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Temperature dependence of the dynamics of random interfaces
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We study the effects of thermal-noise-induced roughening on the dynamical evolution of random
interfaces. This is done using the Allen-Cahn equation with noise, which is appropriate for a sys-

tem with a nonconserved order parameter. The proportionality constant in the characteristic
growth law of domains is renormalized by a temperature-dependent factor. Two different initial
configurations are considered. Firstly, a random configuration of interfaces in d dimensions is
analyzed using the linearization scheme of Ohta, Jasnow, and Kawasaki. The results suggest that
the linearization breaks down at high temperatures; theoretical predictions for low and intermediate
temperatures could be tested experimentally. Secondly, a two-dimensional circular domain is
analyzed to first order in a low-temperature perturbation series. This is done in the manner of
Safran, Sahni, and 0-rest. However, we obtain results which differ from those of Safran et al. Our
results are consistent with those we obtain for the random configuration of interfaces.

I. INTRODUCTION

There has been much interest recently in the time evolu-
tion of a one-phase (disordered) system quenched into the
two-phase (ordered) region of a phase diagram. ' This in-
volves one of the fundamental problems in statistical
physics: the behavior of systems far from equilibrium. In
the intermediate time regime following the quench, convo-
luted random interfaces form. The evolution of these in-
terfaces causes domain growth as the system progresses
towards equilibrium. In this paper we will be concerned
with the temperature dependence of the interfacial
dynamics. We consider systems where the order parame-
ter is not conserved.

It is now generally accepted that the characteristic
length R in such systems grows following a t' growth
law. Kawasaki, Yalabik, and Gunton found this in their
analysis of the time-dependent Ginzburg-Landau equation
in a long-time, weak-coupling limit. Allen and Cahn de-
rived a deterministic equation of motion for the interfaces
in a system with a nonconserved order parameter. Their
equation of motion is given by

v =I.'K,

R-&L'r . (1.2)

This growth law has been observed in many experimental
studies.

Recently, in an interesting paper, Qhta, Jasnow, and
Kawasaki have solved the Allen-Cahn equation using a
linearization scheme based upon the isotropy of an initial-

where v is the velocity orthogonal to a point on the inter-
face, K is the curvature at that point, and L, is a diffusion
coefficient. Thus we see that the t growth law results
~ause interfacial motion is diffusively driven by the cur-
vature; tb.e diffusion coefficient is dimensionally cm /sec,
so any characteristic length constructed from I ' will have
the t ' time dependence, i.e.,

ly random configuration of interfaces. They obtained an
explicit solution for the area density in both two and three
dimensions. Making the further assumption of a sharp,
step-function-like order-parameter profile at the interface,
they obtained the dynamic structure factor M(k, t), where
k is the wave number. The structure factor was found to
be self-similar, scaling with the characteristic length
&L 't . The theoretical expression gave a good, one-
parameter fit to the computer experiments of Phani et al.
and Sahni et al. The scaling function of Ohta et al. is
closely related to that obtained earlier in the theory of
Kawasaki et al. '

Of course, if the physical system described by Eq. (1.1)
is to approach equilibrium as t~ oo, the equation of
motion must include a random force which obeys a
Auctuation-dissipation relation. The form of the thermal
Auctuating noise term has been independently given by
Kawasaki and Ohta and by Bausch, Dohm, Janssen, and
Zia'; see Eqs. (2.18) and (2.19). Note that the
Auctuation-dissipation relation involves the surface ten-
sion o.. This is because the equilibrium free energy is ap-
proximately given by the product of the surface tension o.
and the surface area A. This is the dynamical-interface
model which is discussed further in Sec. II. The Allen-
Cahn equation, together with thermal fluctuating noise,
then comprises the dynamical-interface model.

Safran, Sahni, and Grest" (SSG) have analyzed the ef-
fect of thermal noise on the- two-dimensional growth
dynamics of circular domains. Their analysis does not be-
gin with the Allen-Cahn equation with noise. ' Their fun-
damental equation of motion can be obtained from the
Allen-Cahn equation. Firstly, one prescribes that contri-
butions due to tilting the interface are removed, regardless
of the order of those contributions. Secondly, the surface
tension in the fluctuation-dissipation relation is replaced
by a rough approximation for the mean-field surface ten-
sion. ' These replacements are, of course, not valid for
the Allen-Cahn equation. The tilt terms are required for
Euclidean invariance' of the Allen-Cahn equation. '
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Further, the tilt terms and the surface tension are required
for the system to approach equilibrium. The SSG equa-
tion of motion may, however, have a justification indepen-
dent of the Allen-Cahn equation with noise. ' SSG obtain
the temperature-dependent corrections to Eq. (1.2), i.e.,
they give

R ~ L, 'ta, (1.3)

with an explicit expression for a=a(ks T/J), where kz is
Boltzmann's constant, T is the temperature, and J is the
interaction constant of, say, the Ising model. Their per-
turbative analysis gives a to linear order in k~ T/J. Some-
what surprisingly, they find good agreement with comput-
er experiment for k&T/J & 1. The authors note that sys-
tematic problems with the computer simulations preclude
a comparison of theory and experiment for ksT/J & l.
We discuss their treatment in more detail in Secs. IV and
V.

In this paper we will analyze the temperature depen-
dence of the dynamics of random interfaces using the
Allen-Cahn equation with thermal noise. We obtain the
temperature-dependent roughening corrections to the
growth law for interfaces with random initial configura-
tions (using the linearization scheme of Ohta et al. ), and
interfaces with circular initial configurations (using a per-
turbation treatment analogous to that of Safran et al. ").

Our results can be anticipated as follows. We note that
domain growth occurs when the random convoluted inter-
faces "straighten out" by U =L'K. The thermal noise will
roughen the interface and tend to make the interfaces stay
random, thus effectively slowing down domain growth. '

If we expand the characteristic length in a Taylor series
about zero temperature we obtain linear corrections of or-
der k~T. Further, the temperature will be scaled to the
(zero-temperature) surface tension 0, as in ksT/era
where a is the lattice constant and d is the dimensionality.
This is plausible physically: Since o.a ' is the effective
energy of an interface it scales with the temperature. A
large zero-temperature o. is equivalent to a low k&T, and
vice versa, as far as the roughening effects are concerned.
Thus we expect

FY~ F7[1 0(k~r/~a' —')+ . ] . —

We now outline the remainder of this paper. In Sec. II
we review the derivation of the Allen-Cahn equation with
noise. ' This is done for a general curvilinear coordinate
system.

In Sec. III we generalize the treatment of Ohta, Jasnow,
and Kawasaki to include the contribution of the thermal
fluctuating noise. We calculate the area density and give
the temperature-dependent corrections to all orders in
k&T, which are congruent with the linearization scheme
of Ohta et al. Our results are given by Eqs. (3.28) and
(3.29). It appears that the linearization scheme breaks
down at high temperatures.

In Sec. IV we analyze the growth of circular domains,
in the manner of Safran, Sahni, and Grest, " using the
Allen-Cahn equation with noise. Contributions due to tilt
terms (required to ensure the Euclidean invariance and the
approach to equilibrium of the equation of motion ' ) and
the surface tension (also required for the approach to

equilibrium ) in the Allen-Cahn equation, give
temperature-dependent effects which differ from those
predicted by Safran et al. Our results, given by Eq. (4.20),
are, however, consistent with those of Sec. III. We discuss
our results in Sec. V and draw conclusions from our
study.

II. THE ALLEN-CAHN EQUATION

Before obtaining the new results of this paper, given in
the next two sections, we review the derivation of the
Allen-Cahn equation. This will be our fundamental equa-
tion of motion. We follow the treatments of Allen and
Cahn, and Kawasaki and Ohta.

Our starting point consists of the following set of equa-
tions. The time evolution of the nonconserved order pa-
rameter, ~( r, t ), is determined by the Langevin equation, '

B~(r, t ) „5F[~]
dt 5~ (2.1a)

F= f d r[ , C(V'~)—+f(~)], (2.2)

where C is a constant and f(~) is the "bulk" free-energy
density. All nonuniformity in ~ is determined by the
square-gradient ansatz in the integrand of Eq. (2.2).

In equilibrium, the order parameter ~ will be equal to
its time-independent equilibrium value which we shall
denote by M. If equilibrium is characterized by a coexist-
ing two-phase system separated by a flat diffuse interface
located about, say, x =0, then Eq. (2.2) gives

d M(x) df
2 ()~ (2.3)

The equilibrium surface tension can also be obtained from
Eq. (2.2),

C f d
dM(x)

dx
(2.4)

Far from equilibrium, in the intermediate-time regime
following the quench, we will not have a flat interface.
Instead the interface will be convoluted, and essentially
random. It is useful to introduce a new curvilinear coor-
dinate system, u=(u&, . . . , u~). This coordinate system
is constructed so that the interface is given by'

u~(r, t)=0 . (2.5)

We will require that the set of surfaces u be mathemati-
cally smooth. This means that the interface must be
"gently" curved. Explicitly, we must have mj'R, «1, if

where F is the free-energy functional and L" is a kinetic
coefficient. The random force g obeys Gaussian-Markov
statistics through the fluctuation-dissipation relation,

(g(r, r )g(r ', t') ) =2k~ TL "5"(r r')5(t r')—, (2.1b—)

where d is the dimensionality. Equation (2.1) is construct-
ed to drive the nonconserved order parameter to equilibri-
um (B~/dt =0) through changes in the free energy F.

The free-energy functional is assumed to be of the
form'
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w is the thickness of the interface and R, is the radius of
curvature at some point. As long as we are not too close
to the critical temperature this condition is satisfied.

Our new coordinate system is given by'

Thus in Eq. (2.8),

Bui dM(ui)
h)

Bt h&dQ&

d M(ui)L—' —V'M(u, )+
(hidui)

u(r, t)=(ui(r, t), . . . , ug(r, t)) .

Unit vectors to the surfaces are given by

n; =h;VQ;

(2.6a)

(2.6b)

where

I.'= CL"

(2.11)

(2.12}

fori =1 to d, where

h;=—
f

V'u;
i

(2.6c)

Pl) nJ 5gJ 7 (2.6d)

is the differential length in the u; direction. The set of
surfaces u i(r, t) is defined to be consistent with the physi
cal surface ui ——0; see Eq. (2.5). The other surfaces,
uz, . . . , ud, are defined by the second-order differential
equations,

is a diffusion coefficient. Now, from standard texts, ' we
obtain

Oui dM(ui) dM(ui)
(2.13)

where K is the curvature defined in Eq. (2.6e).
The only physical realization of Eq. (2.13} is at the in-

terface located about u
&

——0. We can project the dynamics
of Eq. (2.13) onto this physically relevant region through
the operator H defined by

E= —V.ni . (2.6e)

for i,j= 1 to d. The curvature K of a given Q ~ surface is
1 p dM

(2.14)

and (2.6f)

The differential element and Dirac 5 function are, respec-
tively, given by

d
d =+h;d;=h, d, d" 'S

BQ&—h ) ——I.'K+g,
Bt

(2.15)

X and ii i Bu i /Bt are approximately constant over the gen-
tly curved interface. Thus, using the projection operator
H on Eq. (2.13), we obtain

5 (r) =g —= 5d '(S)
5(u; ) 5(u i )

C M
'g =—— dQ)

0 hidui
(2.16)

S is the vector determining positions on the (d —1)-
dimensional surface where Q~ is constant. Again we note
that, by construction, u ~

——0 is the only physical surface.
We now consider the Langevin equation, Eq. (2.1). We

will assume that the order parameter ~ is approximately
given by its equilibrium value M, if M is evaluated at the
convoluted surface u, (r, t) rather than the flat surface x,

3, 9

~(r, t)=M(ui(r, t)) . (2.7)

But from Eqs. (2.3) and (2.4),

d M(u|)
BM(u i ) (h i du i )

(2.8)

(2 9)

dM(u i )o=C f duiAi
A]dQ&

(2.10)

This is reasonable for a gently curved interface. An ex-
plicit demonstration of the negligible contributions of
higher-order corrections to Eq. (2.7) is given by Kawasaki
and Ohta. Using Eq. (2.7) in Eqs. (2.1) and (2.2) we ob-
tain

Bu& dM(u&) aj"L" —CV' M(u i )+ — +g .

Since the velocity normal to the interface at ui ——0, U, is
given by

BQ&v= —hi
Bt

(from continuity of flux at u
~

——0), we then have

V=I X+g,

(2.17)

(2.18)

at ui ——0. The fluctuation-dissipation relation for g is
found from Eqs. (2.1b), (2.10), and (2.16) to be

2k' TL
(q(S, t)q(S', t')) = 5"-'(S—S')5(t —t'} . (2.19)

S is the vector determining positions on the ui ——0 surface
[from Eq. (2.6f)j. Equations (2.18) and (2.19) are the
Allen-Cahn equation with thermal noise. ' '

We note the following about the above. The results are
valid provided the thickness of the interface is much less
than the radius of curvature of the interface. Note that
interactions between interfaces are not considered. A free
energy featuring higher-order gradient contributions than
those given in Eq. (2.2) might lead to higher-order terms
in the curvature EC in Eq. (2.18). Note that it has not been
necessary to specify a form of the free-energy density
f(~) in Eq. (2.2).

Let us discuss the extent to which this continuum
theory describes a physical system on a lattice. Any possi-
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ble differences will be most important at low tempera-
tures. Since the interfacial dynamics occur at u i

——0, it is
implicit that we have averaged over the interface. There-
fore, the smallest length in our treatment is the thickness
of the interface w. This length, however, can be no less
than the lattice constant a, because of the underlying lat-
tice dynamics which the field theory herein approximately
describes. Ultraviolet cutoffs act to incorporate the phys-
ics of the lattice, albeit in a simplified manner. In
Kawasaki and Ohta's field-theoretic derivation of the
Allen-Cahn equation, they consider the limit of an infin-
itely deep potential well. This corresponds to an infinitely
thin interface, w~0. In their notation r= 1/w, so

However, in agreement with our remarks above,
we will require that v,„=1/a if we scale r to the lattice
constant, ~~,„=1. This means that r,„(macroscopic
length) »1. Strictly speaking then, there will be correc-
tions to the Allen-Cahn equation of order 1/r, „. These
could be incorporated through the formalism of Kawasaki
and Ohta, where a systematic procedure for incorporat-
ing large but finite r corrections is presented. It may be
preferable, though, to obtain a discrete lattice-dynamical
analog of the Allen-Cahn equation. We will not consider
these possible extensions further, at this time.

The Allen-Cahn equation is rather subtle. Equations
(2.18) and (2.19) determine the time-dependent behavior of
a stochastically driven coordinate system, defined in Eq.
(2.16). Thus, for example, the 5-function correlation on
the surface in Eq. (2.19) is an implicit function of ui from
Eq. (2.6d). The equation of motion is in a Euclidean in-
variant form'; this is a necessary physical condition. The
tilt term h& is required to ensure this. ' Euclidean in-
variance is satisfied here through the orthogonality condi-
tion, Eq. (2.6d). Finally we note that the surface tension
appearing in Eq. (2.14) is thermodynamically required if
the system is to approach equilibrium. This is more
readily seen in the equivalent Fokker-Planck representa-
tion of the dynamics.

We transform the Langevin equation for the surface
[Eqs. (2.18) and (2.19)] into a Fokker-Planck equation for
the complete distribution function P by standard means. '

i

Following Kawasaki and Ohta we obtain

III. AN INITIALLY RANDOM CONFIGURATION
OF INTERFACES

In the following section, we extend the work of Ohta,
Jasnow, and Kawasaki (OJK) to include the effects of
thermal noise. OJK solved the deterministic Allen-Cahn
equation assuming a random initial configuration of inter-
faces. If the interfaces are sufficiently convoluted, the
physical system is essentially isotropic; the Allen-Cahn
equation then becomes linear. One of our purposes is to
investigate the validity of the OJK linearization as tem-
perature effects become important. We find that the
linearization is most valid at low temperatures and that it
apparently breaks down at high temperatures.

The second moment of the Fokker-Planck equation, Eq.
(2.20), gives

2k+ T 5'-'(s —s )

hi(S)
(3.1)

Recalling Eq. (2.6) we see that this is a very complicated
nonlinear equation coupled to higher-order moments in
the Fokker-Planck equation.

OJK have proposed a physically appealing approxima-
tion to this equation which results in great simplifications.
Following Ref. 7 we will assume that the initial configura-
tion of interfaces is random, i.e.,

This is the interface free energy. This model free energy
neglects contributions from the bulk domains, recognizing
that the crucial physics of the system is determined by the
surface free energy. Both the surface tension and the tilt
tertns (which are implicit in the d" 'S differential) are
necessary if the equation of motion is to be consistent with
thermal equilibrium. In the next two sections we will use
the Allen-Cahn equation to analyze the temperature
dependence of the kinetics of random interfaces.

h i 5u i(S) ~ h i5u i(S) (u, (S)ui(S')), o
——y5 (r —r '), (3.2)

XP(ui, t) . (2.20a)

where

F,q ofd'-'S . ——.

(2.21)

The time-dependent average of a quantity is given by the
functional integral,

(g(ui)},—:f f &uig(ui)P(ui, t) . (2.20b)

From Eq. (2.20a) it can be shown that the equilibrium
distribution P,q, where BP,q/Bt =0 is given by

P,q
~ exp( F,q/kti T), —

where y is a constant. This is precisely the experimental
situation following a quick quench of a one-phase, disor-
dered phase into the two-phase, ordered region of a phase
diagram. We also assume that, for all times of interest,
the d-dimensional space is isotropic, i.e.,

(3.3)

This means that the physical surface, ui ——0, is sufficient-
ly convoluted that there is no unique symmetry~ in the sys-
tern.

This is a strong assumption. It is reasonable in the
intermediate-time regime following a quench. However,
we note that this approximation cannot be true over long
times as equilibrium is approached. Equilibrium will in-
volve a breaking of symmetry and special directions will
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exist. For example, in equilibrium there is a symmetry-
breaking soliton solution of the order parameter [from Eq.
(2.3) with, say, an "M " version of f(M)]. This is no
longer a solution given the isotropy assumption. Further,
there can be no solitary wave solution of the dynamical
Allen-Cahn equation given this assumption. See Chan's
discussion in Ref. 3.

If we also assume that all averages are Gaussian, and
that ( u ~ ), and ( 1/h f ), are not zero, we obtain

5" '(S—S ')=—5~(r —r '), (3.13)

(u)(r)u)(r ')),
at

=L(V2 —V'z}(u)(r)u)(r ')),

with 6 as given above.
With the use of Eqs. (3.8) and (3.13) in Eq. (3.1), we ob-

tain the simplified equation

(u&(r)Vu&(r)), =(Vu~(r)VVu~(r)), =0
from Eq. (3.3). Now consider,

ui(S') =(V ui(S)ui(S')),
hi(S)

(3.4)

where

2k' Td
+ L(

~

Vu~
~

)5 (r —r'), (3.14)

(3.15)

—(n)n)..VVu)(S)u)(S')), . (3.5)

—(n )nq ),:V V (u )(S)u )(S ') ), (3.6}

from Eq. (3.4). With the use of the isotropy approxima-
tion we have

&n, n, ),= I, — (3.7)

where I is the unit, second-rank tensor. Thus we finally
obtain"

IC(S) -, d —1ui(S') = V (ui(S)ui(S')), . (3.8)
hi(S)

Recall from Eq. (2.6f) that

5 (r —r')= 5(ui —u i) 5'-'(S —S )

This is obtained from Eq. (2.6); note that
n &

——n
& (

~

V'u
& ~

). Since the average is assumed to be
Gaussian, we have

ui(S') =V (ui(S)ui(S')),
E(S)
h)(S)

We will use this approximate equation of motion to evalu-
ate the average area per unit volume, which is essentially
the reciprocal of the characteristic length.

An expression for the area density is found as follows.
Note the identity for the surface area A,

~= Jd' 'S=-Jd"r 5(ui)
h)

Thus the average area density M is given by

(3.16)

This can be transformed into a more tractable form using
the identity

h&=
~

Vu&
~

= d q
—exp(iq Vu&),

1 2 1

27T

valid for d =2 (a similar expression is valid for d =3),
and a Gaussian representation for the 5 function. For a
Gaussian average in Eq. (3.16) we then obtain

1/2

(3.17)

where20

so that

5 (r —r ')
~ „, 0=6,5" '(S —S'),

where

(3.9)

1

2 2
d=2

e(d) = '

7 d 3
(3.18)

5(u i
——0)

h)
(3.10) We now return to Eq. (3.14). We introduce the Fourier

transformation

But from isotropy,

5(u2 ——0)
h2

5(ud ——0)
hd

u~(k, t)= I d r exp(ik r) ~(utr) .

(3.11) The formal solution of Eq. (3.14) is then given by

Therefore, we have

5=[5 (r=0)]' ". (3.12)

(u i(k)u g (k ') ),=(2m)"5"(k —k ')

~e 2Lk t+ D(t —ti) 2Lk t'dti—
0 7

This can be evaluated using a Fourier representation of
the 5 function. Therefore, at u ~

——0, where
(3.19)
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2k' Td
D(t —t')=— L(

i
Vu, i'), , (3.20)

It only remains to Fourier-transform Eq. (3.22) back to
real space. We obtain

[Recall from Eq. (3.3) that (
~

Vu 1 ~
) is not a function of

spatial position. ] If D ( t) is slowly varying over the
characteristic time, t, =(2Lk ) ', of the exponential in
the integrand of Eq. (3.19), we have

dt D(t ti)e 2Lk—t' D (t) dt's
2Lk —t'

(3 21)
0 0

The self-consistency of this approximation can be checked
with the value of D(t) it implies. We find that we require and

A.2=— r
)d/2(4Lt )d/2+ 1

(3.24)

(u 1 ),=4Lti, 1+ 2
— g(d), (323)

( i
Vul i'), k21T

4I.ti,

where

2Lk t)) I . g(d) =0(k",„'), (3.25)

Thus we may calculate the area density to good approxi-
mation. The expression for W given by Eq. (3.17) in-
volves correlations at the same position. Unfortunately,
this approximation precludes a quantitative discussion of
the interesting small-k behavior of the structure factor
W(k, t). ' We know of no way to improve the approxi-
mation of Eq. (3.21) to yield results for the small-k re-
gime. This is because, for small k, the integrand of Eq.
(3.21) has a very sensitive dependence upon lattice cutoffs.
We will make some qualitative statements about the tem-
perature dependence of W(k, t) in Sec. V.

With the use of Eq. (3.21), Eq. (3.19) becomes

where k,„ is the maximum wave number, which we will

discuss below. Multiplying Eq. (3.22) by —k.k ' and
Fourier-transforming we obtain

kgT
1 — [d/(d —1)](b," ')

(3.26)

Recalling Eq. (3.12) we have

(u, (k)u 1 (k ') ), =(2m-)d5"(k —k ')
H/2kd

(d/2)I
(3.27)

—2Lk t
X

k
(3.22)

Using Eqs. (3.23), (3.26), and (3.27) in Eq. (3.17) we obtain
the area density

e(d)~d
&4Lt

(k )d —1I [(4~)d/2(d/2)l]1/d —ld/(d 1)
k~T

(3.28)

where e(d) is given by Eq. (3.18). This is a new result.
The temperature dependence here is determined to all or-
ders. Note that the surface tension is, of course, tempera-
ture dependent. As we discuss below, k „is also depen-
dent upon temperature.

This expression has the qualitative form expected from
our discussion in Sec. I, since W-I/R, where R is the
characteristic length. We see, however, that the treatment
could break down at high temperatures where M could
become imaginary, which is unphysical. It is not surpris-
ing that the linearization scheme, based as it is on an as-
sumption of isotropy, should break down at high tempera-
tures. The higher the temperature, the more important
the thermal-noise terms become. Since the crucial approx-
imation has been to assume isotropy, the random forces
no longer drive the system to (anisotropic) equilibrium.
Instead the random forces are self-consistent with the iso-
tropic, intermediate-time regime.

We would like to estimate the temperature at which Eq.
(3.28) breaks down. Consider the average area of a

I

domain for d =2. This will be proportional to R
Explicitly, from Eq. (3.28) we have

R ~ I-'tv~,

with

k~T
0!g =1— n~ ~o.w

(3.29)

for d =2, where w is the thickness of the interface and

n —=k,„w =0(1) . (3.30)

There are no higher-order terms in k21 T in Eq. (3.29). The
smallest length in the problem, consistent with our deriva-
tion of the Allen-Cahn equation, is the interfacial thick-
ness. [See our remarks following Eq. (2.19) also. ] At low
temperatures we have w =a, the lattice constant. At high
temperatures, as the critical temperature T, is ap-
proached, w will have the same temperature dependence as
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If the thickness of the interface is w =a, we find that a~
vanishes at T/T, =0.75 if n=l (Fig. 1). Note that az
should not vanish until T=T, . However, at high tem-
peratures we should have to o:g as discussed above. For
the two-dimensional Ising model,

(3.32)

This would imply that az is constant, close to T„where
the temperature dependence of ui is precisely that of g.
We believe that this again signifies the breakdown of our
treatment at high temperatures, at least for the Ising
model in two dimensions. We make some further general
remarks about the behavior of a~, close to T„at the end
of this section.

Alternatively, we consider the mean-field surface ten-
sion. An M field theory of f(M) in Eq. (2.3) implies

M(x) =M, tanh(x/2w ), (3.33)

where +M, is the magnetization in one of the two bulk
phases. In the simplest mean field, M, is determined by

M,
M, =tanh

C

(3.34)

The mean-field surface tension, from Eqs. (3.33) and (2.4)
with C=J, is given by

o.m= —,JM, . (3.35)

We find that a~ vanishes at T/T, =0.85 if n=1 (Fig. 2).
Near T, the temperature dependence of w will be given

by the bulk correlation length g. We have argued that our

the bulk correlation length g. Note though, that our treat-
ment will only be valid if w /R « 1. We now evaluate Eq.
(3.29) using two different expressions for cr.

The Qnsager solution for the surface tension, in terms
of the Ising interaction J, is

T

(3.31)

treatment breaks down at high temperatures. Neverthe-
less, it may be of interest to note the temperature depen-
dence of Eq. (3.28) as T~ T, for d &4. Hyperscaling re-
quires thai

o.m ~ const (3.36)

as T~ T, . Since M cc 1/R, we can rewrite Eq. (3.28) as

(3.37)

Thus at T~ T„we have

a~('-(1 bT/—T, ), (3.38)

for d & 4, where b is a constant close to T, . If b is unity,
higher-order terms in Eq. (3.36) may be important. We
caution, though, that our analysis almost certainly breaks
down close to T, (Thi.s is what we have seen above for
the two-dimensional Ising model. ) For example, our treat-
ment could imply that the constant b in Eq. (3.38) was
greater than one. This would make az unphysically nega-
tive.

IV. AN INITIALLY CIRCULAR CONFIGURATION

ui(r, t)=r —R(8,t),
so that the physical surface is

(4.1)

In this section we will analyze the dynamics of two-
dimensional circular domains —a region of up spins, say,
in a sea of down spins. We will make use of the Allen-
Cahn equation with thermal noise for our study.

As we noted in Sec. I, this problem has been considered
by SSG (Ref. 11) making use of a somewhat different
equation of motion. The SSG equation does not feature
the tilt terms, required for Euclidean invariance, or the
surface tension, required for consistency with thermal
equilibrium. We believe, then, that it is worth carrying
out their program using the Allen-Cahn equation with
noise, since this equation of motion has these desirable
features.

We will assume that there is a circular domain at t =0.
Let us define a class of surfaces by

I.O

0

kBT/J= I

0.5
Tl Tc

I.O
0

0

kBT/J= I

0.5 I.O

FI(3. 1. Two theoretical expressions a~ [from Eq. (5.2),
dashed line] and a, [from Eq. (5.3), solid line], are plotted vs
T/T, . Parameter n in az has been chosen to be v m /2
=0.9. Surface tension is the Gnsager expression from Eq.
(3.31).

Tl Tc

FIG. 2. Two theoretical expressions a~ and a, are again plot-
ted vs T/T, . Parameter n in a& has been chosen to be

/2=0 9 Surfa.ce tens. io.n is the mean-field expression from
Eq. (3.35).
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uj(r, t) =0 .

From Eq. (2.6) the "tilt" term is

1/h& ——I 1+[(1/r)Re] j'
and the normal unit vector to the u1 surface is

r —(1/r )R e8

[ I+[(1/r)Re] I'~

where

(4.2)

(4.3)

(4.4)

BR2

Bt*

where

R2 R1 R2gg
2

2
— 3+ 2—

Rp Rp RQ
2R18

Rp3
g'R1

2R Q

2R1R1gg

Ro3

2kB T
(rj'(8, t')q'(8', t" ) = 5(8 8')5—(t* t*' )—.

(4.7c)

(4.7d)

R =BR
Be

An expression for the curvature can be obtained by taking
the gradient of this normal vector from Eq. (2.6e).

Recall the Langevin-equation version of the Allen-Cahn
equation from Eqs. (2.18) and (2.19). It is straightforward
to show that at u1 ——0

The next-to-last term on the right-hand side of Eq. (4.7c)
gives the new deterministic contribution from the tilt
terms in the Allen-Cahn equation, which is not present in
the analysis of Safran et al. Except for this deterministic
contribution and the factor of surface tension in Eq. (4.7d)
(Ref. 13) this set of equations is identical to that given by
SSG."

We note immediately that if Ro(t =0):—Lo, then

dR(8, t) L'—, Ree 1+L t

R' 1+(Re/R )'

(Re/R )

R
L

Lo —Ro(t) =2t*

from Eq. (4.7a). For convenience, let us call

R'
I k, T=o=Lo Ro(t—) ~ t'—

(4 5a) In the following, we calculate

R ~t chic
——I.'tac,

(4.8)

(4.9)

(4.10)

where

2kB TL'
(g'(8, &)ri'(8', &') ) = 5(8 8')5(t t')— —

where a, will determine the temperature-dependent ef-
fects. It corresponds to az of Eq. (3.29) above. Following
SSG, we define

r

&& [1+O(Re/R)'] . (4.5b)

This equation can be reduced to the SSG equation [Eqs.
(4) and (5) of Ref. 11(b)] provided we put (Re/R) =0,
and replace cr by a rough approximation for its mean-field
value. ' These replacements are not justified for the
Allen-Cahn equation, which we will consider here. A jus-
tification of the SSG equation of motion, independent of
the Allen-Cahn equation, may be possible. '

Following the treatment of SSG, we expand R(8, t) in a
nonanalytic series in (dimensionless) temperature, i.e.,

, [mRo(r)]
Bt

From Eq. (4.6) we obtain

21t dt dt

+Rp +

(4.11)

(4.12)

R(8,t)=R, +R, +R, +
where

BRp

Be
==Rpg ——0 .

(4.6) With the use of Eq. (4.7), this simplifies to

z~ d8 (riR, )
c p 2~ 2R 1/2 (4.13)

BRp

Bt*
1

Ro
(4.7a)

The subscripts n refer to terms of order (k&T)"~ . For
simplicity we scale all lengths to the lattice constant and
let L't =t'. We then obtain the following set of perturba-
tion equations from Eqs. (4.5) and (4.6):

It is worth noting that the SSG theory gives another term
in this expression which is of order (R ~e); see Eq. (7) of
Ref. 11(b). In our treatment this contribution cancels with
the new term self-consistently present in the Allen-Cahn
equation.

We evaluate a, in Eq. (4.13) in the following way. Let
N —1

g'(8) = g rj„'e™e

and

BR1 R1 R1ge

B ~ R'+ R'+R1/2 ' (4 7b) and
N —1

R, (8)= g g„e'"
n= —N

(4.14)
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Bg„

Bt

1 —n 1
gn+ )/2 '9n

Ro Ro
(4.15a)

where K=~Ro, so that the sums run over the dimension-
less circumference of the circle. Equations (4.7b) and
(4.7d) can then be written as

which is "summed" to all orders in k~ T, where
n =k,„w —0 ( 1). At low temperatures we have chosen
to=a, as we have discussed in Secs. II and III. [Results
for arbitrary dimensionality are given in Eq. (3.28).]
From our treatment of d =2 circular interfaces we obtain
[Eq. (4.20)]

where

k T
~a+ O&'(,t

770
(4.15b)

k~T
u, =1- + ~ ~ ~

2cra
(5.3)

This Langevin equation can be put into Fokker-Planck
form for the probability distribution P,

r

0, P(g, t*)= gBt* ' „~g„
1 —n

gn
0

k~T
+ P(g, t*) .

2~Roo. Bg

Thus we obtain the second moment,

, (g.g .)=2, (g.g .)+
From Eqs. (4.15) and (4.17) we can straightforwardly ob-
tain

2m' dg X —1

g'0R) 0 = g'„g
n= —X

Ro (X/~Ro) . (4.18)

Therefore in Eq. (4.13) we have

kg T
C (4.19)

Now recalling that X=mRo, and that all lengths have
been scaled to the lattice constant a, we have

ATa, =1- + ~ ~ ~

20a

This is a new result. It is valid to first order in the tem-
perature expansion; the surface tension is evaluated at its
zero-temperature value. The form of a, is plotted in Fig.
1 using the Onsager surface tension [Eq. (3.31)]. In Fig. 2,
a, is plotted using the mean-field surface tension from
Eq. (3.35).

V. DISCUSSIQN AND SUMMARY

R O-I. 'ta . (5.1)

From our treatment of d =2 random interfaces we obtain
[Eq. (3.29)]

kgT
cxg =1— ~ n

V m.o.m
(5.2)

Let us review our results. We find that the characteris-
tic length R obeys the growth law

to leading order in the temperature expansion. The agree-
ment between the two different treatments is gratifying, if
somewhat surprising, considering the drastically different
approaches of the last two sections. We note some impor-
tant differences nevertheless.

Equation (5.3) is to linear order in the temperature. It
will break down when higher-order terms in the expansion
become important. An estimate of this can be made by
examining the temperature dependence of the surface ten-
sion. From the Onsager solution for o., the temperature
dependence of o becomes important for T/T, )0.5, or
k~ T/J & 1, where J is the Ising interaction constant.
Thus we expect Eq. (5.3) to be valid for k~ T/J & 1.

On the other hand, Eq. (5.2) is given to all orders in
temperature. The expression appears to become unphysi-
cal at high temperatures. This signifies the breakdown of
the linearization scheme, as discussed at the end of Sec.
III. Note though, that for n=1, this breakdown does not
occur until T/T, )0.75. It is possible then, that Eq. (5.2)
[and Eq. (3.29)] gives the qualitative, or even quantitative,
temperature dependence of the interfacial dynamics, pro-
vided we remain at low to intermediate temperatures. An
experimental study would resolve this question.

We now discuss some implicit assumptions in our treat-
ment. Note that we are analyzing the dynamical roughen-
ing in a nonequilibrium state. Roughening effects for a
two-dimensional system in thermodynamic (infinite
volume) equilibrium (infinite time) can lead to a diffuse
interface of infinite thickness. In our treatment we
remain far from equilibrium.

We also note that our treatment has been in the contin-
uum limit, notwithstanding the appearance of wave-
number cutoffs in our results. We do not know if the
differences between lattice and continuum models will
complicate the comparison of our theoretical results with
computer simulation. These differences will be most im-
portant at low temperatures. As discussed in Sec. II, it
could be of interest to extend the treatment given here to
take lattice effects into more explicit account. This could
be done by either considering higher-order correction
terms to the Allen-Cahn equation, or by completely re-
formulating the Allen-Cahn equation as a lattice-
dynamical theory.

Computer experiments on the growth rate of two-
dimensional circular domains have been performed by
Safran, Sahni, and Cxrest. " Their results were analyzed
with their model equation of motion. This equation of
motion is neither Euclidean invariant, nor consistent with
equilibrium, as we have discussed in Secs. I and IV. A
justification of this equation may, nevertheless, be possi-
ble. ' Safran et aI. obtained a quantity analogous to a, of
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Fig. (5.3) above, to linear order in the temperature
(k~ T/J). Somewhat surprisingly, they found good agree-
ment between theory and experiment for kz T/J & 1. Nei-
ther of the expressions we have presented for d =2, Eqs.
(5.2) and (5.3), are as good a representation of their data in
this high-temperature regime.

We note the following about Safran et al. 's treatment.
Their experimental results featured a latency period for
k&T/J & 1 where no temperature-dependent effects were
present. The authors attributed this to systematic prob-
lems arising in the simulation of circles on a square lat-
tice. Unfortunately, k~T/J & 1 is the region where a sen-
sitive test of a linear theory in k&T/J to experiment can
be made. It is possible that the good agreement for
k~ T/J & 1 is due to extensive cancellation of higher-order
terms in the perturbation series. The origin of such can-
cellation is not obvious.

One interesting effect found by Safran et al. was not
discussed at length by the authors. They observed non-
trivial differences between the temperature-dependent
behavior of their Glauber and Kawasaki simulations of
circular domains. Safran et al. scaled the Monte Carlo
hopping time ~x of the Kawasaki dynamics to a
temperature-dependent factor. This was done to obtain
results in qualitative agreement with their Glauber
dynamics simulation. The scaling of ~z would, we sup-
pose, have its origin in the Master equation. A theoretical
analysis could be of interest, since this temperature-
dependent scaling of rx is a stronger effect than the tem-
perature dependence of domain growth reported by Safran
et al.

Our approximations in Sec. III precluded a discussion
of the temperature dependence of the structure factor
W(k, t). We can make some qualitative comments about
W(k, t), however. As we have seen, temperature-
dependent roughening effectively slows down domain
growth, i.e., reduces R. However, the k moment of
P'(k, t) is roughly proportional to I/R, so if R de-
creases, the second moment of W(k, t) increases. W(k, t)
is roughly bell shaped and satisfies a normalization condi-
tion (zeroth sum rule). Thus, the structure factor will
"flatten out" as the temperature is increased and so the
second moment of W(k, t) increases. This heuristic argu-
ment indicates that the flattening would be a monotonic
function of temperature.

Note though, that the structure factor is relatively in-
sensitive to the detailed dynamics of the interface. For ex-
ample, the assumption of a sharp step-function-like

order-parameter profile at the interface (which is not a
dynamical assumption) will result in a scaled structure
factor which obeys 1/(k )

+' behavior, for large
k'=kv'4L't. It is this asymptotic behavior which deter-
mines much of the structure factor reported by Ohta et ah.
in Figs. 1 and 2 of Ref. 7. An experimental study of the
k' & 1 regime would be of interest. It seems clear, howev-
er, that experimental results for the area density would
provide a more sensitive test of theory.

In conclusion, we have analyzed the temperature depen-
dence of the kinetics of random interfaces. From the
Allen-Cahn equation of motion, supplemented with
thermal noise contributions, we obtained the temperature
dependence of the characteristic growth rate of domains.
The actual growth law, R -t', was unchanged, but the
proportionality constant was renormalized by a
temperature-dependent coefficient. We analyzed two ini-
tial configurations: (i) a random configuration of inter-
faces in d dimensions, and (ii) a circular interface in two
dimensions. Our results were given by Eqs. (3.29) and
(5.1)—(5.3). The results of Sec. III indicated that the
linearization scheme of Ohta et aI. breaks down at high
temperatures, although it may be good at low to inter-
mediate temperatures. In Sec. IV we obtained low-
temperature results for circular domains which were con-
sistent with the results of Sec. III. There appears to be a
clear need for experiments to stringently test theory, par-
ticularly over low temperatures.

Rote added in proof. A computer study of the tempera-
ture dependence of quenched systems has been performed
recently by K. Kaski, C. Yalabik, J. D. Gunton, and P. S.
Sahni [Phys. Rev. B 28, 5263 (1983)].
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