
PHYSICAL REVIEW B VOLUME 28, NUMBER 10

Some aspects of impurity conduction

15 NOVEMBER 1983

D. Belitz and W. Gotze
Max Plan-ck Inst-itut fiir Physik und Astrophysik, D 80-00 Miinchen, West Germany

and Physik-Department, Technische UniUersitat Mii nchen, D-8046 Garching, 8'est Germany
(Received 30 June 1983)

To study diffusion and localization of electrons in impurity bands, the self-consistent current re-
laxation theory is applied to Wegner s local gauge-invariant model for random hopping transport.
The approach covers both the conducting and the insulating phase for arbitrary dimensionality d
within a single framework. Explicit results for the mobility, the static polarizability, and the
frequency-dependent conductivity are given for d =2 and 3. For d =2, an abrupt transition from a
state of strong localization to a weakly localized quasimetallic phase is found. Scaling laws for the
conductivity near the mobility edge are worked out and the role of the upper critical dimensionality
d =4 is discussed.

I. INTRODUCTION

Electron-transport processes due to random hopping are
of considerable interest, since they are the underlying
phenomenon of impurity conduction in semiconductors
(see Ref. 1). For the transport properties of such disor-
dered systems the occurrence of Anderson localization is
crucial. It implies that either the whole band consists of
localized states, or mobility edges exist that separate re-
gions of localized states from regions of extended ones.
Anderson localization has been studied for different
models with a variety of techniques (see, e.g., Ref. 4). To
examine hopping transport due to spatially fluctuating
overlap of localized electron wave functions, Anderson's
original work was extended by considering a random ki-
netic energy in addition to a random chemical potential.

An extreme case of random hopping was considered by
Wegner. In his model the electron tunneling matrix ele-
ments are distributed symmetrically around zero. As a re-
sult the system exhibits local gauge invariance: Phase
coherence is destroyed completely by going from one lat-
tice point to another. So local gauge invariance is the pre-
cise mathematical formulation of Mott's random-phase-
model assumption. ' The impurity-band model with local
gauge invariance does not have any small parameter, and
this makes it plain why a transport theory for strongly
disturbed systems is so difficult. To proceed, Wegner ex-
tended the model by introducing n electronic orbitals per
site. He demonstrated that the correlation functions of in-
terest can be calculated exactly in the limit 1/n~0. This
observation provided the basis for a systematic 1/n expan-
sion. Thereby, the leading correction in 1/n to the con-
ductivity was calculated; in particular the resistance
correction of two-dimensional systems was found to be
divergent, in accordance with the corresponding result ob-
tained originally for the Edwards model. By a Lagrang-
ian formulation contact was made also to a nonlinear o.
model for which renormalization-group calculations have
been performed. '

To proceed beyond perturbation analysis of the conduc-
tivity the self-consistent current-relaxation theory (SCCR)

was proposed. " SCCR made it possible to obtain trans-
port coefficients and excitation spectra above and below
the mobility edge within one approximation framework.
For the Edwards model of disordered conductor mobili-
ties, localization lengths and dynamical conductivities
were calculated. The theory was extended to study also
random hopping within a continuum model. ' However,
in this work certain approximations made at the very be-
ginning prevented us from studying narrow impurity
bands.

In this paper, previous work" ' will be extended to cal-
culate transport properties of Wegner's model. We dis-
cuss scaling at the metal-insulator transition, mobility-
edge positions, conductivity, and polarizability for all
dimensionalities d and number of orbitals n. Expanding
our results in terms of 1/n and 1/(d —2), we compare our
approximations to the exact results obtained before ' for
the metallic phase.

II. PRELIMINARIES

In this section we introduce notations and outline some
general concepts necessary for the following calculations.
The particle positions r, s, . . . , are restricted to the X
sites of a d-dimensional hypercubic lattice with lattice
constant a. The n orbitals will be labeled by a,P, . . . .
Let us emphasize that we are mainly interested in the case
n = 1 as a model for an impurity band well separated from
other bands. However, since our method works at the
same expense no matter how large n is, we study the gen-
eral case to get in contact with previous work. ' Witha,a denoting fermion creation and annihilationra' ra
operators, respectively, the Hamiltonian reads

(2.1)

So electron-electron interaction is neglected. The hopping
amplitudes h ~ are real random variables. They are dis-

tributed independently apart from the hermiticity require-
ment h ~ =h~ . The distribution is assumed to be
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symmetrical around zero. Thus h and —h occur with the
same weight. Hence, (h ~ ),=0, and the canonical
transformation a a~o. a, where o. =+1, maps H
onto a Hamiltonian entering ensemble averages ( ), with
equal weight. This property is Wegner's local gauge in-
variance. Consequently, (h&2h34), =0 unless 1=4 and
2=3, or 1=3 and 2=4, where the obvious abbreviation
1=(r&,a~), etc., was used. Restricting the discussion to
nearest-neighbor (NN) hopping, the model is specified by
two parameters, e and t,

(h) 2h34)g —( ]4 23+ f3 24 1$ f3 ic)f, (2.2a)

o.(co) =e K"(co), (2.8)

where e is the particle charge. The density propagator can
be rewritten in the form

@g'g(co) = [4~~(co+i0)—C&~~(co —i0)]/2i

by a Hilbert-Stieltjes transformation

N~~(z) = f dc' vr 'N~~(co)/(co z)—.

In particular, the frequency-dependent conductivity is ob-
tained by the absorptive part of the current propagator as
follows':

e if r=s
ifrNNof s

N(q, z) = —g(q)[z+K(q, z)/g(q)]
(2.2b)

where

p(r)= g(at a —(at a )), (2.3a)

For n=1, e is the spread of the local chemical potential's
distribution (diagonal disorder), while t is the spread of
the tunneling matrix elements (off-diagonal disorder).
Note that due to gauge invariance there is no coherent
tunneling.

For a discussion of particle propagation in disordered
systems two variables are of central importance: p(q) and

j( q ) denoting density and longitudinal current-density
fluctuations, respectively, with wave vector q. p( q ) is the
Fourier transform of the density operator field,

g(q)=(p(q)
~
p(q))

is the density compressibility and K ( q, z) denotes some
causal kernel with positive spectrum. Because of the con-
tinuity equation one gets for q~O the long-wavelength
asymptote

—1

K ( q, z) g sin (q;a) ~K (z) /a

Hence, one can write the generalized hydrodynamic ap-
proximation @(q, z) = 4& ( q, z), where

p(q)= pe '~''p(r),
N

(2.3b)
@ (q,z)= —g(q) z+ +sin (q;a)
a- - . 2 K(z)

g(q)a

where the q are restricted to the first Brillouin zone. ( )
denotes, here and in the following, quantum-mechanical
expectation values. Defining the Liouville operator W
acting on dynamical variables A as usual, WA =[H,A],
one obtains a continuity equation Wp( q ) = —qj( q ),
which serves to define j ( q ). Explicitly one finds

j(q) =— g h &z(e
' —e ')a ~a2 . (2.4)

q (nN)'", ,
The homogeneous current density will be denoted by
j=j(q=0).

As done before, " transport properties will be described
with the help of Kubo functions' or propagators,
Nzz (z) = (A

~

(W —z) '
~

B). Here the scalar product in
the space of dynamical variables is given by averaged ther-
modynamic compressibilities for zero temperature,

G (z) = [—z+(z' —4U')'~'],
2U

(2.10a)

(2.9)

Since g(q~0)=pz, with pF denoting the density of states
at the Fermi energy eF, the formula reduces for q~0 to
the Green-Kubo identity. So Eq. (2.9) generalizes the
Green-Kubo equation such that the exact q&0 compressi-
bility and the lattice symmetry is taken care of.

We now note some known results for later reference.
The averaged one-particle Green function

( G12(z) ) (( 1
~

(H —z)

is diagonal due to local gauge invariance: (G&2(z)),
=5~&G(z). Applying a simple decoupling procedure to
the self-energy of G(z), one obtains

(A ~B)= lim I dA[(A B(iA, )) —(A )(B)]
0 a U =e +2dt (2.10b)

The density propagator reads

N(q, z) =(p(q)
~

(W —z) '
~
p(q)),

and the homogeneous current propagator is given by

(2.S)

pF —— [1 (eF/2U) ]' B(—4U e~) . —
wU

(2.11)

Equation (2.10a) is the self-consistent Born-approximation
result for the Green function, which has been used before
in another context. ' For the density of states
pF nG "(co=e~)/——~ it yields a semicircle,

IC(z)=(j
~
(W —z) '

~
j) . (2.7)

The causal functions N„z(z) are determined by their ab-
sorptive parts

Such a result follows also for well-separated impurity
bands from the coherent-potential approximation. '

The representation of the propagators
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X ( 613 (CO1) 642 (CO2) ),

(2.12)

The exact Eq. (2.12) reveals a peculiar symmetry due to
time reversal invariance: For a real Hamiltonian, we have
G12(co)=G2'1(co) and consequently 4)234 —43214—41432,
which was proven diagramatically in Ref. 7. Actually,
this symmetry is the very reason for the known anomalies
in d=2, as was pointed out in a paper by Gorkov et ar. '

A standard approximation for the conductivity cT(co)

consists of factorizing the ensemble average in Eq. (2.12).
With the help of Eqs. (2.2), (2.4), and (2.7) we find a
Mott-Hindley formula, '

cT' '(co)=ne 2a t p' '"(co) (2.13a)

p' '(z)=
2 f f dxp x ——p x+-

yg
—oo Q) —g —oo 2 2 co

Q) CO
X 8 eF —X+——8 eF —& ——

2 2

(2.13b)

where p(co) =nG "(co)/nis the de.nsity of states with ener-

gy m. In particular, the dc conductivity is given by the
density of states squared,

~ 1234(z) (a 1a2
~

(~—z)
~

a 3a4)
—].

in terms of Green functions reads, for bilinear Hamiltoni-
ans,

d 1 f- d, e(e, —)) e—(ep —,)
4 1234(Z) =

'tr ~ 'tt (z —co1+co2)(co) —co2)

So the Mott-Hindley results' are not a consequence of the
random-phase assumption alone, but, in addition, one has
to assume a Markovian process. Now we have to wonder
whether the random-walk hypothesis is justified. Indeed,
for a two-step process the two hops are uncorrelated be-
cause of the model's random-phase property. There is,
however, one exception: If the second step reverses the
first one, one gets on averaging, the average of the squared
transition amplitude rather than the squared average. A
similar observation holds for multistep processes as weH.
So there is just one class of processes for which the
random-walk hypothesis does not hold, and this class
represents the quantum-interference contribution to the
conductivity. In the limit n ~ oo the weight of these pro-
cesses tends to zero as 1/n, and this is the reason why our
simple argument leading to o' ' yields the exact result in
this limit. The random-walk model does not exhibit mo-
bility edges: cT' '&0 whenever pF&0. These observations
have two important consequences. Firstly, the whole task
of any transport theory for strongly disordered systems, in
particular for impurity bands, consists of going beyond
the factorixation approximation. ' ' Secondly, those re-
laxation processes which, e.g., yield the Boltzmann-
equation limit for the conductivity of Anderson's mode1
are completely absent in Wegner's model. The physics of
the good conductor in the standard theory of electron
transport is utterly different from the physics considered
in the limit 1/n~0 in the local gauge-invariant model.
Therefore the current-relaxation processes dealt with in
the original version of the SCCR (Ref. 11) do not occur
for the Hamiltonian studied in the present paper.
Nevertheless, the straightforwardly used SCCR deals suc-
cessfully with the mentioned quantum-interference pro-
cess, as we will demonstrate in the following sections.

o'0)=n2~a 2(t2p/n)'. (2.13c) III. APPROXIMATION SCHEME

CXF= Q t 1—8 n 22
3 mU

6F

2U
(2.14)

Wegner has shown that the preceding results for pF,
cr(co), and aF are exact in the limit 1/n~0 Notice tha. t
the conductivity o' '(co) exhibits two frequency scales,
2U —E'F and 2U +eF, rather than a single one as in Drude
theory.

Some general remarks concerning the nature of trans-
port in the local gauge-invariant model may be in order.
The transition rate for an electron's hop from one lattice
site to a neighboring one, calculated by the golden rule, is
1/~=2~t pF/n. Making the assumption of random walk,
the diffusivity reads D =a /r and Einstein's relation
e D =o' '/pF yields

cr(0) 2~a 2t2p 2/n

For the present model the f-sum rule

ap ——f dco m. 'c7(co)/e

which enters the following theory as the current compres-
sibility a~ ——(j

~
j) depends on the disorder. Substitution

of cr' ' instead of cT yields
2 3/2

It has been shown' that the density of states for nonin-
teracting electrons is uncritica1 at the mobility edge. The
same can be believed for all static correlations. Therefore
we consider it reasonable to replace all static correlations
by their lowest-order approximation. In particular, we use
the density of states and f-sum rule as given by Eqs. (2.11)
and (2.14), respectively, for all values of n.

Application of the Zwanzig-Mori reduction algorithm'
yields an expression for the current propagator, Eq. (2.7),
in terms of the current-relaxation kernel (CRK) m (z),

K(z) = aF[z+m (z)]— (3.1)

Q Yj = g h13h32(r1+r2 —2r3)e,a)a2 .
X

(3.2b)

Here e1 is the unit vector in the 1 direction [without loss
of generality we have chosen q=(q, O, . . . , 0)]. We have

The CRK, which can be interpreted as irreducible self-
energy of the current propagator, is given by

m(z)=(Q~j
~
(QWQ —z) '

~
QWj )/a~, (3.2a)

where Q= 1 —az j)(j
~

projects perpendicular to j. The
fluctuating force QWj is easily found from Eq. (2.4),
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also applied the factorization approximation

(hi3h32aia2
~

p)=-(hi3h32), (aia2
~
p)

so that

h i3h 32 =hi3h32 (hi3h3$ )a =h i3h 32

etc. The fluctuating force is a sum of product modes con-
sisting of fermion excitations a1a2 and of random-field
fluctuations h13h32. The essential approximation of the
theory now consists of factorizing the average of products
into products of averages. " This procedure may be
viewed as a simple version of a mode-coupling approxima-
tion,

m(z)=[1/(ann N)] g [(ri+r2 —2r3).ei][(r-, +r2 —2r3)e&](h»h32h'-, 3h32), 4,2Tz(z) .
1,2, 3, 1,2, 3

Assuming a Gaussian distribution of the h, the average can be factorized. With the help of Eq. (2.2) the result reads

m (z) =MD(z)+Mi(z)+M2(z),

where

(3.3)

Mo(z)=[1/(aFn N)] g g f f [(ri+r2 2r—3) ei] '@i2i2(z),
1 3 2

(3.4a)

Mi(z) = [1/(aFn N)] g g f f [(r i+ r2 —2r3) e i] @i22i(z),
1%2 3

1'3 '3'2

M2(z)=[2/(ann N)] g [2(ri —r3) eif ] [@»»(z)—C&»33(z)] .
1,3

(3.4b)

(3.4c)

The significance of the three contributions is quite dif-
ferent. Let us consider the most important term M, (z)
first. Because of the symmetry mentioned in connection
with Eq. (2.12) we have

C i22i(z) =4 ii22(z) .

The latter function is the density propagator for the n = 1

model; this is also true, apart from uninteresting higher-
order corrections in 1/n, for general n after summation
over the orbital indices entering Eq. (3.4b). Hence one
gets

Mo(z) = ( n /aF )4a t [ U —2t /n]P' '(z),

where P' ' is given in Eq. (2.13b).

(3.8)

gator Ni2&2(z) in Eq. (3.4a) do not have any overlap with
the density mode. The propagator +i2i2(z) is not critical,
neither for the q ~0,z ~0 singularities nor for the
conductor-insulator —transition problem. For these
reasons we will not evaluate it self-consistently, but rather
replace it by its leading-order factorization approximation.
One finds

Mi(z) = g wi(q)4&(q, z),
uFnX

q

where the vertex reads

d

wi(q) 4t =a cos(qia) e +2t g cos(qa)

(3.5) IV. RESULTS

A. Self-consistency equations

Let us summarize the equations derived in the preced-
ing sections. The current correlation function K(z) was
expressed in terms of a regular kernel Mo(z) and a critical
kernel M (z) in the form

+ 2t sin (qia) —2t /n (3.6) K(z) = —aF[z+Mo(z)+M(z)] (4.1)

For vanishing q, the vertex approaches a constant, and it
is this low-q limit which governs the low-frequency singu-
larities of the decay integral (3.5). Similarly, M2(z) can be
written in the form of Eq. (3.5) with a vertex [correct for
n= 1 and correct apart from higher (1/n) corrections for
large n] as follows:

w2(q)=(32/n)t a sin (qia/2) . (3.7)

So this term merely yields a correction to wi(q) in Eq.
(3.5) which does not modify the q=0 limit of the vertex.

Because of local gauge invariance the mode a1a2 for
1&2 is perpendicular to the density mode, consisting of
sums over a3a3. Thus the modes constituting the propa-

Functions a~ and Mo(z) are given explicitly in Eqs. (2.14)
and (3.8), while M(z) is expressed in terms of @(q, z) as

M(z)= 4t a (U 2t/n)—
aFn&

wi(q)+w2(q)
X 4(qz).

wi(q =0)pF
q

(4.2)

Approximating N(q, z) by the generalized hydrodynamic
form, Eq. (2.9), the preceding results provide a closed set
of equations for M(z). For given parameters e, t, and e~
one has to determine those solutions which allow for a
spectral representation for M(z) with non-negative spec-
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tral function M"(ai). The preceding results formulate the
SCCR theory for the gauge-invariant impurity-band
model. The contribution M(z) to the current-relaxation
rate, which goes beyond the lowest-order result Mo'(co),
depends on the density propagator, Eq. (2.9). The latter
has to be calculated simultaneously with the rate M"(co).
Besides the self-consistency requirement there are two fur-
ther crucial points of the theory. " First, approximations
are not attempted for the conductivity, but they are at-
tempted for the current-relaxation rate. Second, the rate,
and thus the conductivity, are not only considered for zero
frequency. The very point of the Anderson transition is
the change of an essentially frequency-independent dissi-
pative kernel to a singular, strongly z-dependent reactive
function.

The major qualitative difference between the present
work and the original discussion of localization within the
Edwards model is connected with the long-wavelength
asymptotics of the vertex entering Eq. (4.2). In earlier pa-
pers, " the coupling of the random forces to potential gra-
dients was considered, leading to a vertex proportional to
q . These gradient contributions are absent in the present
model because of the local gauge-invariance property, as
discussed in Sec. II. After the discovery of the quantum-
interference phenomenon, Prelovsek demonstrated how to
handle this new physics within SCCR. ' Details of this
theory for the Anderson transition, in particular a discus-
sion of the interplay of both decay contributions to M(z),
have been first worked out in Ref. 22. Most of the work
on modern transport theory is based on diagrammatic
analysis of perturbation expansions. So it is very interest-
ing that it was also possible to formulate at least parts of
the SCCR within this well-established framework. In
their first attempt, Vollhardt and Wolfle incorporated
the self-consistency requirement as done before within the
mode-coupling theory, but recently they have found a
novel diagrammatic justification of the old results. "
This observation holds with the reservation that eventual-
ly the diagrammatic work will also bring out a proper
handling of cutoff problems and vertices for q&0. It
would certainly also be worthwhile to derive or improve
the preceding equations within the diagrammatic ap-
proach to the present model.

Because of the generalized hydrodynamic approxima-
tion for N(q, z) the self-consistency equations can be
rewritten in the compact form

K(z)
Ko(z)

ZPF

qoK (z)

'1/2 '

(4.3)

Here the lowest-order correlation function was introduced,

Ko(z) = —aF [z +MD(z)]

To get dimensionless expressions a scaling wave number

qo was introduced. The dimensionless coupling constant
of the theory reads

and M=(d —2)A. The function F&(g) is given in terms
of the compressibility g(q) and vertices, Eqs. (3.6) and
(3.7), as

+d(0)=
d y [u 1(q)+u2(q)]1

Xd ID i q =0 pF
q

g sin'(q;a )/(aqo )' PF

g(q)

(4.5)

At present it does not seem worthwhile to carry out the
cumbersome lattice sum entering the definition of E~(g).
So let us replace the integral over the Brillouin zone by an
integral over a sphere of radius qo-=m. /a. The integrand
will be approximated by its q —+0 asymptote, so that

Fg(g)=- f dkk" '(g +k ) '. (4.6)

B. Critical region

~

zaF/(K(z)v )
~

&&1 .

Before simplifying the self-consistency equations under
the specified conditions, one has to recognize the follow-
ing. d=2 'is a lower marginal dimensionality in the sense
that Fz(g) diverges for $~0. So we will discuss this case
separately in Sec. IVF. d=4 is an upper critical dimen-
sionality in the sense that the derivative of F4(g) for $~0
exhibits a logarithmic divergency. The consequences of
the latter singularity will be considered in Sec. IV D. For
2&d&4 one gets

F~(g) =(d —2) ' P(~/—2) Icos[ ,' m.(d —3)]+—
and so Eq. (4.3) can be written as

e K(z)
LOO

W(m. /2)
cos[ —,

'
m.(d —3)]

(d —2)/2

Let us demonstrate that the self-consistency equations
describe a conductor-insulator transition. We will do this
by working out the asymptotic solution near the transition
point. " A critical regime is defined implicitly in the
space of variables (e, t, d, n, eF,ar), where z =co+i0, to&0,
by three requirements. First, frequencies considered have
to be so small that the lowest-order conductivity can be re-
placed by its dc value: co/v«1, where iv=Mo(co+i 0).
Thus Ko

intro/e

——with oo ——e aF/v. Second, the critical
kernel M(z) shall be considered so large that the true con-
ductivity K(z) is considerably smaller than the lowest-
order result:

~

K(z)e /oo
~

&& 1. This requirement is
necessary to justify the use of the hydrodynamic form for
N(q, z). Third, we require the low-frequency polarizability
X(z)=e K (z) lz to be very large:

2 2t 1 9dU' — —
2 '4qo~

n t2 d —2
6F

2U

2 —2
ZPF

X
qoK (z)

+ (4 3')

(4 4)
We will see that 2 ~1 is a necessary condition for being
in the critical region. So with the separation parameter
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z=A —1,
and with the dimensionless frequency

(4.7)

2
~[vpF/(~Fqo )1

one gets or ef th dimensionless current correlation function
K=e K/o. p, the scaling law

IC r — co r +, =, d 4 . 4.8a)IC =
[
1.

/

S(co/
/

r
/

+«), y =, 2 & d & 4 .

The scaling unctionf '
S(g) is the causal solution of the

equation

S(g)=+i +i[irx/sin(mx)](g/S)", x =(d —2 /2 (4.8b)

where + holds for ~~ 0.(
These results obviously imply a conductor phase for
0 and an insulator phase for ~&0. For the dc conduc-

tivity one gets a=oo( —r) with expoS nent s=1. For the
polarizability one gets

X=e (irx/sinirx)' "(pz/qo)r

where p=(y+ . e1)/2. The polarizability determines the lo-
calization lengt r p = p PFth r =X /( ze ) (see subsection D), so that

is the exponent for the divergence of rp near the transi-pis e
tion point. In particular one ge s s =p
edge, there is eis the critical current spectrum

foreThese results have been obtained be orect(co ) co . ese
ithfor the Edwar s mo e,Ed d del ' and they are consistent wi

those derive y e~d
'

d b Wegner with renormalization-group
h

'
es. The numerical values of the exponents agreetechniques. e num

with those found by Opperm ann an egn
d —2~0.

For d~4 one gets

I scaling to classical scaling owever forrom egner
oint liest e iscree mh d' te model discussed here the crossover poin

'd th range of validity of the scaling laws. econ,
our localization criterion 2=1 with 3 given y q.
yields, at the band edges, localized states for all finite d
and n for arbitrary disorder. We have found this to be a
consequence of local gauge invariance, which wou per-

went be ond the hydrodynamic approximation.

some critical value in order to get any localized states.

o =op(1 —2) . (4.10)

The surprising simplicity of this result is a consequence o
the hydrodynamic approximation. ak' gakin the full density
propagator into account, we w gwould et deviations from
Eq. (4.10) outside the critical regime. " At the band edges,

h 3 1 for any finite n and consequently o.=O.we ave
nd the bandFor d ~ 2, there can be extended states aroun

center, provided the diagonal disorder is not too large
corn ared to the off-diagonal one. Figure 1 exhibits a
representative result for a o.-vs-eF curv,
part o t e a scissa in icaf h b

' '
dicates the region of localized states.

p-1

C. dc conductivity

We have shown that for A & 1 the CRK behaves regu-
larly for z~O and our Eq. (4.3) describes a conductor.
For d ~ 2, we find in the dc limit,

Fg(g)= (d —2) ' —g'(d —4)

and Eq. (4.3) can be rewritten as

E(z) gPF

itzp/v d —4 q~(z)
(4.3")

/
/

/
I
l

Q=3 I

/ ~ tJ

/
I

l
I

d=2i
xxxxi rxmu~~~xi~~i

So the dimensionless conductivity obeys the scaling law

K= i7iS(co/r ), d)4 (4.9a)

where the scaling function is the causal solution of the ele-
mentary equation

S(g)=+i (i y/)(g—/S) . (4.9b)

In agreement with the predictions obtained within the Ed-
wards model we find for d ~4 the scaling exponents to
become independent of the dimensionality. The values
s=1, p= —,, and the critical current spectrum behavior
o co -Vco for &=0, agree with those obtained for the

1 t' dynamics of the classical Lorentz prob em. ~

Our values for the exponents for d ~ 4 agree wi o
found for Anderson's model on a Bethe lattice, which
represents t eh d —limit. A number of arguments
leading to an upper critical dimensionality d=4 have een
given in Ref. 28.

Let us add two further remarks. First, in princip e, q.
4 3 is capable of describing at d & 4 crossover phenomena

p

0

/
/

/
/

/
/
I
(

@=3

I
/

/
/

d=2

E'p 0

FICx. 1. Density of states pF in units of 1/(2U), dc conduc-
f a low-frequency conductivity

a.=o.(iU/500) in units of oo, polarizability P in units o
~/qo, and inverse pa icipa

'
~ qo,

'
rt '

tion ratio P ' as functions of Fermi
f 2U for d=2 and 3. Parameters wereenergy ep in units o

chosen as o owsf 11 s (top to bottom): d =3—M[1—(e~/
Hatch-'=0.51 1.20; d =2—M[1—(eF/2U) ]=0.19046. a c-

ing and cross hatching indicate weakly and strongly localized re-
gions, respectively. Only half of the band is shown.
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For d &2, 2 diverges, and there is no truly metallic
phase. '

Let us notice the following. By approximating

[w&(q)+w2(q)]/w&(0)=1, g(q)=p&

in Eq. (4.5) we found that there is indeed a regime of
mobile states for d=3 and n=1 if e=O. But we can not
overlook the possibility that a better treatment of F~
would imply all states to be localized for d=3 and n=1.
The precise value of the relevant coupling and hence the
position of the mobility edge is sensitive with respect to all
approximation details. Computer experiments would be
very helpful to settle this question.

Regarding Eq. (4.10) as an expansion of the dc conduc-
tivity in 1/n, we identify cro as the contribution of order
(1/n) It a.grees with the exact result cr' ', Eq. (2.13c),
only apart from a factor —, [1—(ez/2U) ]. This deficien-

cy stems from o' '(co) having two frequency scales, as
mentioned in Sec II, while we have approximated the con-
ductivity essentially by a one-parameter curve with the
same area. At the band center the two frequency scales
merge, and consequently our failure is negligible. Actual-
ly, the failure can be removed everywhere in the band at
the expense of a slightly more complicated theory. One
has to study the CRK's self-energy rather than the CRK
itself. However, since for n=1 the factorization approxi-
mation is a gross overestimation of the conductivity, we
believe oo to be not a bad approximation for the regular
term in this case. Apart from the same factor, the correc-
tion term of order 1/n agrees with the exact result.

(qoro) =d/[A (d —2)], A »1 . (4.12)

so near the edge one finds, as leading divergency,

(roqo) =(—I/r)in', r—++0, d =4 . (4.13)

The critical exponent for the participation ratio is
found here to be the same as the one for X. This result
agrees in leading order with Wegner's d —2 expansion.
Wegner s next-leading term implies the critical exponents
for X and P ' to be different from one another. This re-
sult is not reproduced by the present theory, presumably
because of our neglecting the CRK's q dependence.

E. Dynamical conductivity for d=3

This formula is equivalent to P '=1—d /[(d+2)W].
Hence at the band edges ro and g vanish, while P ap-
proaches unity, the signature of perfect localization (see
Fig. 1). Approaching the critical point, the localization
length diverges. So there is a polarization catastrophe, as
discussed in subsection B, and shown in Fig. 1 for d=3.
Our original predictions concerning this phenome-
non" ' have been reexamined recently in connection
with some experimental data. ' If the whole band is local-
ized, the polarizability reaches its maximum at the band
center, as shown in Fig. 1 for d =3 and 2.

It was already mentioned that the scaling laws are
modified by logarithmic corrections in d=4. Equation
(4.11) reads, for d=4,

(A —1)/A =In(1+ roqo )/(roqo )

D. Localization length

1 =WFg( 1 /(qoro ) ) (4.1 1)

For large M this results in a vanishing localization length

The insulator phase is characterized by the kernel M(z)
exhibiting a pole M(z)- —1/z. The static polarizability
X=e K(z)/z, z~0, is finite. The density correlation
function exhibits also a pole 4(q, z)= f(q)/z, z —+0, —
where

f (q) = p~[1+ (roq)'—] '

and ro ——X/e p~. The 5-function contribution to the den-
sity spectrum reflects the nonergodicity of density fluctua-
tions in the insulator phase. ' Studying the time evolution
of the mean-square radius of a density perturbation
S(t)=([x(t)] )/(2d), one gets for long times
S(t)—S(0)—+ro as opposed to Einstein's result for the
conductor phase: S(t) S(0)~(cr/p~)t. The—se general
results for the unified description of the conductor-
insulator transition have been first considered by one of
the authors. " Another characterization of the insulator is
the inverse participation ratio P '. Within the SCCR
theory it is related to X, since P ' = g f(q) /p~. '

q
With our simplifications one gets

P =[Xqo/(e pF)]~/d .

From Eq. (4.3) one finds for ro the transcendental equa-
tion

To get the complete dynamical conductivity, one has to
solve Eq. (4.3) numerically. This can be done easily by a
straightforward iteration procedure. Results for cr(co) for
the conductor phase A & 1, for the critical point 3= 1, and
for the insulating phase 2 ~ 1, are shown in Fig. 2. The
low-frequency-current spectrum can be worked out
analytically. Using co as small expansion parameter in Eq.
(4.3), one gets, for the conductor phase,

1/2 29'o

PF8 2
cr(co)=o 1+ A

~

r
~

'e
2 2 qou

(4.14)

for the critical point,
2/3 2 ]. /3 2v 3 m- ~PFe qooo

o(co) =o.o CO &
2 2 q Duo pFe'

(4.15)

and for the insulating phase,

o'(~)=~o2roqo[( —A)P'(1/(roqo)] (co/co ), co(co 7

co =pro/(ropze ) .2 2

(4.16a)

(4.16b)

These asymptotes are shown in Fig. 2 as dashed lines.
It is well known from the dynamics of the classical

Lorentz problem, that for large times backward scattering
dominates so strongly that there is a long-time tail for the
velocity autocorrelation function, which is the Fourier
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0,5-

crossover phenomenon was discussed in comparison with
molecular-dynamics data for the classical Lorentz prob-

24, 36

F. Quasitransition in d=2

It was noticed in subsection 8 that dimensionality d =2
is marginal. So there is no truly metallic state for d=2.
Equations (4.11) and (4.6) yield a finite localization length
ro and a finite static polarizability P in the whole parame-
ter range,

(roqo) =Xqo/(e pF) =e —1 . (4.17)

1,0—

FIG. 2. Normalized dynamical conductivity v (~ ) (solid
curves) and lowest-order conductivity o.0{co) (dotted curves) vs
frequency for d =2 and 3 at band center for n = 1 and qoa =2~.
Parameters were chosen as follows (top to bottom): d =-3—
M =0.51,1.00;2.70; d =2—M =0.19,0.46, 1.00. Dashed curves
represent the various scaling laws (see text).

transform of K"(co): K(t) ——1/t'"+ ' . This implies
a nonanalytical low-frequency spectrum K"((o)—K"(0)
—

~

(o
~

~ . Interference enhances this echo in the
quantum-mechanical case so strongly, that K(t) — t ~—
and K"((o)—K"(0)—~(o ~'" ', as was first shown for
weak coupling within the Edwards model. ' Equation
(4.14) formulates this interference relaxation singularity
for the present model and extends the result approximate-
ly to all coupling.

At the critical point, one gets a singular rise of the spec-
trum as already discussed in subsection B. It implies a
long-time tail K(t) ——1/t ~ . In the insulating phase,
the correlation function K(t) decreases faster than any
power. The spectrum is proportional to ~, as predicted
by Mott. Actually, there should be a logarithmic correc-
tion term due to level repulsion effects, cr(co )

-(o (1n(o), ' which got lost in our approximations.
Notice that the prefactors in Eqs. (4.14) and (4.16a)

diverge if the transition point is approached. Simultane-
ously, however, the ranges of validity of these asymptotic
formulas shrink towards zero. These properties reflect the
scaling behavior. Another critical phenomenon is the
crossover from the hydrodynamic asymptotes, Eqs. (4.14)
or (4.16a), for co&&

~

~ ~, to the critical spectrum, Eq.
(4.15), for (o&&

~

r
~

. This is observed, provided one is
close enough to the transition point. A corresponding
crossover occurs for the long-time tail of K(t) For the.
interference relaxation the crossover was discussed before
within the Edwards model. ' Unfortunately, there are
no experiments available to check these predictions for the
Anderson transition. It might therefore be worthwhile to
mention that the critical dynamics and the mentioned

Close to the band edges perfect localization is observed:
The participation ratio approaches unity, as discussed in
connection with Eq. (4.12). X reaches its maximum in the
band center. If M at the band center is not too small
compared to unity, the susceptibility, as well as the
current spectrum for d=2, look rather similar to the re-
sults for d =3, see Fig. 1 and the third row of Fig. 2.

Even though there is no Anderson transition in a strict
sense for d=2, there is a critical region in the sense of
subsection B. This region is characterized explicitly by cov
and W « 1. The self-consistency equation then simplifies
to

= 1+(M/2)ln
llxF/v qoK((o)

(4.18)

For small frequencies this leads to the expected insulator
current correlation function:

K(('0) = r pyo[co+Lco r o2vpF/( J2fay )+ ' ], ('0 ((0
(4.19)

(4.20)

The dashed lines in the two upper-right graphs of Fig. 2
represent the formula (4.20). The logarithmic correction
term is the critical contribution to the current spectrum
due to the interference relaxation. It was first obtained
for the Edwards model, ' and then discussed within the
SCCR theory. The crossover frequency co*, where the
hydrodynamic co spectrum merges with the interference
contribution, is given in Eq. (4.16b).

Let us now choose parameters such that W «1 at the
band center. Then there appears the possibility for a
quasiphase transition in the following sense. Increasing
eF from the band edge towards the band center yields an
increasing localization length, Eq. (4.17). As in the case
d=3, ro is of order 1/qo as long as W ~ 1. At some value
eF ——e„M will decrease below unity, from this point on
f'0 and 7 will rise rapidly. For energies eF, which would
lead to extended states in d=3, I"o now becomes very
large. Similarly, at e„P ' will become exceedingly
small, as shown in Fig. 1. If eF crosses e„ the crossover
frequency (o*, Eq. (4.16b), will become very small, and

where the localization length is given by the small-M
asymptote of Eq. (4.17): ro -exp(2/W). For larger (o
one finds

K((o)=i (az/v) [ I+(M/2)in[ i(co/co*)/—(roqo) ] I
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I/co' may soon reach macroscopic times. In an experi-
ment, there will be a limited frequency resolution due to,
e.g., inelastic scattering processes. If co is smaller than
this scattering rate 1/r;„, one cannot detect true insulating
behavior anymore: o =o.(co= 1/r;„) also exhibits a quasi-
transition at e, (Fig. 1). The dynamical spectrum for
e'F )E& looks similar to the result for d= 3, if frequencies
are measured on the natural scale 2U, Fig. 2. The critical
spectrum, Eq. (4.20), appears as a strong long-time anom-
aly.

In this last section we have demonstrated how the
quasiphase transition in two-dimensional systems comes
about. Si'nce the quasitransition is not accompanied by a
mathematical singularity, the transition point e, is not
well defined. Nevertheless, it should be hard to distin-
guish from a real phase transition in either real or com-
puter experiment. However, since the present model lacks
a genuine weak-coupling limit, the properties of the

quasimetallic phase are not as extreme as in the Edwards
odel.
Note added in proof. After the present work was sub-

mitted, H. Mueller and P. Thomas [Phys. Rev. Lett. 51,
702 (1983)] proposed a theory for transport near a mobili-
ty edge using methods seemingly similar to ours. Con-
trary to their claims, however, the third major approxima-
tion of these authors is not a mode coupling, but rather a
replacement of a vertex vanishing for zero wave vector
proportional to k by a k-independent arbitrary function.
Consequently, in the limit of static disorder their results
disagree with those well known from the literature (cf. our
Refs. 8, 16, 22, and 26).
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