appropriate but the present study strong-
ly supports it. The energy of the electron gas of Z elec-
trons per atom, to first order in the empty-core pseudopo-
tential of radius r, is'?

3Z#kE  Z%%akp  3Ze*kp 2Zerik}
= "om (1872 4r T 3x

(1)

per ion. The first term is the electronic kinetic energy.
The second is the Madelung energy; we take a=1.8, suit-
able for all metallic structures. The third term is the ex-
change of a free-electron gas, and the fourth is the shift
due to the empty-core pseudopotential. For our purposes
it is preferable to write this result in terms of the number
of free electrons per ions Z; and the atomic volume Q.
This is done by noting kp=(37°Z,/Q)'/?. Then Eq. (1)
becomes

21.882273
fe= s

10.64Z%3  90.48Z2r2

20.89Z2
01/3 + Q

Ql/3

)

in electron volts per ion, with 7, in Aand Qin A3.

We could substitute pseudopotential core radii for the
systems for which they were obtained from known pseu-
dopotentials or atomic spectra from Ref. 5 and make a
direct prediction of the equilibrium volume by minimizing
Eq. (2). An equivalent test can be made by reversing the
process. We then determine from Eq. (2) what core radii
would lead to the observed equilibrium spacing and com-
pare these with the radii obtained earlier. This gives a
consistent set of », values to be used in other applications
and still allows comparison with whatever pseudopotential
core radii are available from other sources.

The values of r, so deduced are listed in Table I and

TABLE I. Parameters for the rare-earth metals and light actinides.

B (102 dyn/cm?)

Z ro (A) re (A) Theory Experiment® k (A1)

Cs 1 3.00 1.39 0.018 0.020 1.24
Ba 2 2.47 1.05 0.13 0.10 1.53
La 3 2.08 0.84 0.55 0.24 1.79
Ce 3 2.02 0.81 0.61 0.26 1.82
Pr 3 2.02 0.81 0.61 0.30 1.82
Nd 3 2.01 0.80 0.62 0.24 1.82
Pm

Sm 3 1.99 0.79 0.64 0.29 1.83
Eu 2 2.27 0.95 0.18 0.15 1.60
Gd 3 1.99 0.79 0.64 0.39 1.83
Tb 3 1.95 0.77 0.69 0.40 1.85
Dy 3 1.96 0.78 0.68 0.39 1.84
Ho 3 1.95 0.77 0.69 0.40 1.85
Er 3 1.94 0.77 0.71 0.41 1.85
Tm 3 1.93 0.76 0.72 0.40 1.86
Yb 2 1.99 0.80 0.30 0.13 1.71
Lu 3 1.92 0.76 0.74 0.41 1.86
Fr 1 3.07 1.43 0.016 0.02 1.23
Ra 2 2.49 1.06 0.13 0.13 1.53
Ac 3 2.10 0.84 0.52 0.25 1.78

2K. A. Gschneidner, Jr., in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic, New

York, 1964), Vol. 16, p. 275.
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FIG. 1. Dashed line gives the pseudopotential core radius for
the rare-earth metals (and elements preceding them) chosen to
lead to the observed atomic volume if they are treated as simple
metals of valence 1 for Cs, 2 for Ba, Eu, and Yb, and 3 for the
rest. The solid circles, from Ref. 5, are taken more directly from
pseudopotential theory. The solid line, and solid squares, are the
corresponding results for the actinides.

plotted as the dashed line in Fig. 1 and compared with
values obtained'? from Ref. 5 (except for the value for Ba
which was recalculated from the node in the pseudopoten-
tial form factor). We include the alkali metal and alkaline
earth metal which preceded each f-metal series. The
values are remarkably close, particularly for the rare-earth
metals themselves, for which ., was obtained from the
atomic spectra. This justifies the extension to the rare-
earth metals and gives us revised values of r., listed in
Table 1.

The fluctuation at europium is associated with its di-
valency, while its neighbors are trivalent. The same term
values were used in the spectra, so there is no fluctuation
in the spectroscopic values, but the significant difference
in volume means that the empty-core fit is made under a
different condition. This could be interpreted as a sugges-
tion that in one material a different r, should be used if
the volume is altered very significantly. If we were to
treat any property of europium or ytterbium at a reduced
volume it could be preferable to use an r, close to its
neighbor values.

We plot also in Fig. 1 values of 7, for the actinides de-
duced in the same way, except for Th, Pa, U, Np, and Pu,
which are strongly influenced by f bands. The r, values
for those, included in the figure, will be deduced after we
have treated the f bands. The value for americium was
taken as 0.80 A rather than the 0.75 A which fit the ob-
served lattice parameter. This makes it nearly equal to the
value for its neighbors. We have more confidence in the
smooth variation of these atomic parameters than in the
direct relation with atomic volume. The values lie re-
markably close to the lanthanide values and not too far
from the earlier estimates for Th and U. The discrepan-
cies there may well be due to relativistic effects which
have significant effects on the spectra but, as we shall see,
have little effect on the total energy. There is certainly no
evidence for new difficulties arising in the actinides (ex-
cept for the f banding), so that this supports our use of the
free-electron theory there also.

As a second test of the extension to actinides we may
directly predict the bulk modulus B =Q0d2E /9Q? from
Eq. (2) using the parameters in Table I. The resulting
values are listed also in Table I and compared with experi-
ment. The errors are larger in the actinides than in the al-
kali metals and alkaline earth metals but this is presum-
ably from greater sensitivity due to greater cancellation.
Similar discrepancies arise’ in aluminum and indium, in
comparison to their divalent and monovalent neighbors.
We take these results as confirmation of the validity of the
extension, though the numerical accuracy is not high.

This description of the electronic structure has given us
only the dependence of energy upon volume. It would
seem likely that Chelikowsky’s method® would allow sim-
ple estimates, based on properties of the free atom, of the
cohesion also, as they did for the other simple metals. It
would appear also that the simple analysis of two-body
forces, based upon Fermi-Thomas theory, given by Har-
rison and Wills’ should be directly applicable. This allows
predictions of elastic properties, vibrational spectra, etc.,
in terms of the parameters of Table I. This two-body in-
teraction is given by

cosh’kr,e %4 /d . (3)

V() ( d )=Z 52 e 2
The Fermi-Thomas screening parameter,
=(4e%kpm /mt*)'

has been added to Table I for that purpose. Note in par-
ticular that this allows an independent calculation of the
bulk modulus in terms of the velocity of sound waves.
(The equality of the two is not guaranteed because of the
explicit volume-dependent terms.) It gives values similar
to those in Table I: for example, 0.015, 0.098, and
0.393 % 10'? erg/cm? for Cs, Ba, and La.

Direct predictions, such as those given by Harrison and
Wills for the simple metals,” may be of interest. One may
also adjust parameters (such as the screening parameter
and 7,) in order to model the real systems with a form
close to a theoretically derived one.

III. DETERMINATION OF THE f-f MATRIX
ELEMENTS

The elementary theory of transition metals*> was based
upon transition-metal pseudopotentials® and an assump-
tion due to Andersen'# about the zero of the muffin-tin
potential. This theory leads to a free-electron band of en-
ergy (k| W |Kk)+#%2/2m with states |K) coupled to
the atomic d states by
172

—

4‘rrr3
3Q

(K|a)a)y=Tk
m

—
J

YO, p)e XTI

(4)

where r; is a radius characteristic of the element (with a
value of order 1 A), Q is the volume of the system, Y75 is
the spherical harmonic associated with the state |d) at
T, and its argument gives the: orientation of kK with
respect to the axes for the d states. The d states in turn
are found to be coupled to each other by

Vddm =7’ddmﬁ2r3/(mds) ’ (5)
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where m is the angular momentum about the axis (of
length d) between the two atoms in units of #. The
Koster-Slater notation for the coupling is (ddm)= "V ,,.
The coefficients 144, are Nggo= —45/7, Ngg.=30/7 ,
and 1gqs= —15/27 for m =0, 1, and 2, respectively.

The inclusion of f-like states is closely parallel to the
earlier treatment of the d states. We follow the procedure
as described in Ref. 5 (see p. 512). The state | K) is writ-
ten as an orthogonalized plane wave (OPW) and expanded
in spherical harmonics and spherical bessel functions
around one atomic nucleus. The perturbation A which
couples this OPW to the atomic f state arises from the
difference in potential 8V between the metal and what it
would be in the free atom, since if the f state were an
eigenstate of the Hamiltonian it would have no matrix ele-
ment with any function orthogonal to it. At this stage we
make Andersen’s approximation to the potential in the
metal.!* We take it to be the atomic potential within a
muffin-tin sphere and to be the f-state atomic energy out-
side; we may choose the sphere radius such that this po-
tential is continuous, but this is not necessary. The 8V is
zero within the muffin-tin sphere and equal to
€5 — Vatomic(7) outside. It is equivalent to use a plane wave
rather than an OPW if we take A=8V—(f |8V |f).
After the angular integration the matrix element becomes

— 4 m .
(K|A|f;m) =T YT O0pe) [ 3(knAR,(Prdr

(6)

where R, is the radial f-state wave function. Since the f
state is strongly localized the spherical bessel function
may be expanded for small 7, keeping only the leading
(kr)} term. The integral is actually most conveniently per-
formed by using the Schrddinger equation to write A in
terms of the kinetic energy operator, so only the function
R, ; is needed and not the potential. Then we see from Eq.
(6) that if the k3 in the leading term for j; is taken out of
the integral, the remaining integral depends only on the
f-state radial function and the result may be written

3 1172
dmry #2k?
3Q

(k|A|f,m)= krr Y2 (61, @%) 5

@)

where 7, depends only upon the atomic f state. This pro-
vides a particularly clear way to write the scale factor aris-

ing from the integration. This is analagous to Eq. (4)
KT,

above for the d state. An additional factor e = '/
should be inserted so that the origin of coordinates need
not be taken at the atom in question.

We then obtain the coupling between f states on dif-
ferent atoms as a second-order coupling through the con-
duction electrons,

(11 | )= AL LALRULIALN ®
k f—Ek

If we again take the form Andersen assumed for the po-
tential, the denominator may be written simply as
#2k2/(2m). Then using the form of Eq. (7) for the matrix
elements the integrals may be performed analytically. It is

not difficult to see that the result will be a numerical con-
stant times ﬁzrfs- /md’. The integration follows closely the
one given for d states in Refs. (4) and (5), leading to

Vifm=mNsrmfri/md’ , 9)
with

Nro=200525/2m), my5=6(525/2m)

Npra=—15(525/2m), mprp=—(525/21) .

(10)

It would be possible to calculate the 7, for each element
from the known atomic orbitals, as Froyen did for the d
states.* However, Froyen found that the small-k approxi-
mation used was of limited accuracy and depended upon
the choice of muffin-tin radius; his values were in error by
a factor of approximately < in comparison to values ob-
tained by fitting more accurate band calculations. Here
we shall therefore also obtain our parameters 7, from cal-
culated bandwidths. In Table II we present values fit to
bandwidths obtained by Skriver!® as discussed in Sec. V.

We may note that a similar calculation can be carried
out to obtain matrix elements

(1n

with coefficients obtained by Wills.!” Further, the pro-
cedure used in Ref. 5 could be used to obtain Vg, for cou-
pling with s and p states of the form

'qlf,,,ﬁzr;/z/mdw2 .

Vifm =Ndfm ﬁz(r,gr,§ )2 /md®

IV. SPIN-ORBIT COUPLING

A calculation of the electronic states based upon the
simple muffin-tin potential described above, using
Schrodinger’s equation, neglects relativistic effects which
can become significant in the heavier elements, and the ac-
tinides in particular. Most relativistic effects simply
modify the potential and therefore can be incorporated in
the parameters, such as ry, which enter the calculation.
However, the spin-orbit coupling is of different form and
shall be considered here. We find in the end that it has lit-
tle effect on the total energy.

Spin-orbit coupling arises ultimately from the magnetic
interactions between the electron spin and the field arising
from its orbit. We treat it as a one-electron effect as we
did the effects described in the preceding section. The
form of the spin-orbit (so) term in the Hamiltonian is'®

1 13V-
=il s or 1o, (12)

SO

where V (r) is the spherically symmetric potential seen by
the electron, and T and & are the orbital and spin angular
momentum operators. The form is readily derived as the
magnetic interaction of a moment e &’ /m interacting with
the magnetic field —VXE/c? seen by an electron moving
with velocity V through an electric field E proportional to
dV /dr; the factor of % comes from a relativistic correc-
tion. In our treatment of f bands spin-orbit coupling will
enter always through the intra-atomic matrix element,

# « 13V 3
Vsosz(pf';—gr—(pfd r. (13)
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TABLE II. Atomic parameters for the actinides. f-electron number Z;, atomic-sphere radius 7,
empty-core pseudopotential radius r., f-state radius s [adjusted to band values from Skriver (Ref. 15)],
spin-orbit coupling ¥V, [fit to values from Herbst et al. (Ref. 19)], intra-atomic Coulomb repulsion U
and exchange interaction U, [both from Nugent et al. (Ref. 16)], d-band width W at the observed den-
sity [values from Skriver (Ref. 15) used to obtain 7, except where W;=0 due to localization].

Ac Th Pa U Np Pu Am Cm
z 0 1 2 3 4 5 6 7
ro (A) 2.10 1.99 1.81 1.70 1.66 1.68 1.91 2.03
re (A) 0.85 0.87 0.83 0.81 0.80 0.80 0.80 0.81
r (A) 0.98 0.79 0.70 0.66 0.63 0.61 0.61
Vi (V) 0.17 0.20 0.24 0.26 0.33 0.39
U (eV) 23 1.7 1.9 2.0 44 3.9 7.0
U, V) 0.111 0.134 0.146 0.160 0.178 0.198
WP (eV) 7.08 3.58 3.71 424 3.93 3.10 0 0
Kk (A1) 1.82 1.83 1.92 1.98 2.00 1.99 1.87 1.81

We shall see that ¥V, is of order 0.3 eV in the actinides.

In evaluating matrix elements of Eq. (12) for a band cal-
culation one requires also the matrix elements of 17,
which would be most conveniently written in terms of
raising and lowering operators for the angular momentum
and spin. For our purposes it will be simpler to write in
terms of the total angular momentum operator T =1+7
for the individual electrons, as one might do for the free
atom. Then

G T=(j2=T2—ay/,2.

For the free atom we may construct one-electron eigen-
states of 72 with eigenvalues equal to #%(j + 1), where
the j are integers. For f states, /=3 and 0=+, and the
seven f levels with two spins become six eigenstates of
j == and eight eigenstates of j = % These are eigenstates

of &+ 1 with eigenvalues
ALG+1D)—-33+1D)—5 (2411,

leading to diagonal matrix elements of H,, —2V,, and
3V /2, respectively. The value of ¥, could be obtained
for the free atom or we can conveniently take it from the
calculations by Herbst et al.'®; we list in Table II the value
of V,, obtained as % of the average of the difference be-
tween the tops and bottoms of the + and % bands which
they obtained in an atomic-sphere approximation, analo-
gous to a free-atom calculation. Similar values can be ob-
tained spectroscopically from actinide solutions.?® This
same form for & 1 will suffice for our calculations also.

V. THE f-BAND WIDTH

In our total energy calculation the density of f-band
states will be approximated by a constant 14/W, over the
width of the f band Wy, so the calculation of total ener-
gies is trivial once W, is given. The most convenient way
to obtain Wy is to evaluate the second moment of the f
band in terms of the interatomic and spin-orbit matrix ele-
ments and to choose a Wy to give the same moment. This
is the method of moments, similar to that used by Lannoo
and Decarpigny.?!

To obtain the second moment we imagine writing down
the Hamiltonian matrix for the complete set of f orbitals

for the N, atoms in the crystal. If this were diagonalized,
subject to periodic boundary conditions, it would yield
each of the 14N, (a factor of 2 for spin) band states for
the crystal, unhybridized with the s, p, and d bands since
those are not incorporated in the Hamiltonian. It is con-
venient to imagine the orbitals taken as real (combining
states e"# and e ~"? as cosm¢ and sinm¢) and the spins
as =+. Then every diagonal element is the f-state energy
€; and we may take it equal to zero by measuring all ener-
gies from that origin. There are interatomic matrix ele-
ments coupling states on neighboring atoms which may be
obtained in terms of Eq. (9). There are also matrix ele-
ments of the spin-orbit interaction between orbitals on the
same atom. The square of the Hamiltonian matrix
(H?);;=Y3 HyHy; has eigenvalues which are the square
of the energy, measured from €s. Thus the second mo-
ment of the energy band is simply the trace of this squared
matrix (H 2),~j (which does not change in the diagonaliza-
tion) divided by 14N,:

1
Hy Hy; . (14)
14Nai,2k ikt ki

( (E, k—€f )2) =
There are two nonvanishing sets of terms in this sum.
First are those for which i and k represent orbitals on
neighboring atoms. We select out of those terms the set
corresponding to i designating an orbital on a particular
atom, and k designating an orbital of the same spin (since
the interatomic matrix elements between states of different
spin vanish) on a particular neighboring atom. The sum
of these terms is the trace of a 7X7 matrix (for the seven
orbitals on the first atom) with matrix -elements
> «HiyH;; based upon this particular set of interatomic
matrix elements. This sum over k is unchanged if we
make a unitary transformation to orbitals k with angular
momentum quantized around the internuclear axis, and
the trace is unchanged if we transform to orbitals i and j
with this quantization. For that particular choice the
77 matrix is diagonal and the trace is obtained trivally
as

Vito+2Virn+2Virs+2Viss -

There is such a contribution for each of the n nearest
neighbors to the first atom and N, such atoms. (We shall
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take n =12 in our evaluations.) We may multiply by 2 for
spin to obtain a contribution to Eq. (14) of

n
(Ex =P inier="Vso +2V o +2Vigs + 2V 74)

(15)

The second set of nonvanishing terms comes from ma-
trix elements of the spin-orbit coupling interaction in
which /i and j designate orbitals on the same atom. The
trace of each of these 14 14 matrices is unchanged by
transforming to eigenstates of &+ 1. We have seen that for
these H,, is diagonal with six diagonal elements —2V,
and eight diagonal elements 3V, /2. The corresponding
trace of the squared matrix is 422, and adding the con-
tribution for each of the N, atoms we obtain a contribu-
tion to Eq. (14) of 3V2.

We may equate the resulting second moment to the
second moment of a constant density of states:of 14/W,
for energies

Ef—%Wf<E<€f+%Wf .
That moment is

(Ex—ep)?)=W}/12,
leading to

Wf—(Wf) +36Vso , (16)

where W}) is the bandwidth without spin-orbit coupling,

172
12
W= |~ (Vi + 2V +2Vs+2Virg)
— 3150 #ir} 2
— V11 s zg/3<4.31rf>5, a7

=vn
m

T md’

with Qg the atomic volume. This result will be central to
our treatment of the bonding properties of the actinides.
It is interesting that the spin-orbit term and the band
terms add as the sum of squares. Spin-orbit coupling is
already small but because it adds to the total energy this
way its effect on the bonding is further suppressed, and
may reasonably be neglected as we shall see in Sec. VII.

We may now also see how the values for r, were ob-
tained from the bandwidths obtained by Skriver!® using
the atomic-sphere approximation. He specifically ob-
tained f-band masses u, in terms of which the f-band
width may be obtained as Wf 22.5% /(1 fmro) with the
atomic- sphere radius r, related to the atomic volume by
Qo=4mr}/3. These were obtained without the spin-orbit
term, so Eq. (17) was used to obtain ry. The values ob-
tained for Wf, rs, and the ry used are listed in Table II.
One estimate of the degree of significance of these values
can be obtained from Skriver’s calculations of the f-band
masses for americium also at a volume 31% smaller than
observed. This indicated a bandwidth varying as d~ 59
rather than d~7 and an ry value of 0.60 A at the
smaller spacing, rather than 0.61 A.

VI. THE SHIFT IN THE f-BAND CENTER

In the preceding section we obtained the second mo-
ment for the bands arising from the coupling between lev-
els on neighboring atoms. If these orbitals were orthogo-
nal to each other, the corresponding Hamiltonian matrix
would be Hermitian and the diagonalization would not
shift the average energy of the bands. In fact our starting
f states were taken as nonoverlapping and therefore
orthogonal, but the coupling between states arose through
the free-electron states. A way of stating the method of
calculation, equivalent to what we did, is to say that we
computed the coupling of first-order f states,

(ULY=S | kK|A| )/ #K>/2m) ,
k

leading directly to Eq. (8). A calculation similar to the
evaluation of Eq. (8), but without the Hamiltonian, shows
that the first-order states (which we might regard as ap-
proximations to Andersen’s muffin-tin orbitals'¥) are not
orthogonal. They have an overlap given by
Spr=3(f|A| KK |A|fY/(FK2/2m?* . (18)
k
In obtaining this we noted that (f’|k) and (K |f) are
zero and that (K'|K)=8;4. This expression is of the
form of the matrix element in Eq. (8), except for an addi-
tional factor of #?k2/2m in the denominator. It has been
evaluated by the same method to give

Sff,,,:affm(rf/d)s, (19)
with
105 105
Opre==815 " orre=—4|5—|>
(20)
7 105 105
Ua=T\ % | Tme= |5

The eigenvalues for two coupled degenerate levels with
overlap S are easily written down, the eigenstates being the
normalized even and odd combinations. The result is??

L SUH[2)

Ey—et (11H|2)
- 1-S?

1-S8?

(21

We have obtained our matrix elements from the band
splitting and so (1|H |2)/(1—S?) is to be identified
with the appropriate Vg, and the shift in the center of
gravity from Eq. (21) becomes simply —Syz, Vifn. For
weak coupling we may sum the shifts from different in-
teractions and the evaluation of the total shift in energy
becomes very much the same as the evaluation of the
second moment. The average shift in energy of the seven
levels on one atom due to nonorthogonality with levels on
a particular neighbor is

1

8?f=—(‘7') 2 Sffm fom

m=-—3,43
=#(3.11r;)'°/md "

=12(2.71r;)1°/m Qg .
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This should be multiplied by the number of neighbors » to
obtain the shift in the center of the band, and then by Z,
to obtain the contribution to the total energy per ion due
to this nonorthogonality.

We see that this is the next term in the expansion of the
energy in A or in r}/z. It is comforting that it is small, 0.5
eV per ion in uranium, suggesting that we are safe in trun-
cating the expansion. However, because of its rapid varia-
tion with distance and because of cancellation among oth-
er terms, we shall see that it is not negligible in the ac-
tinides.

VII. THE CONTRIBUTION OF THE f-BAND
TO THE ENERGY

In obtaining the total energy from simple-metal theory
in Sec. II we neglected all coupling between f-like states in
the rare-earth metals and heavy actinides, and therefore
neglected their contribution to the energy. We shall see
more clearly in Sec. X why that is appropriate. Now we
need to directly add the contributions to the energy from
that coupling. Because of the nonorthogonality we first
add Z;n 8&; for each ion. The f levels then broaden into
a band of width Wy, and by filling only the lower states
we gain an energy

8Epama =Z;(1—Z; /1) Wy /2 ,

with Wy given by Eq. (16). There might finally be a
change in energy due to redistribution of electrons between
the f band and the free-electron band but we shall contin-
ue to treat the metals as trivalent and neglect such redistri-
bution. Thus we are simply to add the nonorthogonality
term and the band term, Eq. (23), to the free-electron ener-
gy of Eq. (2), and proceed with the volume-dependent
properties as in the rare-earth metals.

We first consider the specific effect of spin-orbit cou-
pling. From Eq. (23) we see that the shift in energy with
volume is proportlonal to the shift in W, and from Eq.
(16), since only Wf varies with volume, we see that

AWy Wy oWy
3 [(WP2+36V2]2 30

(23)

(24)

The only effect of the spin-orbit coupling is to reduce the
effect of the bandwidth by the leading factor, which may
be evaluated using Table II. It is 0.96, 0.96, 0.94, and 0.89
for Pa, U, Np, and Pu, respectively. These corrections are
so small that we shall proceed with the rest of the analysis
without spin-orbit coupling but will note the magnitude of
the effect when we discuss Fig. 2.

We may combine Egs. (17), (22), and (23) to obtain the
contribution of the f bands,

#(2.71r;)'°
m Qg
VnZi(1—Z;/14) #44.31r})
- 2 mQl/3

Efp=nZ;

(25)

This is to be added directly to Eq. (2) for the free-electron
contribution to the energy. [Actually the first term
should, in principle, be added to Eq. (2) even when the f
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electrons are localized, but we shall see that it is small
even in the light actinidies and becomes quite negligible at
the larger atomic volumes associated with the localized
electrons.]

VIII. THE VOLUME-DEPENDENT PROPERTIES

We could first minimize the energy to obtain the equi-
librium spacing, but as for the rare-earth metals we have
turned that around and used that calculation to obtain the
re of Table II, which are consistent with the observed
spacing. The calculation is done by setting the pressure,

P=3(Es, +Ef) /30,

equal to zero at the observed volume. The resulting r, are
only good to a percent or so since 7s is given only to two
decimal places.

We plot in Fig. 2 the observed atomic-sphere radii,
which are fit by our free-electron calculations for Fr, Ra,
and Ac. For the next elements we have calculated the
atomic-sphere radii which would occur if there were no
J-band formation; using our parameters, but setting 7, =0,
we minimize the energy. This gives a curve much like
that for the lanthanides. The difference between this
curve and the observed radii is our calculated effect of the
f bonding. We have chosen the pseudopotential core ra-
dius to vary continously through americium, rather than
using the observed radius to determine r.; thus the ameri-
cium point does not lie on the line though we regard the
electrons as localized. In this context the observed ameri-
cium radius is smaller than expected. We also used our
parameters to calculate the radius which would be expect-
ed for americium if f bands did form. It appears as the
open circle. This figure nicely demonstrates the picture of
two alternative states for the actinides with the cross over
occurring at americium in accord with Skriver, Andersen,
and Johansson.!!

We may discuss the role of spin-orbit coupling in the
context of this figure. Since we have fit the pseudopoten-

30~ .

2.0+ ) -

o

15 L | | | | | | L | |
Fr Ra Ac Th  Pa ) Np Pu Am  Cm

FIG. 2. Points are the experimental atomic-sphere radii for
the actinides. The line indicates values obtained if the effect of
the f bands is subtracted off. For americium r. was chosen for
consistency with its neighbors so the line does not contain the ex-
perimental radius. The open circle is the expected radius if there
were f bands.
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TABLE III. Prediction of the bulk modulus Q%3%E /3Q? (eV /ion) for the light actinides.

Ac Th Pa U Np Pu Am
Free electron 12.59 19.66 27.34 34.17 36.71 34.76 17.93
f band 0 —12.48 —24.44 —38.83 —44.07 —38.80 0
f overlap 0 3.11 5.80 10.24 11.41 8.95 0
Total 12.59 10.29 8.70 5.58 4.05 4.91 17.93
Expt. 6.05 12.48 15.32 9.16 6.65 6.65

tial core radii to obtain the observed radii the inclusion of
spin-orbit coupling would simply have lowered the curve
in Fig. 2 by 4%, 4%, 6%, and 11% of the distance be-
tween it and the points for Pa, U, Np, and Pu, respective-
ly. These are slightly smaller corrections than the esti-
mates by Brooks,”* but they do not greatly alter the pic-
ture in any case and it appears justified to neglect them.

We could also estimate the extra cohesive energy due to
the presence of the f bands. This was in fact done by
Johansson and Skriver® and our treatment of the f states is
sufficiently close to theirs that we could also expect rough
accord with experiment.

Of more interest here are direct predictions of the bulk
modulus B =Q3%E /302, with E the energy of the system
of volume . There are contributions from the free-
electron energy of Eq. (2), and from the repulsive overlap
and band-broadening terms given in Eq. (25). It is of in-
terest to list these separately, and this has been done in
Table III. B has units of energy per unit volume but we
prefer to give contributions in electron volts per ion. To
obtain the usual form one may multiply our results by
1.63>< 10~ 2 ergs/eV and divide by the atomic volume in
cm’.

These results are quite interesting. As quantitative pre-
dictions they may not be impressive, but the errors are
small compared to the very large individual and cancelling
contributions; the errors in the total prediction correspond
to quite small errors in individual contributions. The f-
overlap term, which we have indicated is small, was in
fact essential to obtaining a positive bulk modulus and
therefore a stable system, for U, Np, and Pu. If one
wished to use this theory for predictions of other proper-
ties, it would be desirable to adjust one of the parameters
to obtain the correct bulk modulus rather than proceed
with direct prediction as we have done here.

A final interesting volume-dependent property is the
thermal-expansion coefficient. We first compute the
Griineisen constant from Egs. (2) and (25):

Q dB Q*’E /308 ‘

1
T 2BdQ T 2 26)

0O23%E /302

The results for the actinides with f bands are given in
Table IV. For these third derivatives, the overlap repul-

sion is even more important than in the bulk modulus.
The coefficient of thermal expansion is related to the
Griineisen constant by

a=yCy/3B , 27)

where Cy is the heat capacity at constant volume, approxi-
mately 3k per ion. In this evaluation, kz=86.20% 10~¢
eV/K and we use theoretical values for both y and B. The
accord with experiment is remarkable for Th, Pa, and Am,
but clearly there is an additional source of thermal expan-
sion for U, Np, and Pu which is not included in the
theory. There is very considerable cancellation between
the two terms in the Griineisen constant and it would not
have taken large changes in parameters to obtain a nega-
tive ¥ and therefore a negative a as observed in § plutoni-
um.

IX. REPRESENTATION AS A TWO-BODY
INTERACTION

All of the properties discussed in Sec. VIII were ob-
tained from the energy as a function of volume alone. As
indicated at the close of Sec. II, we would also like to dis-
cuss the change in energy as the atoms are rearranged at
constant volume and this can be accomplished if the total
energy can be written as a sum of two-body interactions.

The contribution to the energy from the free-electron
component is of just the same form in the light actinides
as it was in the simple metals and rare-earth metals, so we
can again write this energy in terms of the simple interac-
tion potential given in Eq. (3). To that purpose we have
included values for the Fermi-Thomas screening parame-
ter in Table II. The energy associated with the f bands,
Eq. (25), contains two terms. The first was the repulsion
due to nonorthogonality of muffin-tin orbitals on adjacent
atoms and was explicitly derived as a two-body term in
the energy, Eq. (22). The shift 8&; there applies to the Z;
electrons in both atoms in the pair so the corresponding
repulsion can be written

Vo (d)=2Z#(3.11r7)'°/md* . (28)
The second term is less direct.
This term depended upon the ionic positions through

TABLE IV. Prediction of thermal-expansion coefficient.

Th Pa U Np Pu Am
¥ 1.46 1.15 0.78 0.30 0.37 1.48
a (10~¢/K) 12.2 11.4 12.1 6.4 6.5 7.1
Cexpt® ~12 ~11 ~19 ~28 53.8 7.1

*R. O. Elliott (private communication).
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the bandwidth W, given in Eq. (17); we drop the super-
script zero but do not include spin-orbit effects. This may
be rewritten for an arbitrary arrangement of ions (the
derivation is the same) as

12 Sy g,

a ji

172

W= (29)

for N, ions, with the prime indicating that i =j is omit-
ted, and where

VAdP=5Vig+2Virn+2Vis+2Virg) 30)

is a simple function of separation. If we vary a single
d;;=dj; we obtain a W, given by
2(12/N,)Vy(d;;)6Vf(d;;)
Wp=" G
(12/N,)3'V(dy;)?
iJj

For the case of small deviations from a perfect crystal,
every Vy(dy;) is identical and for coupling with »n nearest
neighbors this becomes

2V'12n 8Vf(dij)/Nan .

The total change in energy for the N, ions (with only one
djj=d; change) is obtained by multiplying by
No,Zf(1—Z;/14)/2 as indicated in Eq. (23). If we add
such energy changes for a large number of displacements,
the result could be written as arising from an interaction
potential:

Vfband(d)=v 12an(1—Zf/14)Vf(d)/n . (32)

We obtain the total energy summing the 8d for each pair
only once.

This is the form we propose but before discussing it fur-
ther we should note that there are difficulties with the
derivation. We will in fact always be interested in changes
in energy which are at least quadratic in 6d since the sys-
tem is in equilibrium before the 84 was made. Terms can
be obtained from the second variation which are exactly
consistent with Eq. (32), but there are also cross terms
from different 8d. These are small, by a factor of order
1/N,, but they are of arbitrarily long range so it is not
clear mathematically that they can be neglected. (Physi-
cally, they would seem quite inappropriate.) However, for
the specific case of a uniform compression we can calcu-
late the dependence of Eq. (29) on d exactly and it is
correctly given by Eq. (32); all of the long-range interbond
interactions have cancelled out. We assume that that is
true for other distortions and proceed writing the energy
variations for rearrangement at constant volume as a sum
of two-body central force interactions, each given by
Vo+V; 4+ Vs banes and the calculation of properties for
simple metals’ generalizes directly.

It may be interesting to think of this contribution to the
energy, Eq. (32), as a resonating bond. In an ordinary
homopolar two-center bond the energy gain is given by a
matrix element times the number of electrons, two, which
occupy the bond. In a resonating bond, such as in ben-
zene, the contribution to each bond site is divided by the
number of sites each pair shares, two for benzene, but the

strength of the bond is enhanced also by the square root of
the number of sites shared.?> (Such square roots generally
appear in methods based upon second moments.?!) This
would suggest a bonding energy of 2vV'n ZsVy/n, to be
compared with Eq. (32). In Eq. (32) the Z; is replaced by
Zs(1—Zs/14), corresponding to the continuous filling of

levels even including antibonding levels. The same V'n /n
factor appears and the numerical constant V'12 came from

the particular assumption as to the form of the density of
states. It is also convenient for calculation to write the
coupling explicitly as

Vi band(@)=Zp(1—Z; /14)Ws(d) /n
=VnZ/(1-Z;/14)

X #(5.06r7)° /(md'n) , (33)

where we have used Eq. (17) in the evaluation.

There is very considerable cancellation between terms,
as there was in Table III, and it appears that a calculation
of the bulk modulus in terms of the method of long waves
would lead to a negative bulk modulus, and instability, in
the center of the series. This reflects rather small errors in
individual terms but if it is to be useful in calculations it
will be necessary to make some adjustments. The essential
form of the theory appears to be correct and the estimates
of the individual terms are rather well given.

X. ELECTRON LOCALIZATION

We turn finally to the electronic localization which dis-
tinguishes the rare-earth metals and the heavy actinides
from the light actinides. Skriver, Andersen, and
Johansson!! addressed this question by allowing the elec-
trons to spontaneously spin polarize, as in a ferromagnet,
and minimized the energy as a function both of volume
and spin polarization. They found that americium, but
not the preceding elements, spin polarized and expanded
to a large volume. This is in some sense a modeling of the
effect since with six f electrons in americium the individu-
al f-band energies, proportional to Z;(1—Z;/7), go very
nearly to zero in the spin-polarized state, having very
nearly the effect that a true decoupling of the f states
would, though the calculated bands remain broad. Also,
in that model the transition is driven by the exchange en-
ergy U, which favors aligned spins; this would seem to be
the kind of energy and the magnitude of energy which
drives true localization.

This ferromagnetic criterion is very easily applied to the
Friedel model of the density of states. When applied to d
states?® it gives the criterion for a transition at constant
volume: Ferromagnetism is indicated if U, > W;/5. The
same analysis for f states indicates ferromagnetism if

Ue>We/T. (34)
Experimental values for U, have been extracted from
spectroscopic studies of acqueous actinide ions by
Nugent'® and these may be used also in the metal. These
values are listed in Table II. (Also listed there are values
of the intra-atomic Coulomb repulsion U which can be
used in determining f-state energies in actinide com-
pounds using the method of Froyen.?’ They are not used
here.) The energy difference which must become negative
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TABLE V. Localization parameters for the actinides.

Pa U Np Pu Am
We—17U, (eV) 2.93 3.30 291 1.98 2.59
AE\oca (V) 1.88 2.44 2.32 1.64 1.64

for ferromagnetism is given in the first line in Table V and
is not close to indicating a transition at constant volume.
It is probably correct that holding americium at the low
volume (the radius indicated by an open circle in Fig. 2
was used) would prevent the transition. The volume
should be allowed to change in the comparison, a calcula-
tion which can readily be done using the parameters given
here.

We choose instead to carry out a calculation more close-
ly related to true localization. We compare the energy of
the banded state, which corresponds to the points in Fig.
2, with the energy of the localized state (as with ry=0) in-
dicated by the line, including the exchange energy for the
two configurations. The exchange energy in the expanded
(localized) state is — U, Z;(Z;—1)/2, lower than that of
the state with equal numbers up and down by U,Z }/4.
The band energy is lower in the contracted (band) state by
Z(1—Z;/14)W;/2 and the free-electron energy is lower
in the expanded state by an amount which can be comput-
ed from Eq. (2). The increase in computed energy in go-

ing to the expanded state is the AE|,, listed in Table V.
We see that the tendency increases at Pu and Am but we
do not predict the transition at americium. The ferromag-
netic transition would appear to be close to occcurring at
relaxed volume because some band energy is retained, but
the localization criterion would seem to be the correct one
and our model and parameters appear inadequate to
predict the transition.

An isostructural transition in cerium presumably comes
from a similar localization®® but we do not discuss it here.
Neither did we discuss the energy bands themselves, which
have been extensively considered by Koelling, Freeman,
and Arbman.? These were sidestepped by the use of the
model density of states.
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