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First-principles calculation of the equilibrium ground-state properties
of transition metals: Applications to Nb and Mo
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We have used a self-consistent pseudopotential method to calculate the equilibrium ground-state
properties of the transition metals Mo and Nb. From our calculations we obtain equilibrium lattice
constants, cohesive energies, and bulk moduli which are in excellent agreement with experiment.

INTRODUCTION

Since the introduction of norm-conserving pseudopoten-
tials' three years ago, total-energy calculations ' using
these potentials have been very successful in theoretically
determining the structural properties of a number of ma-
terials. By using only the atomic number as input, various
physical properties such as lattice constants, cohesive en-
ergies, bulk moduli, and phonon frequencies have
been calculated accurately to within a few percent of ex-
perimental values with no further assumptions other than
the accuracy of the frozen-core approximation and the
local-density-functional formalism' for treating the elec-
tronic exchange and correlation. Successful applications
to determine phase-transition pressures ' and atomic
geometries of surfaces' ' have also been reported. How-
ever, except for one investigation on Al, ' all of these in-
vestigations have been restricted to semiconductors. ' We
have applied these methods to study the equilibrium
ground-state properties and phonon modes of the bcc
transition metals Nb and Mo. In this paper we will out-
line some of the calculationa1 details and report the calcu-
lated results for the static structural properties; the results
on the phonon calculations will be described in another
paper.

There are two main difficulties that have to be over-
come before these methods can be applied to calculate the
microscopic properties of transition metals. First, the lo-
calized nature of the d electrons in transition metals
makes expansion of the wave function in plane waves
uneconomical. This problem is solved by using a mixed-
basis set of plane waves and Bloch sums of localized orbi-
tals to give an efficient representation of the wave func-
tion. ' Secondly, unlike semiconductors, transition metals
are characterized by partially filled bands with complicat-
ed Fermi surfaces, making it difficult to carry out integra-
tions over the occupied portion of the energy bands in the
Brillouin zone. We have tested several weighting schemes
and developed a gaussian integration scheme which is
able to take into account the variation of band occupan-
cies near the Fermi level in a convenient and efficient way.

The rest of the paper is organized as follows: Section II
of the paper describes the properties of the ab initio pseu-
dopotentials used in the calculations, Sec. III describes the
calculational procedures, Sec. IV discusses the Fermi-
surface weighting schemes we have tested and the conver-

gence of our results with respect to basis size and the size
of the k-point grid sampled in the Brillouin zone, and re-
sults on the cohesive energies, lattice parameters, and bulk
moduli presented in Sec. V and Sec. VI conclude the pa-
per. A brief account of this work has been published. '

II. PSEUDOPOTENTIALS

The nonlocal ionic pseudopotentials used in our calcula-
tions are generated using the norm-conserving scheme of
Hamann, Schluter, and Chiang. ' These angular-
momentum-dependent potentials are determined from
atomic calculations by constraining the pseudo-wave-
functions to match the ground-state all-electron (Her-
man-Skillman —type calculation) valence-electron wave
functions exactly outside some "core radius" as well as
reproducing the same atomic eigenvalues for the valence
states. The pseudopotentials and pseudo-wave-functions
we obtained for Nb and Mo are shown in Figs. 1 and 2.
The solid lines represent the pseudopotential results while
the dashed lines indicate the all-electron valence wave
functions and the Coulomb potential. The quality of the
pseudopotentials are examined by comparing the eigen-
values and excitation energies for various atomic configu-
rations above the ground state obtained from the pseudo-
potentials with the corresponding all-electron values. The
results are listed in Tables I and II. We see that the pseu-
dopotential results reproduce the all-electron results with
an error of less than 0.005 Ry for all excited configura-
tions with total energy less than 1 Ry above the ground
state. Spin-polarization effects are not included in these
calculations.

III. METHOD OF CALCULATION

The total energy of the crystal is calculated within the
local density-functional formalism using a momentum-
space approach. The expression for the total energy per
primitive unit cell is given by'
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FICx. 1. (a) Comparison of the pseudo-wave-functions (solid
lines) and the corresponding all-electron valence wave functions
(dashed lines) for the ground state (4d Ss') of Mo. (b) Compar-
ison of the nonlocal pseudopotential (solid lines) with the ion-
core Coulomb potential (dashed line) of Mo.

The first term is the sum of the occupied-band energies.
In the second term p(G) and V',",(G) are the reciprocal-
space components of the charge density and the input
screening potential for the self-consistent-band calcula-
tion. The first two terms together contain the kinetic en-

FIG. 2. Pseudopotential for Nb and pseudo-wave-functions
in the ground-state configuration (4d 5s ').

ergy of the electrons and the interaction of the electrons
with the ions through the pseudopotential. The third term
represents the electron-electron interaction expressed in re-
ciprocal space and the fourth term is the exchange-
correlation energy of the electrons. In our calculations,
we have used the Hedin-Lundqvist form' for exchange
and correlation. yE„,&d and a&Z„are terms obtained by
summing the divergent terms in the electrostatic interac-
tions of the system. yE,&d is the Coulomb interaction en-
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TABLE I. Eigenvalues and excitation energies of the pseudoatom for different atomic configurations
of Mo. Values in parentheses denote the deviations from the corresponding all-electron results.

Configuration

4d'ss' —0.3116
(o.oo11)

Eigenvalues (Ry)
S

—0.3017
(0.0010)

—0.0909
(0.0008)

Excitation energy (Ry)
{AE„,)

4d' —0.1904
( —0.0021)

—0.2536
(0.0020)

—0.0645
{0.0027)

0.0291
(o.oo2o)

4d45s' —0.4729
( —0.0058)

—0.3601
(o.o02s)

—0.1224
(0.0006)

0.0589
(0.0037)

4d'SJ ' —0.3984
(0.0015}

—0.3628
(0.0018)

—0.1417
( —0.0004)

0.2153
( —0.0017)

4d45s'Sp' —0.5594
( —0.0057)

—0.4173
(o.oo31)

—0.1686
(0.0009)

0.3019
(0.0019)

—0.7956
(0.0050)

—0.7152
(0.0021)

—0.4431
( —0.0012)

0.5051
( —0.0012)

4d4ss' —0.9903
( —Q.0028)

—0.8033
(0.0043)

—0.5103
(0.0015)

0.6364
(0.0002)

4d4sp' —1.0645
{—0.0022)

—0.8517
(0.0357)

—0.5544
(0.0024)

1.0395
(o.olsl)

TABLE II. Eigenvalues and excitation energies of the pseudoatom for different atomic configura-
tions of Nb. Values in parentheses denote the deviations from the corresponding all-electron results.

Configuration

4d'ss ' —0.2554
(0.0013)

Eigenvalues (Ry)
S

—0.2944
(0.0011)

—0.0944
( —0.0003}

Excitation energy (Ry)
(AE„,}

4d ss —0.3922
(—0.0044)

—0.3467
(o.oo22)

—0.1225
(o.ooo8)

0.0010
(0.0029)

—0.1591
(o.oo2o)

—0.25S3
( —0.0015)

—0.0744
( —0.0022)

0.0698
(0.0018)

4d'sp ' —0.3338
(o.oo27)

—0.3500
(0.0021)

—0.1411
(0.0001)

0.2039
( —0.0014)

4d Ss'sp' —0.4723
( —0.0041)

—0.4000
(0.0029)

—0.1659
(0.0011)

0.2299
(0.0016)

4d4 —0.7126
(0.0053)

—0.6879
(0.0030)

—0.4315
(0.0000)

0.4881
( —0.0018)

4d'ss ' —0.8862
( —0.0016)

—0.7711
(0.0043)

—0.4952
(0.0017)

0.5559
( —0.0002)

4d Sp' —0.9552
(0.0001)

—0.8162
(0.0066)

—0.5369
(0.0031)

0.8332
( —0.0031)



28 FIRST-PRINCIPLES CALCULATION OF THE STATIC. . . 5483

ergy of positive point ions in a neutralizing, homogeneous
negative background which can be evaluated using
Ewald's method. ' Z„ is the effective charge of ion core,
and e~ is given by

Vp, r+n„
2ZU

dr

where Q„ is the atomic volume. V~, is the local part of
the ion pseudopotential. The form of this expression is
designed to minimize the sensitivity of the total energy in
iterating to self-consistency.

In order to treat the system whose electronic wave func-
tions contain both localized atomiclike character as well
as extended plane-wave-like character, an energy-inde-
pendent basis set containing both plane waves and Bloch
sums of localized orbitals is used to represent the electron-
ic wave functions. ' Gur basis contains plane waves with

energy ( k+ G) up to E,„,= 10.5 Ry supplemented by
Gaussian local orbitals of the form

IV. CONVERGENCE TESTS

f =N'r e r" Y2~(r)

to represent the localized part of the d electronic wave
function, where N' is the normalization constant. The
Gaussian exponent y is varied to optimize the conver-
gence of the wave function. For our E,„, of 10.5 Ry we
find that a value of 1.20 a.u. for y gives optimal conver-
gence for Nb and the optimal value for Mo is 1.30. The
localized nature of the Gaussian orbitals enables us to
make the "on-site" approximation when evaluating matrix
elements involving the local orbitals. ' The energy eigen-
values and wave functions are evaluated at 55 points in
the irreducible Brillouin zone (IBZ). The charge density is
expanded with approximately 1500 plane waves, corre-
sponding to a cutoff energy of approximately 80 Ry.
Iterations to self-consistency are carried out until the total
energy is stable to 10 Ry or better, corresponding to a
self-consistency error of 10 Ry or less between the input
and the output screening potentials in reciprocal space.

the occupied-band energies over the Brillouin zone is
evaluated by integrating the product of the density of
states with the energy up to the Fermi level

EF
[ N(e)fade]. This scheme is convenient to use since

0
the evaluation of band velocities is not necessary and there
is no restriction on the k-point mesh. We have also inves-
tigated schemes based on the traditional Gilat-
Raubenheimer (GR) method.

Figure 3 shows the calculated total energy for bulk Nb
as a function of the number of k points sampled in the
IBZ for the various weighting schemes. Results for
Gaussian widths of 0.025 eV (& symbols) and 0.10 eV
(+ symbols) are shown for the Gaussian-smearing
scheme. The convergence with the number of k points is
quite rapid and the results are quite insensitive to the
value of the Gaussian widths. In our final results, we used
a Gaussian width of 0.05 eV and a mesh of 55 points in
the IBZ. The convergence of the total energy with respect
to the size of the k-point mesh is estimated to be better
than 0.5 mRy per atom. Also shown are the results ob-
tained with two schemes based on the GR method. In
the GR method both the band energies and band velocities
are calculated on a cubic grid and the occupied portion of
a particular cubic element is found analytically assuming
a linear band dispersion inside the small cube with the
band velocity determined at the cube center. For the
upper curve (o symbols), the sum over the occupied-band
energies is performed by adding together the calculated
band energies on the grid points at the cube center with
weights equal to the occupied portion of the cubic ele-
ment. In the lower curve (V symbols), the contribution
from each cube is obtained by the product of the occupied
volume times the energy at the centroid of the occupied

I0

O.OIO—

A. Fermi-surface weighting scheme

For metals, the bands near the Fermi level are partially
occupied, and a large number of k points in the IBZ are
needed to account for the Fermi surface. To accelerate
the convergence of the total energies with respect to the
number of k points sampled, it is necessary to weight each
state near the Fermi level by the occupied portion of the
reciprocal-space volume it represents. Several schemes for
determining these weights have been tested. The one that
we found most effective and most convenient is the
Gaussian-smearing method. In this scheme, the energy of
each state calculated is broadened by a Gaussian whose
width is chosen to be roughly equal to the dispersion of
the energy bands between nejghboring grid points near the
Fermi surface. The Fermi energy is then determined from
the Gaussian-smoothed density of states. The weight of
each state is determined by the portion of its Gaussian dis-
tribution which lies under the Fermi level. The sum of
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FIG. 3. Calculated total energy for bulk Nb at equilibrium

lattice constant as a function of the number of k points sampled
in the IBZ for various weighting schemes (see text for details).
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portion assuming again linear band dispersion. The latter

method corresponds to integration of %(e)@de. Both
p

methods should converge to exactly the same limit as the
number of grid points becomes very large. We found that
the convergence of the total energy with respect to the
number of k points in the IBZ is rather slow using the
two GR-based methods. This is due to the curvature of
the bands at the Fermi level. We have performed tests of
these schemes on model bands in a cubic unit cell where
we can do the integrals analytically to obtain the exact
answers. While the GR method gives the exact answer for
the case of linear bands, the Cxaussian method gives better
results for the case of spherical bands. We have also con-
sidered schemes similar to the tetrahedron method '

which uses the energies of neighboring grid points to esti-
mate the band velocities. We found that the convergence
for the bulk is intermediate between the Gaussian and GR
schemes. However, schemes which rely on interpolating
between neighboring k points have a disadvantage when
investigating small distortions about the bulk structure as
is the case when one wants to study phonons. What hap-
pens is that unless a very fine mesh is used, the interpola-
tion will open up fictitious gaps at the Fermi level near
band crossings even for zero distortion, and as a result the
total energies for systems with small distortions will not
approach the bulk value when the distortion goes to zero.
Such methods are inconvenient for studies of lattice
dynamics.

B. Convergence of the basis set

To test the convergence of our results with respect to
the basis set, we have calculated the total energies of bulk
Nb with two basis sets with cutoff energies for the plane
waves equal to 10.5 and 14.5 Ry. In the mixed-basis ap-
proach, ' for a given cutoff energy the G-aussian exponent
of the local orbitals is varied until the band-structure ener-

gy (estimated by the position of the d states) is minimized.
The optimal A, values are found to be 1.20 and 1.25 a.u.
for E,„, equal to 10.5 and 14.5 Ry, respectively. We
found that increasing the plane-wave cutoff energy from
10.5 to 14.5 Ry lowers the calculated total energy by
roughly 4 mRy. This is essentially a constant shift of the
energy-volume curve which changes the calculated lattice
constant and bulk modulus by less than 0.1%. Thus in
our calculations we have used 10.5 Ry as the cutoff energy
for the plane waves in our basis set which corresponds to
five local orbitals and approximately 60—70 plane waves
per atom in the unit cell.

V. RESULTS AND DISCUSSION

Total energies are calculated for bcc Nb and Mo at ten
different lattice volumes ranging from 0.8Vp to 1.2Vp,
where Vp is the equilibrium unit-cell volume. The calcu-
lated total energies are then fitted with the Murnaghan's
equation of state,

I

a, v (v, zv)" v,a,
ET( &)=E&(&0)+, , + l —, , (4)

Bp 8p —1 &o —1

where V is the volume, and Bp and Bp are the bulk
modulus and its pressure derivative at the equilibrium
volume Vp. The calculated results for Nb and Mo are
shown in Fig. 4 together with the fitted energy-versus-
volume curves. The rms error of the fits are 10 Ry.
The numerical errors of the bulk modulus and lattice con-
stant are estimated to be approximately S%%uo and 0.2%,
respectively. We have also performed parabolic fits of the
calculated fit with volumes limited to be within 10%%uo of
Vp with very similar results. To obtain the cohesive ener-

gies, the energies of the isolated atoms are needed. These

TABLE III. Comparison of calculated and measured values for the static bulk properties of Mo and
Nb. See text for discussion on error estimates of our calculational results.

Lattice constant
(A)

Cohesive energy
{eV/atom)

Bulk modulus
(Mbarl

Moruzzi et al. '
Harmon et al. "
Zunger and Cohen'
Present calculation
Experiment

3.12
3.17
3.15
3.14
3 14

Mo
6.73
6.28
6.68
6.64
6.82'

2.51
2.57
3.05
2.85
2.62'

Moruzzi et al. '
Harmon et al.
Present calculation
Experiment

'Reference 23.
Reference 24.

'Reference 25.
dReference 26.
'Reference 27.
Reference 28.

gReference 29.

3.28
3.34
3.26
3 29

7.50
6.63
7.55
7 57'

1.68
1.62
1.82
1.735g
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FIG. 5. Calculated electronic band structure for (aj bcc Mo
and (b) bcc Nb along symmetry directions.

are obtained by taking the ground-state total energy of the
corresponding pseudoatom calculated with the same
local-density approximation and adding a spin-polar-
ization correction obtained from the total-energy differ-
ence between spin-polarized and unpolarized all-electron
atomic calculations. We found that for the case of tran-
sition metals where there is an appreciable overlap of the
d state with the core states, estimating the spin-
polarization energy from calculations on the pseudoatom
can give rise to large errors because of the nonlinearity of
the exchange-correlation function. For Nb, we found the
spin-polarization energy to be 0.223 Ry, whereas calcula-

tions on the pseudoatom give a result which is too large by
a factor of 2. The spin-polarization energy for Mo is
0.326 Ry.

The results of our calculations, together with the com-
parisons with experiments, are summarized in Table III.
The agreement between calculation and experiment is
very satisfactory. We have also listed for comparison the
results of several similar calculations on Nb and Mo using
other methods.

The calculated band structures along symmetry direc-
tions are plotted in Fig. 5. They agree very well with pre-
vious self-consistent calculations. ' '
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VI. CQNCLUSIGN

We have applied first-principles total-energy calcula-
tions using ab initio pseudopotentials to study the equili-
brium ground-state properties of the transition metals Nb
and Mo. The calculated results for the equilibrium lattice
constants, bulk moduli, and cohesive energies agree with
experimental values to within 1%, 8%, and 3%, respec-
tively, for both Nb and Mo. These calculations show that
our method has the accuracy required for calculating the
properties of transition metals and enable us to proceed
with confidence to investigate the lattice-dynamical prop-
erties in transition metals. We have extended these calcu-

lations to study phonon modes of Nb and Mo, and the oc-
currence of phase transitions in Zr. Details of these stud-
ies will be reported in another paper.
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