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The role of the conductivity and the magnetization in electromagnetic wave propagation in a met-
al when an external magnetic field is present is reviewed. In the quantum case, the experimental re-
sults at different values of the frequency demonstrate that the approach of Lifshitz, Azbel’, and Ka-
ganov is not always valid. A theoretical analysis of the quantum absorption taking into account
both the conductivity and the magnetization in the frame of the semiclassical theory is presented.
The theory shows that the quantum oscillations at intermediate and high frequencies are dominated

by the conductivity.

I. INTRODUCTION

When considering the problem of the propagation of an
electromagnetic wave in a metal in the presence of an
external magnetic field large enough to allow effects due
to Landau-level quantization, one must take into account
both the conductivity and the magnetization contribution.
In a nonstationary field the Shubnikov—de Haas and the
de Haas—van Alphen effects are a priori simultaneously
present. Up until now!' it has been usual to assume that
the quantum oscillations of the surface impedance of a
metal at very low and also at sufficiently high frequencies
were due to the conductivity, while at intermediate fre-
quencies they were assumed to be due to the magnetiza-
tion.

The experimental results found by Vol’skii and
Petrashov? at low frequencies, Zherebchevskii et al.’ at in-
termediate frequencies, and Giura et al* at microwave
frequencies show that this approach is not always valid.
Therefore the question of which effect dominates in the
electromagnetic wave propagation must be theoretically
reviewed.

In this paper we derive the conditions for the quantum
absorption of the electromagnetic (EM) field when both
the conductivity and the magnetization are present. We
show that at intermediate and high frequencies the mag-
netization contribution, if it is present, reduces the quan-
tum oscillation. In this case the Shubnikov—de Haas ef-
fect plays the main role as follows by the experimental re-
sults. To show this, we calculate the magnetization term
at low but finite temperatures and introduce it together
with the conductivity term previously found® in the
Maxwell equation. Finally, we obtain an equation which
allows us to display the conditions for the existence of the
quantum EM wave propagation.

II. QUANTUM OSCILLATIONS IN AN EM FIELD
AS A FUNCTION OF FREQUENCY

As is well known,! in the static case the quantum ef-
fects (related to the electrostatic and magnetostatic effects)
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which give rise to the Shubnikov—de Haas effect for the
conductivity and the de Haas—Van Halphen effect for the
magnetization, respectively, can be independently con-
sidered. In the problem of the propagation of the EM
field in a metal in the presence of an external magnetic
field ﬁo, the microscopic field at a given point on the met-
al depends on the external magnetic field established by all
the charges moving along orbits with radii of the order of
the Larmor radius. The size of this radius is large com-
pared with the distance between the charges, and therefore
the field at a given point is an average field: One must
consider the magnetic induction B and not the magnetic
field H. In an alternating EM field one measures the sur-
face impedance Z of a metal. To find Z the Maxwell
equations in which both the magnetization M and the
current density Y are present must be solved. The
Maxwell equations, ignoring the displacement current as
is usually permissible for good conductors, are
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where T is the conduction density current and & the con-
ductivity tensor. The Maxwell equations in this form are
analogous to those revised in the literature with the differ-
ence that in our case the total current is divided in the
“conductivity” part T and in the “diamagnetic” part
41rc rotM.

Lifshitz et al.,! in considering the quantum effects, take
into account the relative contribution of both the conduc-
tivity and the magnetization in the propagation of an EM
field. The magnetic term is proportional to the derivative
of the magnetization with respect to the magnetic field
and therefore involves a factor equal to the inverse of the
period of quantum oscillations given by
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where S,, is the cross-sectional area of the constant-energy
surface. In the case of not very high magnetic fields, the
condition n >>1 is valid for the Landau quantum number
n. At low frequency, ot << 1, one can use the instantane-
ous value of the alternating field in the static formulas,
and therefore the de Haas—van Alphen term is more im-
portant. When the frequency increases, the contribution
of the magnetization decreases. This is due, as Lifshitz
et al.! assert, mainly to two reasons, the nonlocal effect at
high frequencies and the fact that the magnetic moment
does not instantaneously follow the variations of the alter-
nating magnetic field. This fact gives rise to a factor
(o7)~! in the expression of the magnetic moment. To
continue, they assert that for a metallic sample of finite
length, by increasing the frequency at the beginning, the
Shubnikov—de Haas effect contributes to the quantum os-
cillations; at intermediate frequencies the de Haas—van
Alphen effect is dominant and, finally, for high frequen-
cies the Shubnikov—de Haas effect is again an important
influence. The experimental results recently found in met-
als>** do not always confirm these predictions. In the
following section we will sketch the experimental situa-
tion.

III. EXPERIMENTAL RESULTS

Vol'skii and Pekashov® showed that at audio frequen-
cies (approximately 160 Hz) oscillations in the EM ab-
sorption as a function of an external magnetic field exist.
From the values of the periods they deduced that the os-
cillations have to be related to the cross-sectional areas of
the tubes of the Fermi surface of aluminium in the third
Brillouin zone. They concluded that the quantum oscilla-
tion observed in helicon propagation in a metal at low fre-
quency is a manifestation of the de Haas—van Alphen ef-
fect. Recently, Zherebchevskii et al.® reported an experi-
mental investigation of the surface impedance in a single-
crystal sample of cadmium in the anomalous skin-effect
regime. The external magnetic field is orthogonal to the
sample surface and the EM frequency is in the MHz
range. They showed that the experimental results are dif-
ferent for the antisymmetric and symmetric excitation
method: For magnetic field By > 30 kG, quantum oscilla-
tions are present with an amplitude 1 order of magnitude
greater in the symmetric than in the antisymmetric case.
They concluded that the experimental results demonstrate
that the quantum oscillations are dominated by the con-
ductivity. For higher frequencies (about 20 GHz) our
measurements* have been interpreted as being due to the
conductivity too.

To summarize, at low frequencies the magnetization
gives the relevant contribution, and at intermediate and
high frequencies the conductivity has the dominant role.
The previous theory is in partial disagreement with these
experimental results.

IV. CALCULATION OF M

In the nonstationary case, to obtain the magnetization
M, we consider the expectation value m of the magnetic
orbital momentum. The magnetization is the average
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value of m, and we find it by means of the distribution
function obtained by the kinetic Boltzmann equation in
semiclassical quantum conditions, as we have done for the
calculation of the conductivity.” The orbital magnetic
momentum is given by the derivative of the Hamiltonian
with respect to the magnetic field. Neglecting the spin-
orbit interaction in nonglativistic conditions, and with the
external magnetic field B, along the z axis, the expectation
value of m in the energy representation is®
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with
ri=pi+p)mQ)"2=2¢,/m Q2
the orbit radius, € =(n + 3 )% the transverse energy, and

Q=eBy/cm, the cyclotron frequency.
The magnetization M is given by
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where f is the equilibrium distribution function and f is
the first-order term of the development of F in the EM
field amplitude. The expression found for f in Ref. 5 will
be used, recalling that it is valid under the following con-
ditions: A quadratic dispersion law model with high fre-
quencies, w7 >>1, low temperature, €y >>kpT (e = Fer-
mi energy), and high magnetic field intensities,

#Q >>fiw, kg T .

In Eq. (1) we use the stationary value of the orbital
magnetic moment jointly with the time-dependent distri-
bution function f. In order to justify this assumption one
must consider that the expectation value of the magnetic
orbital moment in the energy representation refers to
times of the order of the revolution time of electron orbits
27/}, which in our case is much smaller than the relaxa-
tion time 7. In fact, up to microwave frequencies and for
high magnetic field, we have Q>>w; in addition, the
Boltzmann-equation solution f is valid under the hy-
pothesis w7 >>1-—collecting these conditions we have
T>>27/Q.

Let us calculate the equilibrium term M, in Eq. (1) to
test the validity of the equation, because in the stationary
state, one must obtain the known expression for the mag-
netization of the de Haas—van Alphen effect. With the
use of the coordinates €,p,,p, M, is given by
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where the integral in de, as is usually done in semiclassical
quantization, is transformed according to

fowde...ﬁﬂi N
n=0

In Eq. (2) the variable ¢ =0t is the angle that locates the
point-P representative of the carrier state on the orbit (see
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Fig. 2 of Ref. 5). Because the integrand does not depend
on ¢, Eq. (2) becomes
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The hypothesis # >>1 has to be assumed in order to com-
pare the final result with that obtained by Lifshitz and
Kosevich for the de Haas—van Alphen effect.” In the fol-
lowing we will use the usual development method with the
Poisson’s formula and consider only the magnetization
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part oscillating with the external magnetic field. Further-
more, we will suppose that the Landau quantum number
n, considered to be a function of the energy € and momen-
tum p,, has an extremum for which the following develop-
ment is valid:
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n(e,p,)=np,(€)+

1
2
Then, one obtains, for the oscillating part M, the expres-
sion
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where Re is the real part. The integration is carried out taking into account that only the exponential part is a rapidly
varying function while the remaining factor in the integral can be treated as a constant. Let us use the rules of semiclas-
sical quantization,
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where m, is the cyclotron mass given by (3S/d€)/2m and S (€,p,) is the cross-sectional area of the constant-energy sur-
face e(P)=¢ crossed with a plane orthogonal to By for a given value of p,. With simple calculations Eq. (5) becomes
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with Y(IA)=IA/sinh(IA) and A=2m?kyzTcm, /eBy#i. Equation (6) is exactly the same expression reported in the litera-
ture for the de Haas—van Alphen effect.’
Let us now calculate the time-dependent part of M as follows:

_ 2e 3 1
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Integrals in the variable @ have to be calculated with the use of the Boltzmann-equation solution.>® We assume that the

axis z is directed along ﬁo, that the axis x is parallel to the sample surface, and that the wave vector K is in the plane
(»,2), and we then write

2 4 . .
fo qu)f_wd(p’exp( — B +iB cosp —iA sing)[ E v.(@")+ Eyv,(¢") + E,v,(¢") Jexp(Be’ +iA sing’ —iB cosg’) , (8)

where v, =a,k,/my, B=[v—i(o—7v.p;)]/Q, and o is the EM field frequency depending on the time as exp(iwt). 4
and B are functions of the wave vector k, the energy €, the magnetic field By, and the angle 6 that the field direction
makes with the normal to the sample surface. The expressions of 4 and B, in the case of a quadratic dispersion law, are
given in the Appendix together with v, (@), v, (@), and v,(¢). In the following we shall use the exponential developments
for the functions sing and cosg:

explis@), exp(iD cosp)= i i*J (D)explisg) . 9

§=— o0

exp(iD sing) = i Js(D)

§=—00

One finds that the integral (8) contains terms, according to the EM field polarization, of the type

L= 3 (-1
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L= 3  (=1F*0" "I (A)J (B A)T(B) :U:—“’ ,
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with y=B+i(s +s’). In the case @7>>1 we calculate the terms 7y i /(y?+1) and 7y —1/(y*+ 1) by means of the
identity v=1/71,



5476 R. FASTAMPA, M. GIURA, AND R. MARCON 28

lim —L— = P(1 /%) +im8(x) .
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For the oscillating part, because of the 8(x) term, we obtain, from Eq. (10),
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After some straightforward calculations the quantum part amplitude is
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The index i runs over the possible values of w/k, i.e., it
depends on the EM dispersion law w(k). ®(6,E) is a
function of 6 and the EM field amplitude g (6) depends on
6 and the effective masses; both functions are given in the
Appendix. From Eq. (12) one can see that the quantum
part of the time-dependent magnetization is of the first
order in the wave field, because @(G,E) is a linear func-
tion of E.

V. SOLUTION OF THE MAXWELL EQUATIONS
AND CALCULATION OF THE ABSORPTION

Let us designate B the time-dependent magnetic field,
By the static magnetic field, and M(B) the time-dependent
magnetization. Since B << B, the expansion®

M(B)=M(Bo+B)—MBy)= | M | B
dB Jo
sin | M | (13)
dB o
is valid. The Maxwell equations are
rot [ﬁ 1 —4msin’0 iiﬁ :4—T=4—W‘8E ,
dB Jo ¢ ¢
- (14)
= 1 3B
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Equations (14), in the harmonic regime expi (k *T— o?), be-
come™%°
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Introducing the complex variable w/kv,=a+if3 with
v, =(B3/4m*m8N)'/%, the Alfven velocity, an equation
F(£)=0 (with £2=a?—f?) is obtained from Eq. (15),
whose solution gives the allowed values for the wave vec-
tor K.

In order to obtain the function F(£), we shall introduce
into Eq. (15) the expressions for the conductivity tensor
components 0,g found in Ref. 5 and the expression of the
magnetization we derived in this paper. The consistency
conditions of Egs. (15), in terms of the variables a and 8
are

1—(@*— B[ 1+¢,Gi(a,B))+¢18G, (a,8)=0 ,
(16)

2B[1+4c¢,G2(a,B)]+¢,G,(a,B)=0 .

The expressions ¢; and c, are given in the Appendix. The
term G,(a,f) is equal to the term defined by Eq. (7) of
Ref. 10 divided by

oM

I,=1—47sin%0 3B L . 17

To find the explicit expression of G,(a,B) in Eq. (16), we
have to insert into Eq. (17) the expression for the magneti-
zation. As we have stressed at the end of the preceding
section, the time-dependent term of M is of the first order
in the EM field, therefore it is negligible in a first-order
theory [see Eq. (15)]. For the stationary term of M, Eq.
(6) cannot be used since it has been obtained in the limit
n>>1, no more valid than when #Q >>#w,kzT. In this
case transitions between Landau levels in the photon ab-
sorption are forbidden (An =0). The M evaluation will
be carried under the conditions %) >>#iw and very low,
but finite, temperature, as follows:
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which is dlvergent when a Landau level crosses the Fermi level. Replacing in Eq. (18) the variable p, with € by means of

e=(n+5 L)5Q + Dz /2mz, and by means of partial integrations, we have
@ _ p; —® 1,2 _sinhz
2 1 —_
f_wdpoOSh er—(n++)HQ— e = _4f(€F~b kg r[2m;(e—b, —kpT)] osh’s dz , (19)

where b, =(n + 5

1)#%Q. As the main contribution to the preceding integral is due to the exponential part, we can substi-

tute the mtegrand function with its value when the exponential is maximum. Equation (19) then becomes
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From Egq. (19) one obtains, for F(§),
F(&)=1—E[1+c,GJ(&)]— 16u(8) 2D

2[14¢,G2&)]

where G, (£) is obtained by introducing into Eq. (15) (dM,/dB,), as given by Eq. (2

0), and the tensor coefficients of the

conductivity o,p, as given in Ref. 5. The expression for G,(§) is

i (n ++)%cosh~?[a (x2—£%)]

»

tor L which must be considered as a free parameter in the
numerical fit.

In Figs. 1 and 2 the behaviors of the function F(£) as a
function of £ are reported for different values of the mag-
netization parameter L. The angle 6 is 88°. One can see
that for L =1 (value appropriate for bismuth) the quan-
tum waves are present. For Fig. 1 the external magnetic
field is Bo=5 kG, and for Fig. 2, B;=3 kG.

By increasing L, the number of solutions of the equa-

=0
Gu(§)= e P ; R ' 5 5
14+47L sin®*0 ¢y >n +7)2(xn+x0) 2 fcosh?(ax;)]
n=0
I
with
€ (n+l)ﬁﬂ__v“2Lx2
F 2 B 2a,c0820 "
0.51kzT
xo_—_—zi—2azcos29 ,
voymg
e3(2m,)'? B}
C3

- 2% m2ky T SN 2a,cos%0 '

The numerical solution of equation F(£)=0 is obtained
specifying the values of parameters (effective-mass coeffi-
cients, Fermi level, carrier number, etc.) for bismuth. The
magnetization term is also multiplied by a numerical fac-

tion F(£)=0 reduces, and for B,=5 kG, when L > 10,
there is no intersection of F(£) with the axis £ In other
words, the equation F(£)=0 is no more satisfied. From a
physical point of view it means that by increasing the de
Haas—van Alphen term, quantum propagation disappears
and a sole solution exists for £2= 1, which gives the classi-
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FIG. 1. Behavior of F(£) as a function of £2 for different
values of the magnetization parameter L with §=80° and B;=5
kG.

cal Alfven waves with a propagation velocity v,. When
By=3 kG the equation F(£)=0 has no solution for L > 5
(Fig. 2). Therefore the quantum oscillations are only of
the Shubnikov—de Haas type, because the magnetization
contribution, if it exists, reduces the quantum effect and
does not substitute for the conductivity term. The role of
magnetization with regard to the disappearance of quan-
tum oscillations, increases under the same conditions for
L for lower values of the external magnetic field.

1]
]
_J
__J
_J
_J
)

F(&)

o

0.0005 &

FIG. 2. Same as Fig. 1 with B;=3 kG.
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An experimental feature* peculiar to oscillations related
to the quantum EM waves of high frequency is the disap-
pearance of oscillations by increasing the external magnet-
ic field By. As we mentioned, the magnetization term
does not explain this effect because of the role played by
the intensity of the magnetic field. The disappearance of
oscillations for high values of the external magnetic field
has been previously interpreted by considering only the
conductivity contribution; the results of this paper con-
firm this hypothesis.

One can conclude that the present theory correctly ex-
plains the role played by the conductivity in the quantum
EM oscillations as experimentally found by Zabrisky
et al. and ourselves.>* A direct contribution of the time-
dependent magnetization might exist, as it follows from
Eqgs. (12) and (15), only to second order in the EM field.

APPENDIX

Assuming an ellipsoidal dispersion law

1
2’710

€= (anps+anp, +asp;+2a1,0.p,

+2a 13PxPz + 2a 23pypz ) ’
and setting

A= %(uxsinesina—{—uxulcose) ,

B= %(uysine cosa +uy,u,cosd) .

a is the angle between the principal planes of the
constant-energy surface and the plane in which B rotates,
given by

2, 2 1,2
—(ay—ap)*[la; —ay)+ai ]

tana =
an
The quantities reported in the paper are given by the fol-
lowing expressions:
r(ax)l/l r(c—zy)I/Z

Uy = Uy =
X mo > Uy mo ’

U] =YxCOSa+Y,ySina, u;=7,cosa—7Y,sina ,
_@uax3—apan

’ - 2 ’

anaxp—an
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x=T T o
1202 —Aan
— 2
aZpZ
2m,

r’=2mg |e—

’

@, =a;;cos’a+a,,sina+aj,sina cosa ,

= 2 2 .

0, =asIn“a—+a»,cos"a —a,sina cosa ,

— 2 2

0, =a33+a»Y,+a1nYxYy+an¥x—a13Yx—an¥y »
Ux (@) =g (r)cosp—g,(r)sing ,

vy (@) =g3(r)cosp—g4(r)sing ,

. a,p,
v (@p)=gs(r)cosp—ge(r)sing+ >
0
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81(r)=uycosa, g,(r)=uysina, gi(r)=u,sina,

84(r)=uycosa, gs(r)=u,u, ge¢(r)=uyu,,
0
krmg

D(6,E)= [&;/ZA(Excosa+Eysina+Ezu1)

+¢7,‘,/ZB(—Exsina+Eycosa+Ezu2)] ,
FUO)=m§?[@L *sin@sina+& }*(y,cosa+y,sina)cosd]?
+mg?[ &},/zcosa sin9+c’i},/2
X (7, cosa—7sina)cosf]?

_ 9 tay (w/N)? fz(e)(axl_iy)l/sz
B (bxx +byy)1/2 47Tm(3)/2kBT

€1 —
a,coso
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o — o2 Gxxayy . @y @y (sinf+y,cos0)>
2=C y Uxx = — _ ’
(axx +ay, ) a,A"*+a,B"”
— = 2
= Ax Ay Y x
W= — ’
axA ;2+ayB'2
, moﬂ , mOQ
=A———,, = —1/2 ?
kTa, kla,
2a,sin*0 + &,
— —— e + ...
axQy, electrons

In the last equation the ellipsis represents an analogous
term for the holes. N is the number of carriers.
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