
PHYSICAL REVIEW 8 VOLUME 28, NUMBER 10 1S NOVEMBER 1983
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The convergence of self-consistency iterations in electronic-structure calculations based on

density-functional theory is examined by the linearization of the self-consistency equations around

the exact solution. In particular, we study the convergence of the usual procedure employing a mix-

ture of the input and output of the last iteration. We show that this procedure converges for a suit-

ably chosen mixture. However, the convergence is necessarily slow in certain cases. These problems

are connected either with large charge oscillations or with the onset of magnetism. We discuss

physical situations where such problems occur. Moreover, we propose some improved iteration
schemes which are illustrated in calculations for 3d impurities in Cu.

I. INTRODUCTION

In electronic-structure calculations one is faced with a
self-consistency problem for the charge density p(r). In
density-functional theory' the charge density

p(r)= g ~
g;(r) i'

is given in terms of the one-electron wave functions g;(r ),
which depend nonlinearly on the effective one-electron po-
tential V(r). How this potential V(r) also depends on the
charge density p is also prescribed by density-functional
theory, e.g., in the local-density approximation. The re-
sult is a nonlinear self-consistency problem for the charge
density p or the potential V, which may be written in
the forin p(r)=F, {pI or V(r)=F {VI. Since other

methods are not available, the solution must be found by
iteration, e.g., pal+i(r)=F {p&I.

Very often, however, this standard iteration diverges.
During the iterations one obtains charge oscillations with
increasing amplitude. Convergence can only be achieved
if these oscillations are damped. In most applications one
therefore applies a damping procedure by superimposing
the input and output of the last iteration, i.e.,

pter+i=~F{i~I+(1 ~iptt

By suitably choosing the parameter u, convergence is usu-
ally achieved. However, problems arise if the parameter ct
is chosen to be quite small in order to obtain convergence.
Then the iteration process converges very slowly and
many iterations are needed. For instance, in calculations
for 3d impurities in noble metals, typical e values are in
the range 0.01—0.04; in extreme cases they can be even
smaller. However, similar problems also arise in other sit-
uations. For instance, Koelling reports that calculations
for rare-earth metals, especially Ce, require a=0.05—0. 1.
It is also known that calculations for ordered alloys re-
quire, in general, smaller mixing factors and more itera-
tions than the calculations for the corresponding pure
metals.

The aim of our paper is to discuss the origin and physi-

cal reason for these convergence problems and further, to
find more efficient iteration procedures in cases where the
simple mixing process p~+ i aF {ptv

——I + ( I —a)pz con-
verges too slowly. Our paper essentially consists of two
parts. In the first part, basically mathematical, we present
a general discussion of the convergence of the standard
iteration p~+ i F{p&J. ——Our method is based on a linear-
ization of the self-consistency equations around the exact
fixed-point solution. The matrix f(r, r '), representing the
functional derivative of F {pI with respect of p(r '), is of
central interest since its eigenvalues determine the conver-
gence. An important restriction for the eigenvalues comes
from the stability condition. In the second part we discuss
improved iteration schemes. We first analyze the simple
mixing procedure p~+i aF{p&I+—(—I —ct)ptt and give
some optimal choices for the mixing parameter a. In par-
ticular, we discuss the physical reason why the conver-
gence of this method can be quite slow for certain sys-
tems. For such cases we propose a number of accelerated
iteration schemes, which are all based on a more flexible
use of mixing parameters. We illustrate these methods in
calculations for 31 impurities in metals and show that
they can be quite efficient.

Some of the material presented in this paper is in spirit
similar to the work of Ferreira, which came to our atten-
tion recently. However, our treatment is much more gen-
eral. Furthermore, we should mention two more recent
papers of Ho et al. and Bendt and Zunger. While our
treatment is based on mixing parameters, these authors
use techniques based on the Newton-Raphson method
with considerable success.

II. LINEARIZATIQN QF THE
SELF-CONSISTENCY EQUATION

In density-functional theory the charge density p( r) can
be expressed by the one-electron Green's function as a sum
over all occupied states up to the Fermi energy:

p(r) = J dE Imo(r r E)=F {pI . (1)
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Since the Green's function is determined by the effective
one-electron potential V(r ), which itself depends again on
the density, we have a self-consistency condition p=F Ip}.
In order to study the convergence of the iteration process
we linearize this equation around the exact fixed-point
solution p»(r) for which p» =FIp» I. Using the Born ap-
proximation for the Green's function

G—=G, +G, 6VG. , 6V=V —V,

we obtain for the deviation 6p =p —p~

5p(r)= f dr 'X(r, r ')5V(r),

dEIm G, rr';E G, r', rE . 4

(3)

X(r, r ') =

X( r, r ') is the susceptibility of independent electrons, be-
ing a real and symmetrical matrix. By linearization, 6Vis
proportional to 6p:

A,; & + 1, we see that the iteration process diverges if
A.; & —1 or if X;~+1—0, where the latter case corre-
sponds to an instability.

Since the derivation above is based on linear response,
the kernel f should be directly related to the static dielec-
tric constant matrix e of the system. Indeed, it is easy to
show that e is directly given by the transpose fT of f:

e=1 UX=—I fT . —
predetermination of EF. In the preceding discussion the

Fermi energy EI; was considered as constant. This is jus-
tified for problems such as point defects, dislocations, sur-
faces, etc., where EF is fixed by the bulk. However, if
metal bulk properties are calculated, EF must change in
order to achieve neutrality. Then one has an additional
term in Eqs. (3) and (7), i.e.,

5p~+&(r)= f dr "dr 'X(r, r ")U(r ",r ')5pz(r ')

5V(r) = f dr ' U(r, r ')5p(r '), (5) +p( r,EF)5' + ',

(--,
)

( ) 5'

5p( r ') p=p» 5p(r )5p(r ') p=p

with

p(r, E~)= Im 6, ( r, r;EF ) .

Here 8 is the sum of the Hartree and exchange-
correlation energies. The last equality holds in the local-
density approximation, where p„ is the local exchange-
correlation potential. Also, U(r, r ') is real and sym-
metric. By combining (3) and (5), we obtain the linearized
form of the self-consistency equation:

In each iteration EF is determined anew by setting

f dr 5p~~)(r)=O= —f dr "p(r ",E~)U(r ",r ')

X5p~(r ')+p(E~)5EF

(13)

p(E&) is the density of states at the Fermi energy. For the
susceptibility we have used the important sum rule

5p(r)= f dr 'f(r, r ')5p(r '), p(r ",Ez) = —f dr X(r, r "), (14)

with

f(r, r ')= f dr "X(r,r ")U(r ",r ') .

The kernel f(r, r ') is just the functional derivative of
F-, Ip}.

The standard iteration process p~+ ~ FIptv } conver——ges
to the exact solution p~ if 6p&~0 for X—+ ~. By recur-
sion we obtain for 6p&+ &

5px+ =f5px=If} 5p =g t~ } I
I&& ~ 15p»

where we have used a spectral representation of f into its
eigenvectors:

f= X~i
I
ii & & i.

I & i.
I

it & =5'

Since f is unsymmetric we must distinguish between the
left and right eigenvectors

~
i, & and &it ~, which are mutu-

ally orthogonal. Later we will show that such a complete
set of eigenvectors always exists and that the eigenvalues
A,; are real and smaller than +1 if the system is stable.
Thus the standard iteration process converges if all eigen-
values A,; are

~

A,; ~
& 1. Since for stability reasons

which follows from (4) if we use the standard result
G = —BG/BE. By inserting this result for 5E~+' into
(11) we obtain again a recursion relation between 5p&+&
and 6p~ with the corresponding kernel given by

f(r, r')= f dr "X(r,r")U(r", r')

p(r, Er)+ ' f dr "p(r ",Er)U(r ",r ') .
p(EF

(15)

The second term in (15) has a tendency to cancel the first
since X(r, r ") is negative definite (as will be shown later),
whereas the densities of states in the second term are posi-
tive. The cancellation is quite important and means that
due to the readjustment of the Fermi energy during the
iteration process, some possible strongly increasing oscilla-
tions of the total charge are prevented.

Equiualence of charge and potential iterations Instead.
of considering the convergence of the charge, we may con-
sider the convergence of the potential problem V( r )

=F t V}. From Eqs. (3) and (5) we obtain as a linearized

equation
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5V(r)= f dr 'f (r, r ')5V(r '), f t, (r, r ')5p(r ')dr '+ f dr ' U(r, r ')5p(r ') =0 . (20)

with

f'=»= X~ I
~. &&~i

I

(16)

The kernel fr is the transpose of f. In cases when EF is
redetermined during the iterations one must take the
transpose of Eq. (15). In any case, fr has the same eigen-
values k; as f. Therefore the convergence of both the
charge and the potential is the same, and it is sufficient to
consider one of them. In the following we will therefore
mostly consider the charge density. In practical applica-
tions, nevertheless, some slightly different convergence
properties of the charge and potential might be observed.
This could be due to nonlinearities at the beginning of the
iteration process that are outside the frame of the present
theory. Furthermore, a nonsymmetrical treatment of the
potential and the charge, e.g., a muffin-tin approximation
for the potential but not for the charge, might also lead to
a somewhat different convergence.

Eigenvalues A, ; of the f matrix During . the iteration
process the symmetry of the system is normally not
changed, i.e., only those variations 5p( r ) are allowed,
which do not break the symmetry. Therefore only the
submatrix fz of f and its eigenvalues A,; in the subspace
I of full symmetry are needed. Thus for an ideal crystal
where the eigenvectors can be classified by a Bloch vector
q, only charge variations with q =0 (point I ) are con-
sidered. As a consequence, we expect the eigenvalues A,;
to form a discrete spectrum, even in an ideal crystal, since
only the values at the I point are needed.

It is difficult to make predictions about the eigenvalues
k; without specifying the system. However, a very general
statement for A, ; follows from the stability of the system,
as will be shown in the following.

We will restrict ourselves to situations where the Fermi
energy is fixed by the bulk, so that the number of particles
is not conserved. In this case we must consider the
"grand-canonical" functiona1

E[pI =T.[pI+IV[pI EF f dr p(r»— (17)

&&5p(r ') &0 (18)

is always positive if the system is stable or metastable, and
vanishes for the exact solution 5p=0. In Eq. (18) t, is the
second functional derivative of T, [p),

t, (r, r ')=
5p(r)5p(r ')

=t, (r ', r), (19)

whereas U is given by (6). The variation of 5 E with
respect to 5p gives the linearized self-consistency condi-
tion

where T, [pI is the kinetic energy of independent electrons
and 8' the "potential" energy. p~ is determined by the
vanishing of the first variation of E [p). The second vari-
ation

5 E= —,
' f dr dr '5p(r)ft, (r, r ')+ U(r, r ']

By multiplication with t, , this equation has the same
form as Eq. (7), showing that X= t,—'.

Now it is important that t, (r, r ') is positive definite, so
that X(r, r ') is negative definite. This follows from the
positiveness of 5 T„which can be seen by writing it in the
Kohn-Sham form with the variations 5$; of the wave
functions

5 T, = g —,
' f dr 8 5t(t;(r)

~

&0. (21)

The connection with the eigenvalues A,; introduced above
is obtained as follows. Instead of 5p we use 5p=t,' 5p as
the new variable. Since t, is positive definite, t,' is well
defined and positive definite as well. The energy variation
5 E can then be written as

5 E= ,'(5p, (—1+t,' Ut, '
)5p) &0. (22)

Thus the matrix 1L+t, ' Ut, ' is positive definite, real
and symmetric; its eigenvalues p; are real and positive:

I+r, '"Ur,—'"=gp, ~s&(i, p,. &0. (23)

By inserting this formula into (22), the energy change be-
comes a sum of the energies for the different "charge"
modes i ):

5'E= 2 -'p 1&~15p& I' ~ (24)

Clearly, the case p;~0 corresponds to an instability deter-
mined by the "soft" mode i. By multiplying Eq. (23) from
the left with t, ' and from the right with t,', we ob-
tain

I+t, 'U=I f= gp—;t, ' ~i)(i [t '~

= y(1 —A,;)
~

l'I )(l'„~ (25)

Thus we see that the eigenvalues p; and A.; are connected
by p; =1—I,; and that the left and right eigenvectors are
given by

~
iI ) =r, '

~

i ) and i„)=t,'
~

i ). We con-
clude that the eigenvalues p; =1—A,; of the matrix I f-
and the dielectric constant matrix are real and positive.
The limit p; —+0+ or A,;—+1—0 corresponds to an instabil-
ity.

It is interesting to see that for the Hartree approxima-
tion, for which we neglect the exchange-correlation poten-
tial in (6), the U matrix is also positive. Then it follows
from Eq. (23) that p; & 1 or A,; &0. Thus the instabilities
p; ~0 only occur due to exchange and correlation. On the
other hand, in cases where these terms do not play a dom-
inant role, we expect only the eigenvalues p; ) 1 or A,; (0.

This discussion can easily be extended to the case of
spin polarization where one must consider the densities
p+(r) and p (r) for both spin directions instead of the to-
tal density p(r). The derivation is quite straightforward
and analogous to the previous derivation. Especially from
5 E ~ 0 the positiveness of all eigenvalues p; ~ 0 follows.

Two illustrative models. In the following we will dis-
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n =E(n) =2 dE n&~(E —Eo —Un ), (26)

which is schematically sketched in Figs. 1(b) and 1(c).
F(n) is a monotonically decreasing function of n

F(0)= 10 refers to a virtual bound state fully occupied by
10 d electrons; F( ac ) =0 means the peak is high above the
Fermi energy and empty. The intersection of F(n) with n

determines the correct number n, of impurity d electrons.
In an iteration process one starts with a hypothesized
number n&, and calculates n2 F(nt), e——tc. A graphical
representation of this process is given in Figs. 1(b) and
1(c). Depending on the slope of F(n) at n~ the iterations

cuss two simple models that illustrate the convergence
problems of the self-consistency iterations. The two
models eludicate two different reasons why the iteration
process p~+t F——{p&j can lead to convergence problems
either due to large negative eigenvalues A,; & —1 (or p, ; & 2)
as in the model for the 3d impurity or due to eigenvalues
A,;~1—0 (p;~0), characterizing an instability as in the
Stoner model.

3d impurity in jellium I.n simple metals 3d impurities
show a virtual bound state, i.e., a Lorentzian peak in the
local density of states n~ near the Fermi energy [Fig.
1(a)]. The position E(n) of the resonance depends strong-
ly on the number n of impurity d electrons,
E(n)=Eo+ Un, where U is the Coulomb integral. Thus
increasing n shifts the peak above EF and therefore depop-
ulates it and vice versa. Thus n must satisfy the self-
consistency condition

either converge as in Fig. 1(b) or diverge as in Fig. 1(c).
This is in agreement with Eq. (8) since for a one-
dimensional model there is only one eigenvalue, given by

A, =F'(n, )= —2n~ (Ez —Eo —Un, )U . (27)

where n(E) is the paramagnetic density of states. The
function F(M) increases monotonically from its value
F(0)=0 to its maximal value F(oo)=5 [Fig. 2(b)]. The
intersection of F(M) with the straight line M determines

Divergence occurs for F'(n, ) & —1. From calculations
for 3d impurities in noble metals, we can insert realistic
numbers for U and n

~ (EF ) and obtain typically very
large values for F'(n, ) of the order of —50 to —100.
Thus the process is strongly divergent, i.e., the charge os-
cillations induced by sweeping the virtual bound state
back and fourth across the Fermi energy increase strongly
in amplitude. Note that the charge oscillations would not
occur if the Fermi energy could be readjusted during the
iterations in order to achieve charge neutrality, as it is
done in band-structure calculations for ideal crystals.

In the Stoner model of ferromagnetism the density of
states for the spin-up and spin-down electrons are rigidly
shifted with respect to each other by IM, where I is the
exchange integral and M is the magnetization per atom
[see Fig. 2(a)]. Thus a self-consistency condition for the
moment M arises,

M =F(M ) = J dE[n (E+ , IM ) —n(E———,IM)],
Q8)

)(nt (E)

UJ

C)

C:

I

E:Un E

&& n'(E)

I

I

I

IM

I

I

I! EF

(b)
(b)

(c) (c)

~F(n)
l

A~

FIG. 1. (a) Local density of states of a 3d impUrity in a sim-
ple metal (schematic). (b) Standard iteration process n~+ l

=F{n~} converges: ! F'(n„)! & l. (c) Standard iteration pro-
cess diverges: ! F'(n„)! & l.

FIG. 2. (a) Schematic representation of the Stoner model. (b)
Iteration process M&+ & F{M& } converges, si——nce F'(M+ ) & 1.
(c) At the threshold the iteration process diverges, since
I"(Mg ——0)= 1.
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n = dE[ n&~(E —Eo —Un+ , IM)—
+n)~(E Eo —Un ——, IM], —

M = dE[ n~ (E Eo —Un+—, IM)—(29)

—n ~ (E Eo —Un——, IM ], —

We will come back to this model in the next section.

III. THE SIMPLE MIXING PRGCEDURE

Owing to the large charge oscillations that very often
arise, the standard iteration process p&+ &

F I pz j is no——r-
mally not used in realistic calculations. Instead, the de-
pendable method that is used most often is a simple mix-
ing procedure ' where the input and output of the last
iteration are superposed by a suitably chosen parameter a:

p~+)(r)=aF, Ip~ j+(1—a)p~(r) . (30)

It is readily seen that for each a&0 the correct solution p,
is obtained if the iteration process converges. While in
principle a =a( r ) could be an arbitrary function of r, in
practice it is taken as a constant since no simple criterion
specifying its r dependence is available. We will in this
section analyze the convergence and the problems arising
in the application of this method.

Setting p& ——p, +6p& we obtain in analogy to the
preceding section by linearization

5p&+&(r)=a J dr 'f(r, r ')5p~(r ')+(1—a)5p&(r)

the correct value M, . A sufficient condition for a non-
trivial solution M&0 is that the slope F'(0)=n(EF)I
should be larger than 1, which is known as the Stoner cri-
terion and which is assumed in Fig. 2(b). The iteration
process M~+& F(——Mz) converges to the solution M, ,
since F'(M„) & 1 and does not, in general, present a prob-
lem. However, near the threshold for the occurrence of a
moment M~, when F'(0) =1 as shown in Fig. 2(c), the
convergence process is infinitely slow.

Both models are simple because only a single variable n
or M must be determined self-consistently and because
only a single eigenvalue [F'(n„) or F'(M„)] determines the
convergence. However, they realistically sketch the two
physical situations for which convergence problems can
occur: charge oscillations of localized d or f electrons with
large densities of states and Coulomb integrals or instabili-
ties, e.g., of magnetic origins. Of course, both complica-
tions can also occur simultaneously. This is illustrated in
the following model for a magnetic impurity, where both
the number of d electrons and the magnetization are to be
determined:

This condition is illustrated in Fig. 3, where 1 —ap; is
plotted versus a. The resulting straight lines all fall be-
tween the limiting lines for the maximal and minimal
eigenvalues p,„and p;„. Since p; & 0 for stability
reasons, all lines have a negative slope. One sees that the
convergence is determined by the largest eigenvalue p
For all a with 0 & a & 2/p, „ the convergence is
guaranteed. Note, however, that if p;„=0 or if even
p;„&0, the process diverges. In order to obtain conver-
gence in this case for the p;„component, a negative a
value would be required, which, however, would destroy
the convergence of the other eigenvectors with positive
eigenvalues p;. Therefore unstable solutions of the Euler-
Lagrange equation with 5 E &0 cannot be calculated by
this method. An example for such a case is the Stoner
model discussed in Sec. II. If the Stoner criterion
F'(0) & 1 is met, two degenerate and stable ferromagnetic
solutions +M, and an unstable paramagnetic solution
M~ =0 exist. From Fig. 2(a) one can convince oneself
that the latter solution cannot be obtained by a mixing
process with a positive a value.

Two choices for a are especially interesting: For
a = I /p, „ the component of the eigenvector p,„) con-
verges fastest, i.e., in the first step already if the lineariza-
tion applies. However, the overall convergence is then
determined by the small eigenvalues, since 1 —ap;„ is
close to 1 and (1 —ap;„) decreases most slowly with in-
creasing 2V. An optimal compromise can be found by pos-
tulating that the components of the maximal and minimal
eigenvalues should converge equally. The resulting a,„, is
slightly smaller than the convergence limit 2/p „:

2
&op~ =

Pmax+Pmin
(33)

~~ 1-ctp. ,

min

Pmax

Both components then converge in powers of A,p&
If

large eigenvalues p,„or small eigenvalues p;„exist (ex-
amples given in Sec. II) the convergence is especially slow
in particular if both conditions, p „large and p;„small,
occur simultaneously.

It is interesting to compare the convergence of the
charge with the convergence of the total energy. By in-

=[1—a(1 —f)] 5p)

= g(1—ap;) ~i()(i„5p, . (31)

For convergence all eigenvalues p; must satisfy

/1 —ap;
/

&1. (32)

I

FIG. 3. Convergence of the simple mixing procedure
p~+) ——a+(p~)+(1 —a)p~ (see text).
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serting Eq. (31) for 5pz+i into Eq. (24) we obtain for
~ EN+I

conditions for the numbers N i and N2 of electrons of both
atoms:

5''+i= 2~ gpr(1 ~pl) I ('~15pi~ I
(34)

E
Ni ——2 dE ni(E —Eoi —UiiNi —U&zN2),

N2 2 E ii2(E E02 22N2 U12N1 ) .
'(35)

Thus the convergence of the energy proceeds in powers of
(1—ap;) instead of 1 —ap; for the charge density. This
means that the number of iterations necessary for the en-

ergy should be roughly a factor of 2 smaller than the
number of iterations for the charge density. Note that the
convergence of the energy can still be quite slow if 1 —up;
is close to 1. This is contrary to the normal belief that the
extremal properties of the total energy always ensure a
fast convergence of the energy.

From the preceding discussion we must distinguish two
different situations for which convergence problems can
occur, i.e., p,„large or p;„small:

Large eigenualues p~~. Concluding from the model of
the 3d impurity in Sec. II we expect large eigenvalues p „
in situations where we have large local densities of states
at the Fermi energy and large Coulomb integrals and
where, moreover, the Fermi energy is fixed by the host,
for instance, d or f impurities, pairs of such impurities,
similarly adatoms on surfaces, overlayers, etc. However,
not only can the local impurity density of state determine
the convergence, but the host density of states can also be
of vital importance. We found such a situation to occur
for sp impurities and the vacancy in Ni. In "single-site
calculations" where only the charge density and the po-
tential at the impurity site are calculated self-consistently,
the convergence was quite fast, as expected, since the local
densities of states and the impurity Coulomb integrals are
rather small for sp electrons. However, when in recent
calculations' also charge perturbations at neighboring
host sites were included, the convergence slowed down
considerably and p,„values larger than 100 were found.
Here the local density of states and the Coulomb integral
at the neighboring host sites became decisive and deter-
mined the convergence. Therefore the coupling at more
or less unperturbed host atoms can also cause problems if
the host has a large density of states and a large Coulomb
integral. Similar probleins are also expected at surfaces
when, e.g., the charge transfer between an adatom and the
first host layer is included.

In an ideal crystal with one atom per unit cell the
charge oscillations are, in general, suppressed due to the
adjustment of the Fermi energy during the iteration pro-
cess. However, problems can also arise if there are effi-
cient intra-atomic charge-transfer processes leading to
strong charge oscillations. For instance, Koelling reports
such problems for the band-structure calculations of Ce,
where charge oscillations between the 4f and 5d shells
occur that cannot be prevented by adjusting the Fermi en-
ergy, i.e., fixing the total number of electrons. Similar
problems also occur for in&rmetallic compounds where
the interatomic charge transfer plays a dominant role. In
the following we present a simple model that illustrates
these problems. We consider a two-component alloy with
two atoms 1 and 2 per unit cell. Similar to the model for
the 3d impurity we derive two coupled self-consistency

Here U~ &
and U2z are the intra-atomic Coulomb integrals,

U&2
——U2& is the interatomic Coulomb integral, whereas

n&(E) and ni(E) are the local densities of states of both
species. As in Sec. II we linearize these equations around
the exact values Ni and N2. From the condition of
charge neutrality (5Ni+5N2 ——0) the change 5E~ of the
Fermi energy can be evaluated W. e obtain then one self-
consistency condition for the charge-transfer process
5Ni ———5N2, the corresponding eigenvalue of which is
given by

2ni(EF)n2(EF)p= 1 —X=1+ ( Ul1 + U22 2U12)
ni(Ep )+n2(E~)

(36)

Two limiting cases are of special interest. For n2«n~
and U22, U(p « U» we obtain

p = 1+2n2(EF ) Ui i . (37)

The EI; adjustment has the effect that p is not given by
2n j U» but only by the smaller value 2n2U~~. However,
if n, and n2 as well as Uii and U22 are of equal magni-
tude, then this cancellation is not effective and p is large.
Of special interest is the case ni n2 an——d Uii ——U22. This
can be realized if one calculates a metal with a primitive
unit cell using a band-structure program for a nonprimi-
tive lattice, e.g., bcc Fe with a program for a CsCl struc-
ture with two atoms per unit cell. From Eq. (36) we ob-
tain then p =2n i (E~ ) Ui i, since Ui2 is normally smaller
than U». Thus the Ez cancellation is not effective, and
the same expression (27) as that for the 3d impurity is ob-
tained. In a similar manner, these convergence problems
for nonprimitive lattices have been noted in frozen-
phonon calculations by Harmon and Ho» and are also
discussed by Koelling. The above-mentioned model can
also be applied to the problem occurring for Ce if Ni and
N2 are identified with the number of f and d electrons.
The largest eigenvalue should then be given by (37), i.e.,
IJ, ,„=2ng(EF ) Uff.

Small eigenualues p~;„correspond to a near instability
of the system, which occurs at the onset or loss of new de-
grees of freedom. The most prominent instability is the
threshold for a magnetic moment as illustrated by the
Stoner model discussed in Sec. II. However, one can also
think of other instabilities such as Jahn-Teller distortions,
incommensurate charge- or spin-density waves, etc. One
important feature of the magnetization problem (and
presumably also of the other instabilities) is that near the
threshold the charge density and the magnetization densi-
ty decouple. This is essentially due to the fact that a small
magnetic field cannot change the charge density if only
linear effects are considered. Thus in first order the inter-
nal field created by the spontaneous magnetization does
not couple to the charge density.
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with

6n 6n

6M ~ )
— 6M ~

(38)

(n—'+ n '
) U —,

'
( n ' n—' )I

(n ' —n—') U , (n—'+n')I

We will illustrate this point and its implications for the
model of the magnetic impurity of Sec. II. Equation (29)
gives two self-consistency conditions for the local charge n
and the local ~oment M of the impurity. By expanding
around the exact. solutions n, ,M, we obtain the linear
equations

T

By setting 5pN+1(r) =pN+1(r) —p„(r) and by eliminating
p from the above equations, the limiting value p„(r) can
be estimated from successive iterations:

PN+1PN —1 (PN)
2

p, (r) -=
pN+1 2pN +pX —1

(41)

For self-consistency problems with a single variable this
formula is identical with Aitken's 6 process. ' One can
also show that it can be considered as an extrapolation by
a geometrical series starting from the iteration p&. By in-
troducing the deviation Ap&+~ ——p~+~ —p& from pz as
the new variable, one obtains the recursion formula

~PN+I P~PN+I —1+~PN+1

where n and n refer to the local density of states at EF
for both spin directions. Near the threshold for the oc-
currence of a local moment one has

~

n' —n'
~

(&n' +n'
so that the two eigenvalues k& 2 that determine the conver-
gence are given by

Ap~+), 3 & 1

or, for i~co,

p, (r)=pN(r)+ — [pN+1(r) pN(r)] —.1—

(42)

(43)

A, 1
———( n 1'„+n 1'„)U,

A,2
-=+ ( n 1"„+n 1'„)I/2 .

(39) The factor p can be determined from the last three itera-
tions, yielding

In this limit the two eigenvalues coincide with the diago-
nal elements of f, showing that the couphng between 5n
and 6M is not important. Moreover, the highest eigen-
value I(, 1 is to first order in M, independent of the fixed-
point magnetization and equal to the paramagnetic eigen-
value at the threshold M, =0. Thus the convergence of
the charge density is decoupled from the convergence of
the magnetization near the threshold. Since near the
threshold A, 2 =n1 (Ez —Un )I approaches 1, only the
convergence of the magnetization is slowed down, while
the convergence of the charge density is unaffected and
essentially equal to the convergence behavior in a
paramagnetic calculation.

IV. SOME ACCELERATED ITERATION SCHEMES

Owing to the problems that arise when the simple mix-
ing scheme is used in certain physical situations it is of
importance to find improved iteration schemes that are at
least partially free of these limitations. Some promising
schemes will be discussed in the following. Most of these
are based on a more Aexible use of mixing parameters
than in the simple mixing procedure. At the end of this
section these schemes will be applied in realistic calcula-
tions for 3d impurities in Cu.

A. Extrapolation by geometrical series

After many iterations in the simple mixing procedure
[Eq. (31)], only the slowest converging eigenvector
remains, i.e., the eigenvector for which 1 —ap; is closest
to 1 (usually p;„; see Fig. 3). Therefore one has for large
N a scalar relationship between 5pN+1( r ) and 5pN( r ), i.e.,

5PN+1(r ) =P5PN(r ) =P'5PN— —

PN+1(r ) —PN(r )

PN ( r ) PN 1( r )— —
(44)

By introducing p into (43) we obtain the same result as
above. In the asymptotic region, p should be independent
of r. In practice, there will be a slight r dependence.
Moreover, p is the ratio of two small quantities. For both
reasons it may be of advantage to use Eq. (43) instead of
(41) and take an average p by integrating out the r depen-
dence.

B. The method of Anderson

F~ —p~, F~ —p~, 46

is minimized, yieIding an optima1 mixing parameter a& in
each iteration:

(rN rN —1 IN rN —1)

Linear combinations of the inputs p~,p& ] and the out-
puts F [pN )I,F [PN 1] of two successive iterations are
formed in order to determine an optimized input pN and
output F~..

PN =aNPN+ (1 aN )PN 1— —

FN=aNFIPN]+(1 aN»tpN 1j .— —

Ideally, a~ should be determined such that F& ——p&.
However, this cannot be realized by a simple parameter
aN since pN(r) and FN(r) are functions of r. Instead in
each iteration a~ is determined so that the least-squares
deviation of p~ and Fz,

with (4O) with (47)

p= 1 —a1M
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One can also modify the least-squares condition by intro-
ducing a suitable weighting factor W(r) in the integral
(46) corresponding to a different metric for the scalar
product.

As discussed by Anderson, ' it is often necessary to in-
troduce an additional mixing factor e' to construct the in-
put pN+1 of the next iterations:

pN+1 —~IN+(1 + )PN . (48)

Setting a' = 1 can cause convergence problems. The
method has also been generalized' to include the informa-
tion of more than two iterations.

the charge p and the magnetization I:
PN+I( r ) +p IPN mN ) + (1 +p)PN( r )

mN+1(r) =a F'~'IPN, mN I +(1—a~)mN(r) .
(51)

Since charge and magnetization are decoupled for
1M;„~0, the final convergence proceeds in powers of
1 —a~p;„ instead of 1 —uzp;„ if only one mixing factor
az is used. Therefore an improved convergence is ob-
tained if a is chosen as a »a&, which is possible since
the maximal eigenvalue for the magnetization problem is,
according to our experience, much smaller than that for
the charge problem (i.e., p,„).

C. Iteration cycles

Whereas in the simple mixing scheme the factor a is
kept constant during all iterations, in the method of An-
derson a& is redetermined in each iteration. An alterna-
tive to these extremes is iteration cycles with different
periodically repeated mixing factors. The simplest case
are cycles with two mixing factors a and P:

E. Increasing the exchange-correlation potential

The following procedure, suggested by Harris, ' tries to
reduce the largest eigenvalue p „.The idea is to split the
one-electron potential V(r) into the Coulomb part Vc and
the exchange-correlation part V„, and to mix both during
the iterations with different factors ac and a„,:

P2N+1 ~+IP2N I +(1 +)P2N

P2N+2 p+IP2N+1 I +(1 p)p2N+1 .
(49)

VN+1 =&c+c I VN I + (1 &c)VN-
C C

VN'+1 ——u„g„,I VN J + ( 1 —a„,) VN',
(52)

By linearization, we obtain for two subsequent cycles

~P2N+2 g (1 pp )( I ~p )
I
'1&1(1.

I 6P2N (50)

An optimization of these mixing factors seems to require
a detailed knowledge of the spectrum of eigenvalues p;. If
only two eigenvalues p1 and p2 exist, the choice a= I/p1
and P= 1/M2 guarantees a convergence after one cycle. If
only the highest and lowest eigenvalues of the spectrum
are known, the Tschebyscheff acceleration method
represents an elegant and optimized solution. If the spec-
trum consists of one dominating, very large eigenvalue

p,„and many other smaller eigenvalues, as it is the case,
e.g., for 3d impurities in metals, the component of the
largest eigenvector

~ p,„) converges very fast if a is
choosen as a= I/p, „. For the second iteration the mix-
ing factor p can therefore be much larger than a. For in-
stance, if a is exactly equal to I/p, „, convergence is

achieved for all P & 2/1M', „, where 1M,'„«p, ,„ is the
second highest eigenvalue. The method requires a rather
accurate knowledge of p,„since for a fast convergence

~

(1—ay~»)(1 —pp, „)
~

&& 1 must be satisfied.

with V= V + V"'. Here F& and F„, are the output
Coulomb and exchange-correlation potentials of the Xth
iteration. Since the exchange-correlation potential V„ is
negative, thus opposite in sign to the electron-electron in-
teraction contained in V~, the choice o.„,& ac should ac-
celerate the convergence. For instance, for the models dis-
cussed in Sec. II the Coulomb integral U = U&+ U„
would effectively by replaced

&xc
Ueff UC +

c
so that effectively the largest eigenvalues p» and conse-
quently the violent charge oscillations during the itera-
tions could be diminished. Since we are dealing with lo-
calized electrons, the optimal ratio a„,/ac should be more
or less an atomic property so that different choices for
different atoms could be of advantage.

6

Mn in Cu

D. Problems connected with spin polarization

Ijmax = 8~.4

Ijmin

As discussed in Sec. III special problems arise in the
case of spin polarization if the system is near the thresh-
old for the occurrence of a magnetic moment. Then the
minimal eigenvalue p;„approaches zero, which slows
down the convergence. In this case one can take advan-
tage of the fact that near the threshold the magnetization
density and the charge density decouple, which means that
only the convergence of the magnetization is slowed
down. To a large extent this problem can be overcome by
introducing two different mixing factors a& and n for

-6 -4 -2
E-E (eV)

0 2

FIG. 4. Local density of states for a nonmagnetic Mn impuri-
ty in Cu.
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Anderson method
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FIG. 5. Convergence of the deviation
I
X~ —X~

I
of the lo-

cal impurity charge from the exact value versus the number of
iterations N. Thick lines, simple mixing procedure; thin lines,
Anderson's method. A judiciously chosen starting potential
with

I
N~ N~

I

-=—10 at the beginning has been chosen.

FIG. 7. Convergence of the impurity charge vs the number 1V

of iterations. Thick lines, simple mixing procedure (same as Fig.
5); thin lines, iteration cycles. The judiciously chosen starting
potential of Fig. 5 has been chosen.

F. Test calculations for 3d impurities in Cu

We have tested some of the previous iteration schemes
for calculations of 3d impurities in Cu. In these calcula-
tions we apply density-functional theory in the local-
density approximation of Hedin and Lundqvist' or von
Barth and Hedin' for the spin-polarized case. We assume
a muffin-tin approximation for the effective one-electron
potentials. Perturbed potentials at the impurity site and at
the neighboring host sites are allowed and calculated self-
consistently. The calculations are based on the Korringa-
Kohn-Rostoker (KKR) Green's-function method, which
is able to take all band-structure effects of the host into
account. For details, we refer to Refs. 1O and 16.

As an example, Fig. 4 shows the local density of states
for a Mn impurity in Cu (fully converged solution) in the
nonmagnetic spin-restricted calculation. A strong virtual
bound state at the Fermi energy and considerable intensity
within the range of the Cu d band between —2 and —6
eV are found, resulting from the hybridization of the im-

purity d electrons wi.th the d electrons of the Cu neigh-
bors. From the large density of states at EF and the large
Coulomb integral of the 3d electrons, we expect a very
large maximal eigenvalue p „,which we have estimated
as follows. Starting from a fairly well-converged solution,
we apply the simple mixing scheme and increase the mix-
ing parameter u until the solution diverges. Since all oth-
er eigenvalues are considerably smaller than p,„(see
below), for a )2/p, „only the component of

I p,„)
diverges —(1—ap, „) . In this way p,„can be deter-
mined quite accurately as p „=85.4. From the final
convergence the lowest eigenvector can be estimated as
p'min= 1

The convergence of the simple mixing procedure is il-
lustrated in Figs. 5 and 6, which show on a semiloga-
rithmic scale the deviation

I
N~„N~„

I

versus—the itera-
tion number X. X~„refers to the local number of elec-
trons in the Mn cell, and N*„, is the fully converged value.
Two special choices for a have been chosen:
a = 1/p, „=0.0117 and a,p, ——2/(p, „+p;„)=0.0230.
In Fig. 5 we have taken a judiciously chosen impurity po-
tential from a fairly converged solution as a starting point

10o:10"

I 10-2

10 3

10"

10' ~

10-1
I

LJ
O

e
1Q

2

20 30
10

0 10
I

20 30 40

FIG. 6. Same as Fig. 5 but with poorly chosen starting poten-
t'al (

I
N& X&*

I
=3 at the beginning).

FIG. 8. Same as Fig. 7, but with poorly chosen starting po-
tential of Fig. 6.
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FIG. 9. Local density of states for both spin directions of a
Co impurity in Cu.

so that
~
N~„N~„~ —=—10 at the beginning. In con-

trast, in Fig. 6 a poorly chosen impurity potential with

~
N~~ N~

~

—=—3 has been chosen as a starting potential.
In both cases a=1/p, „-=0.0117 leads to a very fast ini-
tial convergence followed by a rather slow improvement
later. This shows the dominant behavior of the largest
eigenvector p „,which converges after a few iterations
and dramatically improves the local charge. Compared to
this the subsequent slow improvements due to the conver-
gence of all other eigenvectors are rather small. Neverthe-
less, they are important in order to obtain a well-
converged solution. For the larger a value
cx:A pt: 0.0230 the convergence is more steady and slow
since now all components converge about equally slow.
Nevertheless, the final convergence is faster for this u
value since the slope of the curve is about a factor of 2
larger. However, it takes more than 100 iterations before
this ultimately faster method becomes worthwhile. A
simple improvement would be to take initially a=1/p~, „
and then increase o. to a,p, =2/p „.For both a values
the curves are rather straight after 10—20 iterations, so
that the final result can be extrapolated reasonably well by
a geometrical series.

Included in Figs. 5 and 6 are also iterations based on
the Anderson scheme (thin lines). The values for a' refer
to the additional mixing parameter a' of Eq. (48). In all
our applications of this method the convergence is quite
erratic. It can improve dramatically within a few itera-
tions and can just as well get worse again afterwards. In
general, it seems to be difficult to optimize or to smooth
the result obtained with this method. Nevertheless, it
works and in most cases we studied, the overall conver-
gence was faster than that of the simple mixing scheme.

Figures 7 and 8 show test calculations using iteration
cycles again for two initial conditions

~
N~~ —N~~

=10 2 (Fig. 7) and
~
N~ N~„~ =3 (Fig. 8).—For com-

parison, we have also included the results of the simple
mixing scheme for a=1/p, „and a=2/(p, „+p;„)
(thick lines, same curves as in Figs. 5 and 6). We have
taken two elementary iterations per cycle, one with
a=1/p, „=0.0117 and the second with a considerably
larger P value. It is seen that the convergence is very fast,

FIG. 10. Acceleration of the convergence of the local Co mo-
ment by using different mixing parameters n~ and a for the
charge and magnetization.

becoming faster with larger P. From the fact that even
the cycles with P=30a converge, one can conclude that
the second highest eigenvalue pm,'„ is smaller than
p,„/15. While this method shows a very fast conver-
gence, it has the drawback that one needs an accurate
value of p,„to start converging iteration cycles.

Finally, we want to discuss spin-polarized calculations
for 3d impurities in Cu. Figure 9 shows the local density
of states for both spin directions of a Co impurity in Cu
(Ref. 10) for which the calculations give a local moment
of 0.92pz and correspondingly a spin-split virtual bound
state. The minimum eigenvalue is estimated as
p;„=0.30, i.e., Co is close to the threshold corresponding
to p;„=0. Figure 10 illustrates the acceleration of the
convergence of the local moment (M~ —Mf„)if different
mixing factors o.z and a are used. Whereas for
a& ——a =0.02 the convergence of the magnetization is
quite slow, this is considerably improved if a »a& is
chosen.

V. CONCLUSIONS

We have given a rigorous analysis of the convergence of
self-consistency iterations in electronic structure calcula-
tions that is based on a linearization of the self-
consistency equations around the exact solution. The con-
vergence is critically determined by the eigenvalues p; of
the dielectric constant matrix t. which are positive for
stable or metastable systems. In particular, we have stud-
ied the usual mixing procedure p&+ ~

aI' Ip&I——
+(1—a)p~ and have shown that this procedure con-
verges, provided a&2/p, „. However, the convergence
can be quite slow if either very large eigenvalues p
or/and very small eigenvalues p;„exist.

Large eigenvalues p „can occur for systems with
strongly localized d or f electrons and are due to large
densities of states at the Fermi energy and large Coulomb
integrals. These systems are characterized by violent
charge oscillations during the iteration process. A simple
example is the model of the 3d impurity in Sec. II. How-
ever, as explained in Sec. III similar problems can also
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occur in ordered alloys, where one may have charge-
transfer oscillations, or even in elemental metals like Ce,
where the charge can fluctuate between the f and d shell.

In contrast, small eigenvalues p;„~0+ are connected
with instabilities of the system and always occur near the
threshold for the occurrence of a local moment. The sim-
plest example is the Stoner model of ferromagnets as dis-
cussed in Sec. II.

We have also proposed some improved iteration
schemes for cases where the simple mixing procedure con-
verges too slowly. These schemes allow more flexible use
of mixing parameters than the simple mixing procedure,
e.g., a different mixing parameter in each iteration as in
the Anderson method, different mixing parameters during

iteration cycles, or two different mixing parameters, for
instance, one for the charge and one for the magnetiza-
tion. Some of these methods have been tested in realistic
calculations for 3d impurities in Cu and can lead to con-
siderable savings of computer time. Compared to recent
techniques ' based on the Newton-Raphson method, they
are easier to implement in existing computing routines.
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