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Experimental piston-displacement equations of state are given for sodium, potassium, and rubidi-
um to 20 kbar for temperatures from 4 K to just below the melting line in each case. Except for
sodium at high pressures, where the low-temperature bcc-hcp martensitic transition appears to
cause problems, these data can be represented by a room-temperature pressure-volume reference
function and a thermal pressure which is a function of temperature only. In addition, these three
solids appear to obey a reduced equation of state at both 4 K and room temperature, for which
V/V0 is a common function of P/B0. A modification of the second-order Murnaghan equation
which is well behaved at large compressions is used to extrapolate these results to 40 kbar for com-
parison with higher-pressure, room-temperature results. These data are compared with other high-
pressure equation-of-state experiments and are extrapolated to P =0 to obtain thermal expansions
and isothermal bulk moduli, which in turn are compared with results from other measurements.
These comparisons and those with theoretical calculations show, on the whole, satisfactory agree-
ment. The elementary form for the temperature-dependent equation of state is in agreement with a
previous suggestion that the Gruneisen parameter is temperature independent and is a linear func-
tion of the volume for temperatures greater than the Debye temperature. The 295-K Gruneisen pa-
rameters for these solids, as deduced from the high-pressure results, are 1.24 for sodium and potas-
sium and 1.26 for rubidium.

I. INTRODUCTION

A continuing interest exists in an understanding from
first principles of the properties of elementary metals,
with the alkali metals providing the simplest applications.
The present equation-of-state data for sodium, potassium,
and rubidium are intended to provide reliable results for
both T =0 and for higher temperatures against which cal-
culations can be tested. First-principles concepts and cal-
culations (mostly based on pseudopotentials and free-atom
configurations) have been published recently by Harrison
and Wills, ' Cheung and Ashcroft, and Chelikowsky.
Moriarty and McMahon have predicted a low-
temperature hcp-bcc transition in sodium at 10 kbar and
also transitions at very high pressures for Mg (hcp-bcc)
and Al (fcc-hcp). Lopez and Alonzo have used an energy
density functional approach similar to that of Chelikow-
sky to calculate thermodynamic properties of alkali met-
als, but with a single parameter which defines the pseudo-
potential core radius. Soma and his collaborators also
have used pseudopotential theory to study the thermo-
dynamic properties of the alkali metals, with a number of
different screening functions. Other related papers
have used a more empirical pseudopotential approach in
which the objective is to compare the application of rela-
tively elementary models of solids in a wide range of cal-
culations to investigate systematic differences rather than
to obtain results of the highest accuracy in any one in-
stance. This work involves, for instance, an investigation
of the martpsitic (bcc-hcp) and bcc-fcc transitions in
sodium and hthium, " and of similar transitions in the

heavier alkali metals, ' for which core-core interactions
are introduced, as well as the temperature-dependent equa-
tion of state. ' ' These calculations also depend on the
use of appropriate screening functions. Explicit anhar-
monic effects have been studied using Monte Carlo tech-
niques by Cohen and Klein for potassium' and Cohen
et al. ' for sodium, for comparison with direct anharmon-
ic calculations by Duesbery et al. ' and Glyde and Tay-
lor, ' respectively, which were based on similar pseudopo-
tentials. Swanson et al. ' have used an early pseudopoten-
tial model and parameters by Wallace' to obtain high-
temperature Monte Carlo equation-of-state results for
liquid and solid sodium. In addition, the prediction by
Boriack and Overhauser of new excitations ("phasons")
in potassium metal, in particular, and the report that they
may exist for rubidium ' has stimulated experimental
work and the reinterpretation of previous data, al-
though these effects are too subtle to be of concern for our
present purposes.

An additional objective of the present work was to at-
tempt to resolve discrepancies which exist in published ex-
perimental results, mostly near room temperature. These
discrepancies often are not serious because of limitations
in the accuracy with which theoretical predictions can be
made, limitations which exist because of terms which have
not been included, or because, for instance, it is not clear
which form of the screening function should be used. In
situations such as these, accurate experimental data can
provide guidance. Accurate equation-of-state data for
highly compressible solids such as the alkali metals also
are useful to test models for the general behavior of solids
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at high compressions and temperatures. Here, the
pressure scaling is in terms of the bulk modulus and tem-
perature scaling is in terms of the Debye temperature,
both of which are small in magnitude for the heavier (po-
tassium and rubidium) alkali metals.

While no pressing immediate need exists for accurate
low-temperature data to compare with first-principles
theory, accurate data are needed for comparison with
measurements of the zero-pressure and pressure-dependent
de Haas —van Alphen (dHvA) effect in potassium, rubidi-
um, and cesium metals, since the bulk modulus
which is deduced from the dHvA measurements and a
free-electron model apparently is greater than that from
the direct measurements. Discrepancies also exist between
high-pressure (4-kbar) (Ref. 31) and 25-bar (Ref. 32)
dHvA measurements for potassium. Elliott and Datars
recently have measured the dHvA effect for sodium as a
function of pressure and again require reliable pressure-
volume results to interpret their results. The previous
equation-of-state data for sodium at low temperature are
not sufficiently accurate to determine whether or not a
discrepancy similar to that for potassium exists for this
metal.

Experimental data for the high-pressure compressions
of the alkali metals near room temperature were obtained
by Bridgman in a series of linear compression measure-
ments on lithium, sodium, and potassium to 20 000
kg/cm (roughly 20 kbar), and then with techniques
similar to ours for all five metals to 40 kbar (Refs. 36 and
37) and finally to 100 kbar. Vaidya, Getting, and Ken-
nedy have published room-temperature compressions for
lithium, sodium, potassium, and rubidium to 45 kbar and
have compared their results with those previously pub-
lished, including ours for sodium, potassium, and lithi-
um. ' Stishov and his collaborators have obtained high-
temperature results for sodium, potassium, and
cesium in both the liquid and solid states. As will be
discussed below, inconsistencies exist among the various
room-temperature results, as well as with I' =0 bulk
modulus determinations.

Low-temperature compression results are important for
comparison with ground-state calculations, and although
rather simple procedures can be used to extrapolate the
room-temperature isotherms to T =0, actual low-
temperature data are needed to confirm these. We first
published low-temperature compression data to 10 kbar
for the alkali metals approximately 25 years ago, and
then expanded the pressure range to 20 kbar for sodium,
potassium, lithium, ' and cesium. The ever-increasing
accuracy of the theoretical work, as well as inconsistencies
between the results from various experiments which could
be serious in the future, has led us to redetermine the
equations of state of sodium and potassium metals to 20
kbar from 2.4 to 300 K, and to obtain similar data for ru-
bidium metal. We believe that these results as given below
are accurate in an absolute sense to +10 in V/Vo,
where Vo ——Vo(Trr, P =0) (here, Tz is near room tempera-
ture), at all temperatures and pressures and hence, as will
be described in the following, are to be preferred to other
existing high-pressure results in the same temperature and
pressure region.

II. EXPERIMENTAL DETAILS

The experimental apparatus and procedures which were
used in these experiments are almost identical with those
described previously, ' ' with improvements in the
quality of the data and the results arising because of rela-
tively minor refinements and more attention to detail. In
these piston-displacement experiments, a solid sample of
length Lo is placed in a cylinder, the ends of which are
closed by pistons and sealing rings. The uniaxial compres-
sion which results when force is applied is transformed
into a pseudohydrostatic pressure because of the small
shear yield stress of these metals. Hence the relative
motion of the pistons with applied force, AI. =L,o

—I, is
related directly to the volume change of the sample with
pressure. That is AL /0Lp=EV/V oto a good approxi-
mation. The pistons and the cylinder are constructed
from sintered tungsten carbide (typically Kennametal K-
96 and K-92, respectively) because this material has a
large Young's modulus and consequent small relative de-
formation with stress and temperature. The relative pis-
ton motion is sensed by fused quartz feeler rods which
connect the ends of the pistons to a high-quality dial indi-
cator at room temperature.

Corrections which must be made for elastic deforma-
tion of the pistons and the cylinder with applied pressure
are determined by taking compression data for indium,
which serves as a relatively incompressible low shear yield
stress standard material. We recently have used this ap-
paratus to redetermine the equation of state for indium to
20 kbar at room temperature and at 77 K in terms of data
for sodium chloride, an indium-jacketed iron sample, and
lead, with results which are somewhat different from be-
fore. We believe now that the use of indium as a stan-
dard material introduces a systematic error of less than
10 in the minimum values of V/Vo which we obtain.
The magnitude of this sample holder distortion correction,
which is known to a few percent, was at most 10% of the
total observed piston motion for these measurements on
sodium, potassium, and rubidium. These distortion ef-
fects are dependent both on sample length and on tem-
perature, so care must be taken that a given sample holder
is well characterized.

Friction in the press and sample holder system and
shear yield stress effects in the sample material create a
hysteresis which is observed when taking data on increas-
ing and decreasing pressure. Following Bridgman, we
take the average pressure for a given displacement of the
pistons as the true pressure. The width of the hysteresis
loop (double value of friction) varies from a maximum of
approximately 5% of the maximum pressure for room
temperature to as much as 8% at 4.2 K, with some depen-
dence on the sample material and sample length. These
hysteresis effects limit both the minimum and the max-
imum pressures at which friction-corrected data can be
taken.

At least two independent sets of data are taken for each
sample material to provide a test for systematic errors.
These experiments involve two different sample holders
which have nominal bore diameters of 0.250 and 0.354 in. ,
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respectively, and hence which differ in cross-sectional area
by a factor of 2. The maximum pressures which can be
generated in these sample holders are roughly 24 kbar for
that with the smaller diameter (limited by piston strength
and durability on pressure cycling) and 14 kbar for that
with the larger diameter, which is limited by the max-
imum force generated by our 10-ton press. The friction-
limited minimum pressures at which each of these can be
used are from 1 to 2 kbar while the corresponding useful
maximum pressures are 13 and 20 kbar, respectively.
Among other factors, these limits depend on sample ma-
terial, sample length, and temperature. As will be shown
below, data taken with each of these sample holders gen-
erally agree to better than 10 in V/Vo, and often to
better than 5)&10 in V/Vp. This is about what would
be expected from the usable sensitivity of our measuring
system, 10 in. , and the typical 0.3-in. length of our sam-
ples, as well as the accuracy with which these lengths can
be determined.

The distortion- and friction-corrected experimental re-
sults for a given alkali-metal sample consist of a set of P
V isotherms for temperatures from 4.2 to roughly 20 K
below the triple point. These results define an equation of
state for the sample from which the pressure and tempera-
ture dependences of both the thermal expansion and the
bulk modulus can be determined. Even though great care
is taken in changing temperatures to prevent jarring of the
measuring system, occasional discontinuities of 1 or
2&10 in. are observed in direct plots of dial indicator
reading versus temperature at constant pressure. These
discontinuities usually are the same for all pressures, and
are assumed to arise due to shifts in the measuring system,
and a correction is applied systematically to the data indi-
cated.

Table I gives the details of the samples, including sizes
and sources, which were used to obtain the data which are
reported below. It also contains the extreme of the fric-
tion (one-half of the width of the hysteresis loop) which
was observed for each series of data. The combination o't

sample mass, length, and actual sample holder diameter

can be used to obtain a room-temperature sample density
which provides a check on their consistency. Because of
the sample containment configuration, a significant pres-
sure could be locked into the sample when the sample
holder and pistons are removed from the press, and,
indeed, the ends of the sample need not be Aat, but could
be convex. Hence when inconsistencies were apparent be-
tween the calculated densities and published values, we
have chosen to use sample lengths which are calculated
from the sample mass and the sample holder diameter
rather than the measured lengths. The accuracy of the as-
sumed absolute room-temperature lengths is probably
0.2% or so, and should introduce a systematic uncertainty
of this magnitude in the relative compressions, ~~. /I. p,
for a given sample. Each lot of sample material was ob-
tained in a sealed ampoule which was opened and handled
only in an inert-gas atmosphere in a dry box. Sample pur-
ities generally were the highest available commercially, or
better than 99.9%.

Finally, it must be emphasized that these data are of
necessity highly smoothed because of the hysteresis or
friction correction. In addition, the sample holder distor-
tion correction must be determined in a secondary experi-
ment. No convenient procedure exists for presenting
"raw" or "actual" data, so the symbols which represent
data in the following figures should be connected by a
smooth curve to represent a smooth relationship for mea-
surements at a given temperature. As was stated above,
the magnitudes of the various approximations and correc-
tions are different for samples of different lengths and for
measurements with sample holders of different diameter,
so the agreement between the results obtained with the
two sample holders for each material provides the ulti-
mate test of the reliability of our overall results.

III. REPRESENTATION OF THE DATA

The experimental results which have been obtained in
these experiments are presented graphically in Sec. IV in
terms of differences from an assumed form for the tem-

TABLE I. Details of the samples used in these experiments. References to the standard densities are given in the presentation of
the results for each sample.

Mass
(g) Meas. Used

Length at T~
(in. )

Expt. Std.

Density at Tz
(g/cm )

Friction'
(kbar)

4 K 295 K Source¹lb
Na-2'
K-1
K-2'
K-3
Rb-1
Rb-2'

0.2179
O.S818

0.5802
0.1596
0.3081
0.9816

0.3049
0.3711

0.4126
0.2296
0.2481
0.3991

0.3049
0.3711
0.2847
0.4145
0.2303
0.2480
0.3961

0.9692
0.9688

0.8620
0.8607
1.S38
1.527

0.9680
0.9680

0.8583
0.8S83
1.534
1.534

1.65
1.00
1.29
0.77
0.75'
0.91
1.07

0.94
0.39

0.44
0.61
0.60
0.47

Alfa
Products

Alfa
Products
Fairmont
Chemical

'One-half maximum hysteresis.
0.250-in. sample holder.

'0.354-in. sample holder.
Normalized at 77 K to K-2, K-3.

'77 K. Data for K-3 only for T & 77 K.
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perature and pressure dependence for the equation of
state. This mode of presentation, which is described
below, has a sensitivity which is consistent with the pre-
cision and accuracy of the data, and allows a direct com-
parison to be made between the results which are obtained
in the various measurements for each sample material.

The free energy of a solid can be written to a first ap-
proximation as the suIn of static lattice, zero-point, and
thermal contributions,

F( V, T)= UsL( V) + Uz ( V)+F'( V, T),
from which the equation of state is obtained as the sum of
similar terms,

internal energy [see Eq. (3)].
Our reference sample lengths (and hence molar

volumes) are established at room temperature Tz and the
room-temperature isotherm is determined most accurately

a nuInbcI of runs for' different samples. So, foI' con-
venience in presenting our experimental results, the
thermal pressure is redefined as

P( V, T) =P*(V, T)+P( V, T~ ) .

The relationship between I" as defined here and I'o as de-
fined in Eq. (2) is

P'=Po —[P(V Tz) —Po(V)]

P( V, T)= —(BF/BV)T

=Pst ( V)+Pz( V)+Po ( V, T)

=Po( V)+Po ( V, T) .

(2a)

Since, in practice, the isotherms at T =0 and at Tz are
roughly parallel and the approximation of Eq. (6) applies
at high temperatures, Eq. (9) can be written as

P* = P*(T =0) Pz+ b T—,
Here F* and Po are zero at T =0 and Po( V) is the equa-
tion of state at T =0.

The thermal free energy in the quasiharInonic Mie-
Griineisen approximation has the form F*(V, T)
=TCI[T/O(v)], with the volume dependence contained
ln O( V) and with Uz also a function of O. In this model,

P(V T)=PsL(V)+y Uz/V+y U*/V (3)

with U' the temperature-dependent internal energy and
y = —d inO/d lnV. At high temperatures (T&0, where
G" ls a llmltlng high-tcInpcl atuI'c value of thc chaI'ac-
teristic temperature), U =3RT —Uz, and the zero-point
contributions to F* and the equation of state disappear for
the classical solid. Equation (3) then reduces to

P( V, T) =PsL( V)+(3RT!V)y

if explicit electronic or anharmonic terms are neglected.
A comparison with Eqs. (2) gives in this limit

Po ( V, T)= (3RT/V)y Pz, —
with (BP*/BT)I 3Ry /V. We ——have argued previous-
ly that, experimentally, the isothermal bulk Inodulus
shows only a. very small intrinsic temperature dependence,
and since (BBTIBT)~ —B(BP/I) ln V)/B——T—VB(BP/
BT)I /Bv, (BP!BT)I must have a very small (effectively
zero) volume dependence as well as a very small tempera-
ture dependence [Eq. (5)]. Hence (BP/BT) I =(BP"/BT) I
should be independent of both V and T, and

Po(V, T) =P(V, T) —P, (V)

1.0
I T I I ( I

0.9

with the term in the square brackets in Eq. (9), equal to
P'(T=0) = —Po(Tg). The terms P'(T=0), Pz, and
b =(BP*/BT)v in Eq. (10) are expected to be roughly in-
dependent of volume when determined for T ~ 0
Stishov, Makarenko, and Nikolaenko have used con-
siderations similar to those above to analyze their high-
temperature data for liquid and solid alkali metals.

Figure 1 gives the smooth room-temperature pressure-
volume relations for sodium, potassium, and rubidium in
order to provide a frame of reference for the discussion of
the results which is given in the following section. The
4.2-K isotherm is given also for sodium and rubidium (the
behavior of potassium is similar) to demonstrate qualita-
tively that P', the horizontal separation between the iso-
therrns in Fig. 1 for a given Inetal, is approximately in-
dependent of volume.

The procedure which will be used to present the data
for each metal will be based on Eq. (8). An analytical
form will be established for the room-temperature iso-
therm, P„I,( V/Vo, T~ ), which will represent these data as
closely as possible. This expression then will be used in

=bT Pz( V), T)0—
An extension of these arguments suggests that I'z also
should be volume independent.

In the Debye approximation, Uz ———', AO, so

Pz(V) =(y„/V) 8 RO„(V) .

0.7

0 4 S 12 16 20

For sodium„ for instance, y =1.2, V=23.743 crn /Inolc,
and 0 =167 K, ' so I'z ——0.80 kbar. At low tempera-
tures, I'* is small and has a temperature dependence
which is similar to that of the Dcbyc function for the

FICi. 1. Relative room-temperature compressions for sodium,
potassium, and rubidium. Low-temperature (4-K) compressions
are given for sodium and rubidium to illustrate the magnitude of
thermal effects.
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Eq. (8) to calculate a thermal pressure P"(V/Vo, T) for
each experimental pressure P and relative volume V/Vo
along each isotherm

P*(V/VO, T)=P P„—i, ( V/VO, Tg ) .

Here, Vo ——Vo(P =O, T~ ), since we assume that data for a
given material which are taken for samples of different
lengths and measured in different sample holders can be
correlated most directly by a normalization to the mea-
sured P =0 length at room temperature Tz,

L (T P)/Lo(T~, P =0)= V(T P)/Vo(Tg, P =0) .

The data for each isotherm now may be displayed as a
plot of P (V/Vo), which is expected to vary slowly with
volume. Since P* typically is a few kbar and our max-
imum usable pressure is 20 kbar, a gain in sensitivity of
approximately an order of magnitude is achieved using
this procedure. The sodium results, which will be dis-
cussed in detail in the next section, are presented in this
form in Fig. 2. The dashed lines on either side of the
294-K isotherm show how P* changes due to +10 in
V/Vp.

+20 —~ ~ i

130 —210

O
JD

-1.0—
CL

-20—

—V BP*

Vo 8( V/Vo)

=BT(V/VO, T)—8 T„„(V/V,OT~) . (12)

If P were independent of V/Vo along an isotherm, the
bulk modulus along that isotherm would be given by the
reference equation, with no intrinsic temperature depen-
dence. This would be the case for sodium if all of the iso-
therms in Fig. 2 were parallel and horizontal. Differences
of the bulk moduli from the reference values appear as
slopes of the P*(V/Vo) relations along an isotherm, and
the actual bulk moduli can be calculated from Eq. (12).
For instance, the slopes of the 250-, 200-, and 149™Kiso-
therms at V/Vo ——0.8 in Fig. 2 correspond to a bulk
modulus which is 8 kbar less than BT——152 kbar as calcu-
lated from the room-temperature reference equation for
this volume.

Various functional forms have been used to represent
pressure-volume results, all of which should be regarded
as empirical, even though they may result from "general"
theoretical considerations. Macdonald and Powell ' have
compared a number of these and have established criteria
for establishing a "preferred" representation for a set of
data. They conclude that the "extrapolation of a given
model-parameter value set beyond the range of data on
which it is based is always dangerous. " Hence our choice
of a specific representation to provide P„&,( V/Vo, Tz ) for
our room-temperature isotherms must be regarded as arbi-
trary.

%'e have chosen to use primarily the relation which is
referred to as the second-order Murnaghan relation (ME-
2), and which is based on a Taylor's expansion of the iso-
thermal bulk modulus in terms of the pressure, '

This type of representation also contains in the slopes of
the isotherms the difference between the actual (smooth)
isothermal bulk moduli along an isotherm and those cal-
culated from the reference equation,

BT„),( V/ Vo, Tg ) = —(BP„),/0 ln V) T .

This follows from Eq. (11) as

BT(P, T) =Bo(T)+80(T)P+—,Bo (T)P + (13)
-50—

-4.0—
1 i I i 1 ) I I

096
I =r

1.00 1.020.84 0.88 0.92
V/Vo

FIG. 2. Present results for sodium, as represented by Eq. (11).
The solid symbols refer to data taken with the smaller diameter
and the crosses to data taken with the larger diameter sample
holders. The dashed lines are the equivalent in pressure of
+10 in V/Vo. The horizontal solid lines at the top of the fig-
ure are the smooth results of Makarenko et al. (MNIS, Ref. 44)
while the dotted-dashed lines represent an extrapolation of the
present results to the same temperatures. The isotherms ter-
minate at the right side of the figure either at the sublimation
line (below 371 K) or at the melting line (above 371 K).

In these relations, the parameters 8o ( T)=80
=(BBT/dP)z' and 80' =(8 BT/dP )T, are evaluated at.
P =0. Equation (13) can be integrated to give"

(Vo/V) +1
P=2Bo I

( Vo/V) —1
(14)

V

Vo

2+ (8;—r)(P/8, )

2+ (80 + I )(P/80)
(15)

or, in reduced form,

Br(P T) =Bo(T)[ 1 +80 (P/Bo ) + 2 8080 (P/Bo ) + ' ' ' ]

(13')
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w1th I =Bp
—2BpB p' & 0. When the second-order term

can be neglected (Bo =0), these simplify to the ME-1 re-
lations

p=(BO/Bo)[(vo/V) ' —1]

p =y g A„(y —1)"
n=1

(18)

withy'=(Vo/V), B0=2~i/3 Bo =(4+4~2/3~i) a"d

Bo = ( —1/6A, )[ 16(A ~ /3, ) + 12(A ~ /2 i )

+35 —24(A3/A))] .

Note that Bo'&0 even when A2 and A3 both are zero.
Linear least-squares methods can be used to fit this rela-
tion to experimental data, with an interative proce-
dure required to minimize g(V; —V„&,)2= g V,. (p;
—p,g. ) /BT(V;) .

A final problem is characteristic of piston-displacement
data. Because of the hysteresis effects, the experimental
length change versus pressure relation must be extrapolat-
ed from a minimum pressure to I' =0 in order to obtain
absolute compressions as a function of pressure. This
problem is important primarily for the room-temperature
reference isotherms. Our procedure is to use the p=0
room-temperature sample length together with either Eq.
(15) or (17) to obtain a set of coefficients for this relation
which will give sample length changes as a function of
pressure which are identical with those found experimen-
tally for an appreciable part of the lower pressure range.
These parameters, preferably, will represent all of the
data, but at the very least the data below 10 kbar. This re-
lation then gives the required extrapolation to I' =0 from
the lowest reliable data point. The true test is that a fit of
the equation to all of the data results in a representation
which docs not show systcInat1c dcvlatlons at low pI cs-
sure. The extrapolations obtained by this procedure de-

pend only slightly on the form of the equation which is
used.

This need to extrapolate the data to 8 =0 from a

v/vo ——[BQ (p/BQ) + 1]

The ME-1 relations are extremely useful, and it is only for
relatively compressible solids, such as the alkali metals, or
for very high pressures that the effects of the Bo' term are
important.

The major advantages of the relations based on Eq. (13)
are that they represent experimental data well, and can be
expressed in closed form either to give p( V/VD) [Eq. (14)]
or V [Eq. (15)]. Their disadvantage is that fits to experi-
mental data can be achieved only by trial and error or by
the use of nonlinear least-squares methods. The most im-
portant nonsystematic uncertainties in ihe present experi-
ment occur in the measurement of length changes and are
pressure independent. Hence, Eqs. (15) or (17) have been
fit to the data with a minimization of g ( V; —V„~,) for
the experimental pressures.

Another useful representation is given by the Birch rela-
40, 4].,47, 51

minimum pressure is not addressed very well in most pre-
vious reports on piston-displacement determinations of
pressure-volume isotherrns, and only occasionally is the
extrapolation procedure mentioned. The relatively large
curvature in the low-pressure region of an isotherm for
compressible materials [see Eq. (13'), in which Bo typical-
ly is close to 5] causes graphical methods or power series
in the pressure to be inappropriate. Hence we have chosen
to make coInparisons between our data and most other
data only in the region of the published pressure-volume
relation which is based on actual data, and to use this
comparison to redetermine an extrapolation to I' =0 for
these previous results. The differences between our extra-
polations and those which are reported often are quite sig-
nificant, and are appreciably greater than the estimated
experimental uncertainties.

The present experimental results for sodium, potassium,
and rubidium will be presented and compared with other
results in the following sections. Our actual pressure-
volume-temperature data are compared with high-pressure
results when available, while 8 =0 thermal expansions
and bulk moduli, which are obtained by extrapolation to
P =0, wiH be compared with direct determinations of
these quantities. No detailed comparison will be made
with our previous work to 10 kbar for these metals, nor
with our earlier results for sodiuIn and potassium. We
have attempted to reanalyze these earlier results in terms
of the most recent equation of state for indium, and to
include better extrapolations to I' =0. In no instance do
we find a significant difference (+0.002 in V/Vo at most)
from the present results when the same thermal expan-
sions are used, and it is quite clear that the quality of the
present data is much higher than that for these earlier ex-
periments. We also have compared our room-temperature
isotherms with those of Bridgman and in almost
every case find that his reported extrapolation of the
high-pressure results to P =0 shows a volume change in
the first few (up to 5) kbar which is too small, as is shown
by a lack of consistency with Eq. (15). An extrapolation
correction brings Bridgman's linear compression results
in agreement with ours for sodium and potassium. His
early piston-displacement results (1938) generally are not
consistent with ours, but in each case his final (1948)
piston-displacement results to approximately 40 kbar can
be made to agree with ours to 20 kbar to +1.5&10 in
V/Vo by an adjustment of the extrapolation. Our room-
ternperature isotherms for sodium, potassium, and rubidi-
urn are compared with these 1948 Hridgman results and
also with those of Vaidya et a/. later in this section and
suggested high-pressure equations of state to 40 kbar are
presented for these metals.

A. Sodium

Data were taken for a number of sodium samples from
different sources and with different sample holder config-
urations. The differences between these generally were
small (10 or so in V/Vo at the highest pressures) and
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TABLE II. Summary of the isotherm results for sodium. The data points for the isotherms are indicated in Figs. 2 and 3.

350
294

250
200
149
77
50

pg
(kbar)

+ 0.76
(0)
(0)

—0.58
—1.18
—1.80
—2.69
—2.89
—3.10

( V/Vo)s =o

1.0130
(1.0000)
(1.0000)
0.9907
0.9814
0.9724
0.9601
0.9574
0.9546

57.4

63.0
65.5
68.0
71.7
72.5
73.4

57.3
60.6
60.28
63.2
65.7
68.4
72.3
72.4
73.6
73.4

+0. 1

+0.2'
+0.4

+0.04
+0.4
+0.4
+0. 1

+0.8
+0.6
+0.5'

Bl b
0

4.18 +0.02
4.12550.04'
4.27 T-0. 15
4.06 +0. 1

3.99 +0.006
3.93 +0.06
3.78 +0.02
3.91 +0. 15
3.90 T-0. 12
3.92 %0 1

II

(kbar ')

—0.021+0.02

RMSD
(10—4)

in V/Vo)"

2.23
2.10'
1.83
2.81
3.60
1.89
2.65
3.68
3.10
2.»'

'I'=0 bulk moduli derived from the 294-K isotherm and I'
Parameters derived from nonlinear least-squares fits of Eq. (17) to the data for each isotherm. Equation (15) was used for the alter-

nate 294-K fit for which Bo is given. The 3o. uncertainties are those associated with the fitting procedure, and do not include an al-
lowance for systematic effects. A more qualitative assessment gives minimum uncertainties of +0.6 kbar for Bo and +0.1 for Bo.
'These parameters define the room-temperature reference isotherm, with Vo(294 K, P=O) =23.743 cm /mole (Ref. 53).
Two "bad" points (Fig. 2, near 0.86) deleted.

the results which are presented below are those for the fi-
nal and most extensive series of runs for the final sample
in each of the two sample holders. Details of these sam-
ples as well as typical values for the hysteresis effects are
given in Table I. The densities which are given for sodi-
um metal for these samples agree very well with the value,
0.9680 g/cm, which can be calculated from the 25'C x-
ray lattice parameter of Feder and Charbnau,
ao ——4.28860+0.00012 A, and which corresponds to a
molar volume of 23.750+0.002 cm . The corresponding
molar volume for our 294-K reference isotherm is 23.743
cm .

The first-order Murnaghan relation ME-1 [Eq. (17)]
was fitted to the four sets of 294-K data (three runs to 20

kbar, one run to 13 kbar), with the coefficients and rms
deviation (RMSD) given in Table II. Figure 3 gives the
differences between the actual data for these four runs and
this reference relation. A fit of the second-order Mur-
naghan relation ME-2 [Eq. (15)] to these results (see Table
II for the coefficients) gave an almost identical representa-
tion for V/Vo &0.82, and tended to represent the data
better at higher pressures, as is shown by the dotted line in
Fig. 3. The uncertainties given for these coefficients in
Table II, and also for all other coefficients in this paper,
represent 99% confidence limits (3o, where o. is the stan-
dard deviation) for the fits to the data by nonlinear least-
squares methods, and do not include possible systematic
uncertainties. The ME-1 [Eq. (17)] and ME-2 [Eq. (15)]

e

~ o

x x

o

x
J~

„o
J.

0.80 0.96

FIT&. 3. Deviations of the actual 294-K data for sodium from the ME-1 reference relation (Table II}. The open symbols represent
data from three different small sample holder runs, the crosses data from a large sample holder run. The dotted line for V/Vo & 0.82
is the difference between the ME-2 and ME-1 relations (Table II).
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parameters agree within these limits and the improvement
which is obtained with this additional parameter does not
appear to warrant its inclusion. Footnote b of Table II de-
scribes more realistic uncertainties. The high-pressure ul-
trasonic results of Daniels and of Martinson give
Bo -3.8, in better agreement with the ME-1 [Eq. (17)] fit
than that for the ME-2 [Eq. (1S)].

The data for all eight isotherms for sodium for each
series of runs are plotted in Fig. 2 in terms of the thermal
pressure P*, using Eq. (11) and P„~, as defined in Table II
for the ME-1 relation [Eq. (17)]. The dashed line on each
side of P*=0 (294 K) represents the temperature-
independent variation in P' which corresponds to an un-
certainty of +10 in V/Vo. The dotted curve at 294 K
corresponds as in Fig. 3 to the use of the ME-2 relation
[Eq. (1S)]. The agreement between the two independent
sets of data is excellent at all temperatures, with no adjust-
able parameters used even to establish the 294-K isotherm.
The volume dependence of P' is small, and is in the direc-
tion which would suggest that higher-order terms should
have been included in the reference equation. In no in-
stance does this isothermal volume dependence of I' cor-
respond to more than l%%uo (2&(10 ) of the total compres-
sion which is observed in 20 kbar (see Fig. 1). The slopes
of the low-temperature isotherms suggest that the bulk
moduli which are calculated from our room-temperature
reference equation for a given value of V/Vo are approxi-
mately 5% larger than is found experimentally at high
pressure and low temperature [see Eq. (12)]. This differ-
ence is approximately 5 times larger than would be expect-
ed from the use of the ME-2 relation (Table II), Eq. (IS),
as a reference equation.

The thermal pressure I'* is roughly constant for a given
isotherm for V/Vo ~ O. 85, and these "low-pressure"
values of I'* are given in Table II and are plotted versus
temperature in Fig. 4. Equation (10) suggests a linear P*
vs T relation for T & 0 = 167 K, and our four data
points above this temperature give (in kbar)

O
X)

-1-0

-805 + 0.012am T

-2.0

lk
550100

1-01

1.00

50 150 250 300
T(K)

FIG. 4. Thermal pressures for sodium (the solid lines in Fig.
2) as a function of temperature.

I'*= —3.805+0.012 99T, T ~ 167 K .

Here, the difference between P*(4K)= —3. 10 kbar from
Table II and the T =0 intercept of Eq. (19) gives
I'z ——0.70 kbar, in reasonable agreement with the estimate
of 0.80 kbar from Eq. (7).

The normal (P =0) thermal expansion for sodium,
V(T,P =0)/V(294 K, P =0), can be obtained from Fig. 2
by setting P =0 in Eq. (11) to obtain P*= P„&„and-
then using the 294-K ME-1 parameters from Table II in
Eq. (17). An uncertainty of +0.04 kbar in P will intro-
duce an uncertainty of +0.000S in the ( V/Vo)~ o's which
are given. The results of this procedure are given in
column 3 of Table II, and are plotted in Fig. 5 for com-
parison with previous results. The most extensive data are
those of Siegel and Quimby' (quartz pushrod dilatometry
from 80 to 290 K), with x-ray results from Barrett
which have been normalized to the room-temperature re-
sults of Feder and Charbnau, and other more recent data
from room temperature to the melting point by Adelhart
et al. and Sullivan and Weymouth. - Ritter, Fritsch,
and jLuscher have shown that fa1Ily large lmpur1ty coI1-

)0
0
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0.97
—SQ
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Barrett
Present
dHvA

0.96

I
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I

100
I
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T(K)

I

250
I

500
1

J-

550

FIG. 5. P=O thermal expansion of sodium. The symbols
refer to published data as follows: SQ, Ref. S6; SW, Ref. S9;
Barrett, Ref. 57; dHvA, Ref. 33. The error bars on the present
low-temperature points represent ambiguities in the extrapola-
tion of I'* to I'=0 (see Fig. 2).
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centrations (up to 500 ppm) have no effect on the high-
temperature thermal expansivity of sodium. The low-
temperature results are complicated by the existence of the
bcc to hcp martensitic transition which has been investi-
gated in some detail by Barrett, Martin, ' and Sted-
man. Barrett, initially, and then Basinski and Verdi-
ni, have found that the volume of the hcp phase is
greater than that of the bcc phase by approximately 0.3%.
The P =0 dHvA results of Elliott and Datars give, in
the free-electron model, a T =0 molar volume of
22.730+0.023 cm for bcc sodium, which is plotted as
0.9573+0.001 in Fig. 5, and is larger than our volume by
0.003. If our results were to have been affected by the
bcc-hcp martensitic transition, we should have obtained a
T=0 molar volume which is greater than the dHvA
value, not smaller. If, indeed, our 4-K volume is wrong
and our sample is predominantly hcp (Barrett found that
this phase was stabilized by cold work, and our samples
are heavily cold worked with a volume change of 20% or
more at constant area), the excessive softness of our 4-K
isotherm at high pressures could be due to the occurrence
over a range of pressure of the hcp-bcc transition which is
predicted by Moriarty and McMahon. Barrett also
suggests that the martensitic transition should appear (or
could be retained) at temperatures up to 200 K when,
again, severe cold work is done on a sample. But such a
transition should make the isotherms appear to be harder
at high pressures, and for temperatures below 200 K this
is opposite to what we observe. The excellent agreement
between the present results for potassium (as obtained
with the same sample holders and procedures) and direct
determinations of the volume changes (see Sec. IV B) gives
confidence that Fig. 5 shows real, but possibly uninter-
pretable, effects.

As was stated at the beginning of this section, no com-
parison will be made with our previous high-pressure
equation-of-state data for sodium, "' nor with much of
Bridgman's work, although a comparison with his 1948
results and those of Vaidya et al. will be given in Sec.
IVD to establish a suggested extrapolation of our results
to 40 kbar. A detailed comparison will be made at this
point, however, with the equation of state results of
Makarenko et a/. ' for liquid and solid sodium at tem-
peratures above the triple point, 371 K, since the general
features of their results are very similar to those we find.
The comparison is important since they used a quite dif-
ferent method to obtain equivalent data. They give only
smooth results in the form of pressures for a number of
evenly spaced temperatures (20-K intervals) and molar
volumes (0.5-cm intervals) for temperatures from 373.15
to 493.15 K. We have used a 294-K molar volume of
23.743 cm and our 294-K ME-1 relation to present their
results for the solid as the solid lines in Fig. 2 which show
that P is a function of temperature only. The magni-
tudes of their thermal pressures, however, are systemati-
cally larger by about 0.1 kbar than those given by an ex-
trapolation of Eq. (19) (Fig. 4), and which are shown as
the dotted-dashed lines in Fig. 2. This difference can be
associated with a 0.12% difference in the reference molar
volumes for the two experiments. The present values are
related directly to the 26 C value of Feder and

4.0—

K-

~ 3.0 ~
X

CL

LIQUID
+ SOLID 393 K

SOLID

2.0—433 K

413 K

1.5 -595 K

373 K
I

0.88
I

0.92
I

1.040.96
V/Vp

FIG. 6. Representation of the results of Makarenko et al.
(Ref. 44) for sodium as in Fig. 2, edith and X representing
data reported by Ivanov et al. (Ref. 42) for the molar volumes
of the liquid and solid, respectively, along the melting curve.

1.08

Charbnau, while Makarenko et a/. refer their results to
a molar volume of 24.967 cm for the liquid at 400 K and
atmospheric pressure. Their stated uncertainty in molar
volume is 0.15% or 0.03 cm, and is consistent with the
difference in Fig. 2. If their molar volumes are reduced
by 0.12%, the slight volume dependence of P' along the
isotherms in Fig. 2 disappears.

Linear relations, as suggested by Eq. (4), were fitted to
the pressure-temperature values which Makarenko
et al. give for the various isochores for the solid. The
slopes of these relations were the same for all molar
volumes, with ( BP*/8 T) v ——0.0133 kbar/K, in good
agreement with our result (Fig. 4), 0.0130 kbar/K. The
other, volume-dependent, parameter for these fits corre-
sponds to PsL(V) in Eq. (4), and should differ from the
T =0 (effectively, 4 K) pressure-volume relation by Pz( V).
A calculation of this difference, Po(V/Vo) —PsL(V/Vo)
gives an almost constant value for P, =0.67+0.01 kbar or
0.79 +0.02 kbar, with the first obtained by assuming con-
sistency between our molar volumes and those of
Makarenko et a/. , and the second by assuming their mo-
lar volumes to be too large by 0.12%. The results are con-
sistent with Pz ——0.70 as deduced from our P*(T) rela-
tion, Eq. (19). The agreement is satisfactory since both
our result and that deduced from the high-temperature
data involve extrapolations to T =0 which are from one
to two times the extent of the data which are fit by least
squares. This additional consistency gives added confi-
dence in the reliability of the two sets of data.

Ivanov et a/. have studied the molar volumes of sodi-
um along the melting line and have given the data for the
solid which are plotted in Fig. 2 as the boundary of the
solid state. The complete results of Makarenko et a/.
and of Ivanov et a/. " for liquid and solid sodium are plot-
ted in Fig. 6. The decrease in the slopes of the isotherms
with increasing volume on this plot corresponds, as
Makarenko et a/. point out, to a bulk modulus for the
liquid which is identical to that of the solid (and to that
given by our 294-K reference rdation) for V/Vo ——0.88,
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with y, the Griineisen parameter (roughly temperature in-
dependent, y=1.2) (Refs. 66 and 67) and P, the volume
thermal expansion coefficient. ' The agreement
with Diederich and Trivisonno's resu1ts is excellent, and
with Daniels's " value is satisfactory. Fritsch et al.
quote rather large experimental uncertainties (see Fig. 7),
so it is not clear that a disagreement exists. Martinson
indicates quite small uncertainties, however, and no obvi-
ous explanation exists for the roughly 6% systematic
differences between his data and ours, and, indeed, be-
tween his data and those of Diederich and Trivisonno.
Ho and Ruoff have published an independent analysis
of Martinson's data which agrees with the smooth relation
in Fig. 7 to better than 1%. The other comparison is with
the direct isothermal bulk modulus determinations of
Fritsch, Nehman, Korpiun, and Luscher. These show
appreciable scatter at low temperature (Fig. 7) but more
consistency near room temperature. They tend to agree
with the results of Martinson and, near room tempera-
ture, with those of Fritsch et al. , with the error bars on
the crosses in Fig. 7 indicating their stated uncertainties.
It is intriguing that their results agree with ours at 350 K,
and show a temperature dependence which is unexpected.

Additional support for the correctness of the present re-
sults for the P =0 bulk modulus near room temperature
comes from Fig. 2 through the very close correlation be-
tween our results and those of Makarenko et al. This
correlation suggests that the bulk modulus has only a
small, if any, explicit temperature dependence, and that
the value of BT for V/Vo ——1.000 should be at most 1.5%
greater than that given by our room-temperature reference
isotherm. This difference becomes negligible if their mo-
lar volumes are decreased by 0.12%, as was suggested ear-
lier.

The pressure dependence of the elastic constants for
sodium has been measured by Daniels (to 2 kbar at 300
K) and by Martinson (at pressures to 9 kbar from 77 to
300 K). Daniels's value for (BBs/BP)T ——3.60 is some-
what smaller than the roughly temperature-independent
values of Martinson, 3.8. 80 for the adiabatic bulk
modulus always is less than that for the isothermal bulk

75 X

X X
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+ D+T

us——M +

~x FGP X

)i~
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l l
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FICs. 7. Temperature dependence of the P=O isothermal bulk
modulus for sodium. The symbols refer to published results as
follows: Daniels, Ref. S4; DT, Ref. 64; M, Ref. SS; FGP, Ref.
6S; FNKL, Ref. 66; dHvA, Ref. 33.BT ——Bs /(1+ py T) (20)

and which is about 3.5% greater than that for the solid
for V/Vo&0. 95 [see Eq. (12)]. The P*(V/Vo) relations
along the melting line appear to be roughly linear and
parallel for the liquid and the solid, with a constant
separation of approximately 1.7 kbar at constant volume.
There appears to be some inconsistency between the
melting-line data for the liquid as given by Ivanov et ah.
and the smoothed equation-of-state results of Makarenko
et al. , but this does not seriously affect the discussion
given above.

An analysis which assumes a linear pressure-
temperature relationship along the isochores for the
liquid is not as satisfactory as for the solid. The deriva-
tive (dP*/dT)v is slightly volume dependent, and varies
from 0.0146 kbar/K at 20 cm /mole to 0.0130 kbar/K at
25 cm /mole. PsLq( V) as derived from the T=O intercepts
of the isochores does not show a constant difference from
our 4-K isotherm, but gives Po( V/Vo) —Psq( V/Vo) vary-
ing from —0.46 kbar ( —0.31 kbar) at 20.5 cm /mole to
—0.80 kbar ( —0.75 kbar) at 25 cm /mole (the quantities
in the parentheses are for volumes adjusted by 0.12%),
with a monotonic but nonuniform volume dependence.
The difference in this quantity for the liquid and for the
solid (PsLq —Ps'z' —l.2 kbar) is an effective pressure which
is associated with the liquid state. This is different from
1.7-kbar difference in Fig. 6 because (BP*/BT)z is dif-
ferent for the liquid and the solid. Stishov et al. have
carried out a more detailed analysis of these data which is
based on the Debye model, and conclude that Psl for the
solid is consistent with that for the liquid.

The extrapolation of our isotherm data to P =0 gives a
P=0 bulk modulus which can be compared with more
direct ultrasonic and bulk determinations. Two pro-
cedures have been used to obtain these results. First, if P'
is a function of temperature only (as Fig. 2 indicates for
V/Vo &0.85), the bulk modulus is a function of volume
only [Eq. (12)) and the P=O value can be obtained by set-
ting P=O in Eq. (11) and using the resulting P„~,—— P*-
in Eq. (13) with 294-K parameters from Table II. These
values are given in column 4 of Table II, where an uncer-
tainty of +0.04 kbar in P will introduce an uncertainty
of +0.2 kbar at most in Bz-. Second, an ME-1 relation
can be fitted to the isotherm data using the assumed value
for V/Vp at P=O for that temperature. The resulting pa-
rameters Bo and Bo are given in columns 5 and 6 of Table
II, together with the resulting RMSD in terms of V/Vo.
No S1gniflcRnt decrease ill the RMSD was obta1ned when
the P=O value of V/Vo was changed slightly. The agree-
ment between the methods for obtaining Bo is very satis-
factory.

These results for the P =0 isothermal bulk modulus are
plotted in Fig. 7, together with a summary of other re-
sults. Ultrasonic measurements were made by Diederich
and Trivisonno (77—95 K), Fritsch, Geipel, and Prase-
tyo (20—95 'C), Daniels (300 K), and Martinson~'
(77—300 K) to obtain elastic constants and, hence adiabat-
ic bulk moduli which have been converted to isothermal
quantities for the present comparisons using
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modulus (by roughly 0.1 for sodium), so a minor
discrepancy appears to exist between our room-
temperature results (Table II, Bp ——4. 125+0.10) and those
from ultrasonic measurements. The temperature depen-
dence of Bp in Table II can be interpreted in terms of the
variation with temperature of the point about which the
expansion of Eq. (13) is carried out. If P* is a function of
temperature only, P*= —P„~, at P=O, and

B()[P*(T)]=B()(TR ) —P'(T)B() . (21)

A fit of this expression to the sodium coefficients in Table
II gives

B() ——4. 11+0.0857P*

(with P' in kbar). The agreement with the experimental
values is within the stated uncertainties (0.1 or larger).
While the resulting value for Bz' ———0.086 kbar ' clearly
is inconsistent with the 294-K ME-2 fit in Table II, the
change in Bz from 294 K to T=O ( —0.27) is just outside
our estimated uncertainties, so this discrepancy perhaps is
not real.

Elliott and Datars have measured the average change
of the dHvA frequency for sodium in 4 kbar as
( I/Fq)dF/dP =(0.76+0.02) && 10 kbar '. This differs
by about 9% from the average change in 4 kbar that we
would predict from our data and the free-electron model
(F- V ), d [(V()/V) ]/dP=(0. 834+0.01)&& 10
kbar '. This difference can be expressed alternatively in
terms of the equivalent P =0 bulk modulus which would
correspond to the dHvA results if the shapes of the dHvA
and equation-of-state relations were directly related,
B&——80+2 kbar, to be compared with Bz——73.5 kbar in
Table II.

A number of different calculations of the thermo-
dynamic properties of sodium have appeared in recent
years. A major problem in comparing actual data with
many of these is that the theoretical results are displayed
graphically in single-column figures, from which it it dif-
ficult to extract actual values with more than a few per-
cent accuracy. At this level, our actual equation-of-state
results for sodium metal agree with the calculations of
Soma and Vaks and his collaborators. ' More meaning-
ful comparisons can be made with explicit values of the
P=O bulk moduli [Eq. (21) has been used to convert
theoretical adiabatic to isothermal values for T ~0] and
their pressure derivatives, Bp, when they are given in these
papers.

The present T=O (or 4-K) value of Bz ——73.5+0.6 kbar
is in agreement with the calculations of Chelikowsky
(72+13 kbar), Lopez and Aionzo (75.1 kbar), Vaks and
Trefilov (74.4 kbar), and Glyde and Taylor' (73.0 kbar),
with the first being a "no-parameter" calculation, two '
assuming the T=O equilibrium lattice parameter, and the
fourth, assuming as well as the elastic constant C44.
Soma, who also assumes only the T=O equilibrium lat-
tice parameter, and Vaks and Trefilov show that B[] is
very sensitive to the form of the screening function which
is used, with, for the only function which is common to
both parameters, Bz ——69.9 kbar for Soma and 76.2 kbar
from Vaks and Trefilov. This suggests a significant

difference between these one-parameter and two-
parameter theories. The Lopez and Alonzo calculation
used a density functional method to include screening ef-
fects, while the values quoted initially in this paragraph
from Vaks and Trefilov and Glyde and Taylor' each
were obtained using the Geldart and Taylor screening
function. Soma and Ueda give Bp ——3.21 while Vaks and
Trefilov give Bp

——3.75 (almost independent of the
screening function). The difference is similar to that
found for Bp, with the latter much closer to the T=O ex-
perimental value, Bp ——3.9+0.1. Vaks et al. ' calculate
that for the adiabatic bulk modulus, Bp varies from 4.07
and 3.85 for temperatures from the melting point to T=O
(or, roughly, from 4.2 to 3.85 for the isothermal bulk
modulus ), in agreement with the results in Table II.

Glyde and Taylor' give adiabatic bulk moduli for four
temperatures and use the experimental lattice parameters
at those temperatures. These results, when converted to
Br, are 2% larger than ours at 90 and 160 K, 5% larger
at 293 K, and identical with our (extrapolated) 361-K
value. The two highest-temperature values would coincide
with the Fritsch et al. ' data in Fig. 7. Their 90-K
value is in excellent agreement with that obtained at 90 K
with a more refined pseudopotential. The Monte Carlo
calculation of Cohen et al. ,

' which uses a more exact po-
tential, gave an adiabatic bulk modulus at 293 K which,
when converted to Br by Eq. (20), was within 0.5% of our
result, although the 361-K value was 5% smaller than our
(extrapolated) value for 361 K. Inconsistencies in the ini-
tial calculation for 361 K were removed by slight modifi-
cations to the potential, and this discrepancy now is less
than 1.5% (see Ref. 15, second paper). They also calcu-
late a Grueniesen parameter for each temperature which is
slightly larger than experimental values. Vaks et al. ' also
have calculated the temperature dependence of the P =0
bulk modulus, and on a plot of Bz vs T show agreement
with the results of Glyde and Taylor' at 90 K and then a
linear behavior in. temperature to 360 K, passing just be-
tween the latter's results at 293 and 361 K. The indirect
agreement with our results seems to be quite satisfactory.
They also give a calculation of Pz ——0.86 kbar, ' which is
in reasonable agreement with our estimate [Eq. (7), 0.80
kbar], our results [Eq. (19), 0.70 kbar], the values which
were deduced from the results of Makarenko et al. (0.67
or 0.79 kbar, dependent on the reference volume) and that
which was calculated by Straub and Wallace ' (0.80 kbar)
from a lattice-dynamics calculation.

Rather extensive Monte Carlo results have been present-
ed by Swanson et al. ' for three isochores which corre-
spond, roughly, to the triple point, the equilibrium volume
at T=O, and a somewhat higher pressure. These calcula-
tions extend from T=O to the liquid at 670 K and are
based on a static lattice pseudopotential model by Wal-
lace' for which the three parameters are determined by
the binding energy, and the T=O equilibrium volume and
bulk moduli, ignoring zero-point energy effects. This
model gives Bp

——364 at T=0. Their derivative
(dP*/dT)z is larger than ours for the solid by approxi-
mately 10%, while for the liquid it is 10% smaller than
that from the data of Makarenko et al." This large
difference (20% or so) between (BP"/'dT)) for the liquid
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TABLE III. Summary of the isotherm results for potassium. The data points for the isotherms are indicated in Figs. 8 and 9.

(K)

297
238
182.5
132
77
60
40
20
4

Pg

(kbar)

(0)
—0.40
—0.77
—1.12
—1.46
—1.58
—1.68
—1.72
—1.76

(1.0000)
0.9869
0.9755
0.9655
0.9S62
0.9530
0.9S04
0.9492
0.9483

(1.0000)
0.9867
0.9754
0.9660
0.9564
0.9537
0.9509
0.9490
0.9485

( V/Vp)p=p

31.3
32.9
34.3
35.7
36.2
36.6
36.8
37.0

Bp
(kbar)

29.63+0.01
31.S +0. 1

32.8 +0.4
34.6 +0.02
35.8 +0. 1

36.6 +0. 1

37.01+0.04
36.93+0.03
37.03+0.06

I d
Bp

4.208 +0.003
4.16 +0.04
4.22 +0. 15
4.03 +0.01
4.05 +0.06
3.92 +0.03
3.89 +0.01
4.05 +0.01
4.06 +0.03

tt

(kbar ')

—0.048 +0.001
—0.050+0.01
—0.055+0.03
—0.039+0.002
—0.040+0.01
—0.027+0.01
—0.016+0.002
—0.037+0.002
—0.041 +0.006

RMSD
(10—4

in V/Vp)

2.23
2.85
2.59
3.27
2.25
2.91
1.71
1.55
1.47

'Present results. Vp (297 K, P=O) =45.557 cm /mole (Refs. 72 and 73).
"Schouten and Swenson (Ref. 72).
'P=O bulk moduli derived from the 297-K isotherm and P .
Parameters derived from nonlinear least-squares fits to the data of Eq. (15) for each isotherm. The 3o. uncertainties are those associ-

ated with the fitting procedure and do not include an allowance for systematic effects. A more qualitative assessment gives minimum
uncertainties of +0.4 kbar in Bp, T0.15 in Bp, and +0.01 kbar in Bp'. The 297-K parameters define the reference relation.

and the solid has the opposite sign when compared with
experiment, and much too large a magnitude. Swanson
et al. ' obtain a pressure difference between the liquid and
solid phases at constant volume of approximately 1.5
kbar, while that from experiment is 1.7 kbar, also rough-
ly independent of volume.

B. Potassium

The results reported below for potassium were obtained
in three sets of runs, one with 0.354-in. - and two with
0.250-in. -diam sample holders. One set (the most recent)
of the small-diameter sample holder data extended from
297 to 77 K, while the second, which was normalized to
these at 77 K, was used for temperatures to 4 K. The de-
tails of these samples are given in Table I, where the sam-

pie lengths have been calculated from the masses of the
samples and a 297-K molar volume of 45.557 cm,
which corresponds to a density of 0.8583 g/cm . In con-
trast with the sodium results, the measured sample lengths
and masses gave densities which are systematically too
large by approximately 0.5%, presumably due to the small
bulk modulus for this material and a large frozen-in pres-
sure when the pistons were removed. Potassium was the
most difficult of the three materials to work with, and had
a very marked tendency to bond to the sample holder and
sealing assembly while the sample holder was being load-
ed.

A fit of the ME-2 relation [Eq. (15)] to the 297-K re-
sults gives the parameters in Table III. The use of the
ME-1 relation [Eq. (17)] is far less satisfactory, with an
RMSD which is about twice as large as for the ME-2 rela-

+p
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+—++ 8 G

"+ x+ + ++ x 3( ~ + 4 x + x+
Q Q

+ +x+„+x+ x«
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0.80 0.85
V/ Vo

I

0.90 0.95 1.00

FIG. 8. Deviations of the actual 297-K potassium data from the reference relation (Table III). The symbols are as in Fig. 3. The
dashed line KR refers to smooth results from Ref. 77 (see the text).
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FIG. 10. Thermal pressures for potassium (the solid lines in
Fig. 9) as a function of temperature.

tion. Figure 8 shows the deviations of our four 297-K
runs (two for each sample holder) from this ME-2 fit,
while Fig. 9 presents all of the data for potassium in the
same form as for sodium (Fig. 2), with the exception of
the 20-K isotherm which is very similar to that at 4 K.
The agreement between the data taken for the two sample
holders is excellent at all temperatures (generally better
than 10 in V/Vo, see the dashed lines on either side
of the 238-K isotherm), with none of the isotherms differ-
ing from P*=const by more than this. The 60-K iso-
therm contains the maximum discrepancy at high pressure
which is, as the error bar at V/Vp =0.71 shows just 10

The thermal pressures P* from Fig. 9 are given in Table
III, and are plotted in Fig. 10. The four thermal pressures
for T & 8„=102.5 K (Ref. 67) can be represented by (in
kbar)

P*= —2.018+0.006 80T . (23)

This result and P*(4 K) = —1.76 kbar give [see Eqs. (10)
and (19)] Pz ——0.26 kbar, in excellent agreement with that
which can be estimated from Eq. (3), 0.25 kbar, using
8 =102.5 K (Ref. 67) and y =1.19.

The relative thermal expansions at P =0 as calculated
from P and the 297-K ME-2 relations are given in
column 3 of Table III, for comparison with the direct
linear expansivity results of Schouten and Swenson in
column 4. The agreement is excellent and well within the
estimated, roughly +5)& 10,uncertainties in each exper-
irnent. This corresponds 1% of the total volume change
to 4 K for the direct measurement, and to an uncertainty

of P* of +0.02 kbar for the present experiment. Schouten
and Swenson give a discussion of previous molar volume
determinations, and show excellent agreement between
their 4-K molar volume (43.212+0.02 cm ) and that ob-
tained from P =0 dHvA measurements and the free-
electron model.

As for sodium the P =0 bulk moduli given in column 5
of Table III were obtained from P' and P„&,(Tz, V/Vo)
while those in column 6 were obtained from fits of Eq.
(15) to the combined data for the two sample holders for
each isotherm. The agreement is very satisfactory. The
uncertainties in the parameters for these fits genera11y
(with one or two exceptions) are quite small and imply a
uniqueness which may not be real. Separate fits which
were made to the data for the individual sample holders
show deviations from the values given in Table III which
are appreciably greater than the uncertainties given in this
table, and suggest more realistic uncertainties of +0.4
kbar in Bp, +0.1 in Bp.

As for sodium, Bp is expected to be a linear function of
P and a fit of the results in Table III to Eq. (21) gives

Bp ——4.214+0.141P

with a maximum deviation at 40 K of —0.1, and
Bp' = —0.141 kbar '. This, as for sodium, is inconsistent
with the actual isotherm fits for which 80' (column 8) is,
within experimental uncertainties, roughly constant at
—0.042+0.01 kbar ' if the 40 K isotherm is excluded.
Similar independent analyses of the 0.250-in. and 0.354-in.
data for each isotherm show systematically larger magni-
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tudes of Bo and Bo' for the 0.354-in. data than are shown
in Table III. The 0.250-in. analyses, on the other hand,
are consistent with a temperature-independent
Bo ——4.04+0.05, while Bo' ———0.034+0.01, again exclud-
ing the 40-K isotherm. It appears that the weighting of
the more numerous and more precise 0.354-in. data which,
however, cover a smaller range of compressions, has a
large effect on the validity of Eq. (24) for potassium, and
that the "inconsistency" is within experimental uncertain-
ties. This is reflected in our estimated uncertainty of
+0.15 for Bo (Table III).

The I' =0 bulk moduli are plotted in Fig. 11 where they
are compared with other experimental determinations.
Adiabatic bulk moduli have been converted to isothermal
values using Eq. (20) and summarized P =0 thermo-
dynamic results. Smith and Smith in a 1.3-kbar high-
pressure experiment at 22 C give I' =0 elastic constant re-
sults and pressure derivatives. A +1% correction should
be made to their elastic constants to reflect ihe most re-
cent 295-K density, and with a revised conversion to Bz
we obtain Bz- ——31.0+0.6 kbar at 295 K, to be compared
with their value of 30.4 kbar. Their determination of
'dBs /dPz. ——3.97 probably is reliable to 2% or 3%, and re-
flects an average over 1.3 kbar. Our result for Bo' ( —0.05
kbar ') suggests that the P =0 value of Bo which is need-
ed for comparison with our results should be larger by ap-
proximately 0.03 to account for the averaging, while the
conversion to Bz- will result in an additional increase of
0.1 or so. Hence we estimate for their experiment that
Bo ——4. 1+0.1 at 295 K, in good agreement with the re-
sults in Table III (4.21+0.1). Fritsch and Bube have
measured the temperature dependence of the elastic con-
stants of potassium near room temperature, with their
297-K value, Bz- ——30.7+0.6 kbar, and its temperature
dependence plotted in Fig. 11. Marquardt and Trivison-
no have carried out the only low-temperature elastic
constant measurements for potassium with the results
shown in Fig. 11. They made a number of measurements
on various samples for temperatures from 77 to 197 K

with very consistent results, and then only one set of mea-
surements on a different crystal at 77 and 4.2 K. We have
chosen to normalize the second results to the other data at
77 K and hence give a 4-K value for Bz- which is some-
what larger (37.55 vs 36.55 kbar) than usually is quoted
for their results. These two values bracket our result.
Schouten and Swenson" quote a single direct isothermal
bulk modulus determination by Kroeger for 175 K which
also is plotted in Fig. 11.

Templeton has derived Bo——38.8+0.2 kbar from a
free-electron analysis of the pressure dependence (to 25
bar) of his dHvA measurements, and this value is clearly
larger than those obtained from direct measurements. El-
liot and Datars reanalyzed the 4-kbar dHvA results of Al-
tounian and Datars ' and give an equivalent I' =0 value
fof Bo which, when using the present form for the 4-K I-
V relation for potassium, is 40.9+1.2 kbar. They are not
able to understand this difference between their results
and those of Templeton.

The above discussion included the results of only
two of a number of room-temperature experiments on
potassium metal. Makarenko et al. have reported re-
sults for potassium which were obtained in the same ap-
paratus as were those discussed in Sec. IVA for sodium
(Figs. 2 and 6). Figure 9 gives only their smooth 293-K
isotherm, and shows clearly that it is inconsistent with the
present results by approximately 3X10 in V/Vo at
V/V0=0. 82, or 9 kbar. Their other isotherms show simi-
lar behavior. Kim and Ruoff have reported very precise
measurements at 28.58'C (301.73 K) of the linear iso-
thermal compression in 7 kbar of a 1-m-long sample of
potassium metal. They present the results of several dif-
ferent analyses of these data, with an ME-2 analysis
which is similar to that we use giving Bo ——30.86 kbar,
Bo =4.09 and B0' = —0.073 kbar . We have used these
parameters in Eqs. (15) and (16) together with a thermal
pressure difference of 0.035 kbar [Eq. (23)] to obtain the
differences between their smoothed results and ours at 297
K which are given as the smooth KR curves in Figs. 8
and 9. The deviations must have different shapes in these
two representations since in Fig. 8 the relative volume
differences are plotted at the same experimental pressure
while in Fig. 9 the pressure differences are plotted for the
same values of V/Vo. Kim and Ruoff give no details of
the experimental procedure nor do they give the actual ex-
perimental data. We have been informed that friction
effects were assumed to be small and that data were taken
only on increasing pressure. The representation in Fig. 8
suggests length changes that are too small until
V/V0-0. 9 (P-4 kbar), after which they are identical
with our results. This would be characteristic of a friction
force which increased with increasing pressure and be-
came constant at a maximum value equivalent to 0.2 kbar
or so (see Fig. 9). The alternative interpretation from Fig.
9 is that the absolute bulk modulus determinations in the
two experiments differ by a constant magnitude of rough-
ly 1.5 kbar (5% at P =0) as given by the slope of the KR
curve in this figure. We have tested our apparatus and
methods in some detail, including measurements in terms
of NaC1, iron, and indium, and can find no indications
of potential systematic errors greater than one-fifth of
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those in V/Vo which are shown in Figs. 8 and 9. The
much less precise ultrasonic measurements of Snuth and
Smith and of Fritsch and Bube lend support to the
Kim and Ruoff result, while the general agreement which
we show with other results at low temperature for potassi-
um (Fig. 11) indicates that our total uncertainty should
not be greater than 1% or 2%. Other room-temperature
results (see Sec. IVD below) are not sufficiently accurate
to assist in resolving this discrepancy.

The comparison with theoretical calculations is much
the same as for sodium, but possibly not as satisfactory.
Chelikowsky's no-parameter calculation gives Bo—47+ 8.5 kbar at T =0, to be compared with
Bo——37.0+0.4 from Table III. Lopez and Alonzo in a
one-parameter calculation give 33.8 kbar, while the one-
parameter calculations by Soma and his collaborators
do not appear to give realistic results. Vaks and Trefilov
give Bo——37. 1 kbar for their two-parameter calculation
which uses the Geldart- Taylor screening function.
Duesbery, Glyde, and Taylor' in a one-parameter calcula-
tion with this same screening function obtain a compar-
able result for 9.2 K, 37.2 kbar. Vaks and Trefilov also
give Bo varying from 3.75 to 3.79 at T=O, dependent on
the screening function. Vaks et al. ' have calculated the
temperature dependence of the I' =0 bulk modulus to 300
K, as well as a decrease in Bo from 4.10 at 295 K to 3.84
at 0 K and I'z ——0.25 kbar, all in good agreement with our
results. Duesbery et al. ' also calculate the temperature
dependence of Bs at P =0, with BT——26 kbar at 300 K, in
very poor agreement with experiment. Vaks et al. ' ap-
pear to have plotted the values of Duesbery et al. ' for B&
in a comparison with calculated and experimental values
for BT. Finally, Cohen and Klein' have used Monte Car-
lo techniques and a more recent version of the Duesbery
et al. ' potential to calculate the elastic constants of po-
tassium at 160 and 308 K, with resulting values for BT of
34.9 and 29.67 kbar, respectively. The 160-K value is

roughly 3% larger than our experimental value, while that
at 308 K is almost identical with our (extrapolated) results
in Fig. 11. They also have calculated Gruneisen parame-
ters for these temperatures which agree well with experi-
ment.

C. Rubidium

The results for rubidium were obtained in single sets of
runs with each of the sample holders. As Table I shows,
reasonable agreement was found between our experimental
densities and that which can be derived from the 20 C x-
ray lattice parameter (5.699 A) which is reported by Pear-
son and which corresponds to a molar volume of 55.74
cm . This result is in excellent agreement with that ob-
tained by Copley et al.

The ME-2 relation [Eq. (15)] was fit to the two 295-K
runs for each sample holder to obtain the 295-K parame-
ters in Table IV. Figure 12 shows the deviations from this
fit to the data for each of those runs. While systematic
deviations appear to exist, their magnitude (+5&&10
maximum in V/Vo) corresponds to less than 0.2% of the
total compression which was achieved in 20 kbar
(b, V/Vo ——0.34). The results for all of the isotherms are
presented in Fig. 13 in the same form as for sodium (Fig.
2) and potassium (Fig. 9). Again, the agreement between
the 0.250-in. and 0.354-in. data is excellent at all tempera-
tures and pressures, with only the 175-K run deviating by
as much as 10 in V/Vo from the postulate of a constant
I'*. Only 0.354-in. data were taken at 200 and 160 K, and
the latter isotherm becomes enmeshed with the 0.250-in.
data for 175 K at high pressures.

The high-pressure neutron scattering experiments of
Copley et al. give lattice parameters for rubidium as a
function of temperature and pressure. These results have
been expressed in the same form as the present results and
have been plotted as the open circles in Fig. 13. Their es-

TABLE IV. Summary of the isotherm results for rubidium. The data points for the isotherms are indicated in Figs. 12 and 13.

( V/Vo)s =o

Bo
(kbar)

BI Q
0

Bo'
(kbar ')"

RMSD
(10-'

in V/Vo)

23.01+0.03
24.0 +0.06
25. 1 +0. 1

25.95+0.06
26.0 +0. 12
26.8 +0. 15
28.0 +0.12
28.4 +0.3
28.9 +0.2
29.2 +0.2

—0.057+0.003
—0.061+0.006
—0.087+0.015
—0.052+0.003
—0.090+0.024
—0.068+0.012
—0.066+0.012
—0.080+0.024
—0.077+0.015
—0.064+0.018

(0)
—0.25
—0.54
—0.68
—0.79
—0.96
—1.23
—1.39
—1.49
—1.51

4.15+0.1

4.16+0.03
4.25 WO. 09
4.03+0.02
4.28+0. 12
4.15+0.06
4.12+0.06
4.24+0. 15
4.20-+0. 12
4.10+0.12

(1.0000)'
0.9894
0.9778
0.9726
0.9685
0.9623
0.9528
0.9475
0.9444
0.9436

(23.0)
24.0
25.2
25 ~ 8
26.3
26.9
28. 1

28.7
29.1

29.2

2.01
1.80
1.23
2.46
1.71
2.05
3.30
3.84
2.46
2.46

295
250
200'
175
160
123
77
40
21

'I'=0 bulk moduli derived from the 295-K isotherm and I'*.
Parameters derived from nonlinear least-squares fits of Eq. (15) for each isotherm. The 3a. uncertainties are those associated with

the fitting procedure and do not include an allowance for systematic effects. A more qualitative assessment gives minimum uncer-
tainties of +0.25 kbar for Bo, +0.1 in Bo and +0.01 kbar in Bo'.
'Vo{295 K, P=O) =55.74 cm /mole (Refs. 79 and 80).
"0.354-in. sample holder data only.
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FIG. 12. Deviations of the actual 295-K data for rubidium from the reference relation, Table IV. The symbols are as In Fig. 3.

P = —1.664+0.005 63T (25)

with a maximum deviation of 0.025 kbar at 160 K. The
agreement with the results of Copley et al. (the open cir-
cles) is excellent. The T =0 intercept of Eq. (25) and

timated lattice parameter uncertainty
(+0.005 A or 3&(10 in V/Vo) appears to be quite con-
servative, since their 295-K lattice parameter is only 10
A greater than that given by Pearson, and the scatter of
their results in Fig. 13 corresponds at worst to +10 in
V/Vo if the high-pressure result at 230 K, for which the
deviation is 2)& 10, is excluded.

The thermal pressures P* from Fig. 13 are given in
Table IV and are plotted in Fig. 14. The nine thermal
pressures for temperatures greater than 0 =64.5 K (Ref.
67) can be represented by (in kbar)

P*(4 K) from Table IV can be combined to estimate
Pz ——0. 13 kbar, in good agreement with Pz ——0.13 kbar as
calculated by Vaks et a/. ' These values are consistent
with Martin's estimate that the Griineisen parameter y
for rubidium is 1.4 at room temperature, which may be
too large (see below).

The P =0 relative thermal expansions for rubidium as
calculated from P* and the 295-K reference isotherm are
given in column 3 of Table IV and are plotted in Fig. 15
where they are compared with other results. Here, an un-
certainty of +0.02 kbar in P* will affect V/ Vo by
+0.0007. There is an excellent agreement with the results
of Copley et al. for temperatures above 80 K, and also,
with the x-ray results of Kelley and Pearson as summa-81

rized by Pearson. Barrett's x-ray results appear to de-

viate sytematically from ours at 77 and 4.2 K, however,
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with the volume change agreeing. Good agreement also
exists with the free-electron analysis of the dHvA results
of Gaertner and Templeton. Templeton recently has
reported evidence for a martensitic transformation in rubi-
dium, but our experiments are too crude to be able to ob-
serve these subtle effects.

The P =0 bulk moduli in column 4 of Table IV were
obtained from P* and the 295-K reference isotherm, while
the parameters in columns 5—7 were obtained from non-
linear least-squares fits of Eq. (15) to the individual iso-
therm data. An uncertainty of +0.02 kbar in P* will in-
troduce an uncertainty of +0.08 kbar in bulk moduli de-
rived from it. The agreement between the moduli in
columns 4 and 5 is excellent, and these are compared with
other results in Fig. 16. The most extensive elastic con-
stant measurements are those of Gutman and Trivisonno
for temperatures from 77 to 195 K, and the agreement
with our results is very good. Pauer, who measured the
pressure dependence of the elastic constants of rubidium
at 195 K, gives a bulk modulus which is significantly
greater than that of Gutman and Trivisonno, and which
disagrees with our results also. Again, the bulk modulus
which is derived from a free-electron model and the
dHvA pressure measurements (31.2 kbar) is too large by
about the same factor (7%%uo) as for potassium and sodium.

As for potassium, the values of Bp and Bp' which are
given in Table IV are weighted somewhat by the 0.354 in

sample holder data which cover a smaller compression
range. This is illustrated by the 200- and 160-K isotherm
results for which there are no data above 13 kbar, and for
both of which the magnitudes of Bo and Bo are appreci-
ably larger than for the combined results for isotherms
close to them. A reasonable temperature-independent in™
terpretation of the combined results (excluding these two
isotherms) is that Bo =4.14+0.06 and Bo' ———0.067
+0.01 kbar '. If only the 0.250-in. results are considered,
Bp ——4.11+0.06 and Bp' ———0.062+0.01 kbar ', with
essentially no disagreement. The high-pressure data ap-
pear to have considerable influence in determining the pa-
rameters for the combined fits. Pauer's result,
dB~!dP =3.63 at 195 K, is approximately 10% smaller
than would be expected from our results.

Fewer theoretical results exist for rubidium than for ei-
ther potassium or sodium. Lopez and Alonzo's single-
parameter calculation gives Bp=25.8 kbar at T=0 for
comparison with our result (Table IV) of 29.2 kbar. Soma
and his collaborators ' give a range of values for Bp
which bracket our result and depend on the screening
function which is used, and dBO/dP=3. 19, which is too
small. Vaks and Trefilov obtain excellent agreement with
our result, Bp ——29.6 kbar, when they use the Geldart-
Taylor screening function. Vaks et al. ' calculate a tem-
perature dependence of the bulk modulus at P =0 which
varies linearly from the above T =0 value to 23.8 kbar at
300 K, in good agreement with our temperature depen-
dence (see Fig. 16, where BT——-23.0 at 295 K). They also
calculate that dBT/dP should vary from roughly 4.1 at
room temperature to 3.78 at T =0, in rough agreement
with our results. The graphical representation of the cal-
culated T =0 equation of state for rubidium by Eremenko
and Zarochentsev' which includes short-range repulsions
also appears to be consistent with our results. Taylor and
MacDonald have used a first-principles pseudopotential
calculation to obtain anharmonic phonon dispersion rela-
tions and phonon-limited electrical resistivities for rubidi-
um, but do not calculate elastic properties.
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D. Correlations, extrapolations, and comparisons
with higher-pressure results

BT(P,T)=Bp(P =0, T) 1+uP
1+ P

1+aBo(P/Bo)
=Bp(P =O, T)

1+PBp(P/Bp)
(26)

Similarities or systematic differences in the shapes of
pressure-volume isotherms are characteristic of similar ef-
fects in the cohesive (or for T &0, the free) energy [Eq.
(2a)]." Pressure-volume relations can be expressed in re-
duced form through the use of the dimensionless parame-
ters P/Bp and V/Vp, where Bp and Vp are, respectively,
the bulk modulus and volume at P =0. Equation (13')
expresses the second-order Murnaghan relation in such a
reduced form, from which the related P Vrelati-ons [Eqs.
(14)—(17)] also can be written in reduced form in terms of
the dimensionless parameters Bp and BpBp'. Since our re-
sults to 20 kbar are represented well by the ME-2 relation,
common values of Bp and BpBp' for two isotherms will in-
dicate directly that they have the same shape, and that
their P-V relations differ only through Bp and Vp. The
choice of a specific form for the P Vrelation -will be dic-
tated not only by how well it represents actual data, but
also by its suitability for extrapolation purposes, or
equivalently, the possibility that it also is valid for much
greater relative pressures and compressions. The follow-
ing discussion first points out a well-known inconsistency
which arises in the use of the ME-2 relation at high pres-
sures and presents an alternative which is very similar but
is well behaved at all pressures. The data for sodium, po-
tassium, and rubidium then are fit to this new relation at
4 K and at a common temperature of 295 K in order to
investigate the possibility of a common reduced behavior,
with these fits and their extrapolation to 40 kbar used in a
comparison with other room-temperature results.

Macdonald and Powell ' have shown that the ME-2 re-
lation [Eqs. (13)] cannot be used at high pressure because
the experimentally determined negative sign for Bp' will
cause the bulk modulus to pass through a maximum and
eventually decrease through zero at very high pressures.
Gur fits of Eq. (15) to the rubidium data, where P/Bp —1

at 20 kbar and room temperature, do not appear to be af-
fected by these considerations, although they could be-
come important for an extrapolation to 45 kbar
(P/Bo-2) for comparison with the results of Vaidya
et al. The Birch relation, Eq. (18), which is well
behaved at high pressure, deviates systematically from our
data and gives magnitudes for Bp and Bp which are ap-
preciably larger than those in Tables II—IV. The extreme-
ly temperature-dependent behavior of BT(P =0, T) for our
cesium results can be associated with the use of the
Birch relation to extrapolate the high-pressure results to
P =0.

An expression which is equivalent to the Murnaghan re-
lations and which is well behaved at high pressure is given
by88

Bo=Bo(a—P), Bo'= —2PBo .

This expression, which can be integrated to give

V/Vo ——exp I ( —1/a Bp)[aPP + (a —13)ln(1+aP)] I, (28)

will be referred to as the modified Murnaghan equation
(MME). It can be fit to the data using nonlinear least-
squares methods, but is less convenient to use than the
ME-1 [Eqs. (16) and (17)] or ME-2 [Eqs. (14) and (15)]
relations since the pressure cannot be expressed explicitly
as a function of V/Vp. Equation (26) gives dB/dP =0 (or
BT——const) in the very-high-pressure limit and hence is an
improvement on the ME-2 relation [Eq. (13)]. This
behavior for Eq. (26) can be modified for an even more
realistic behavior by the use of an additional term in the
numerator of Eq. (26),

BT(P, T) =Bp(P =0, T)
1+PP

which now gives in the high-pressure limit
dB/dP =(e/P)Bo. The resulting expression for V/Vp is
somewhat more complex than Eq. (28) and is not given
here since the available experimental data are not suffi-
ciently accurate to determine e.

The appropriate P* relation and Vp as adjusted for
thermal expansion have been used to reduce the 294-K
sodium and 297-K potassium data to the 295-K tempera-
ture of the rubidium isotherm to provide a common basis
for room-temperature comparisons in terms of MME rela-
tion fits. Table V contains the parameters for these MME
fits as well as those for similar fits to the 4-K data for
each metal. With the exception of Bo, which along with
Vp is a characteristic parameter, the parameters in Table
V are expressed in dimensionless form [Eqs. (13') and
(26)]. The quality of these fits (see the RMSD's) is similar
to that for the ME fits in Tables II—IV, with the corre-
sponding values of Bp, Bp, and Bp' agreeing within the
expected experimental uncertainties (see the footnotes to
Tables II—IV). Table V also contains parameters for an
MME fit to a "static lattice" (T =0, no zero-point energy)
equation of state. Data for the static lattice pressure-
volume relation were generated from room-temperature
data [see Eq. (4)] by subtracting from each data point the
volume-independent P* (see Table V) which is given by
the T =0 intercept of the linear P'(T) relation for each
metal for T&O . A comparison of the 4-K and static
lattice equations of state reflects the explicit effect of
zero-point motion on the low-temperature properties of
these metals, including the thermal pressure and P =0 rel-
ative volume which also are given. The calculation of the
high-temperature properties of sodium by Swanson
et al. ' is based on the assumption of a static lattice, with
the parameters derived from T =0 data for the actual
solid.

The validity of representations in terms of the "re-
duced" parameters in Table V is demonstrated in Table
VI, where differences between the compressions as calcu-
lated from the reduced relation and from direct fits to the
data are given for 295 and 4 K, with a common (the direct
fit value) Bp used for each comparison. The agreement in
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RMSD
(10-4

in V/Vo)

p )fc

(kbar)(K)
Bo

(kbar) B'a BoBo( V/Vo)~=o Boa

0.06
+0.12

0.18
+0.05

0.18
+0.02

0.18

295 4.18
+0.28

4.20
+0.14

4.16
+0.08

4.18

—0.5
+1
—1.5
+0.4
—1.50
+0.17
—1.50

60.43 4.24
+0.25

4.38
+0.13

4.34
+0.08

4.36

2.2629.71
+0.02
23.01
+0.08

Bp

2.05

Reduced 295

0 9542

0.9542

0.9487

0.9436

—3.10 3.90
+0.02

4.13
+0.12

4.052
+0.006

4.073
+0.006

4.07

2.17—0.007
+0.02

0.27
+0.04

0.191
+0.005

0.238
+0.004

0.22

73.55
+0.08
73.05
+0.18
37.07
+0.02
29.24
+0.02

Bp

+ 0.06
+0.16
—2.23
+0.3
—1.55
+0.04
—1.94
+0.03
—1.80

3.891
+0.004

4.40
+0.11

4.243
+0.003

4.311
+0.004

4.29

4c —3.10 1.80

—1.76 1.48

—1.51 2.54Rb

Reduced

0.9457

0.9419

0.9387

—3.80O, SL 76.38
+0.22
38.06
+0.11
29.80
+0.07

Bo

0.05
+0.04

0.25
+0.02

0.25
+0.04

0.25

4.13
+0.09

4.11
+0.02

4.09
+0.04

4.10

—0.5
+0.4
—2.02
+0.15
—2.06
+0.09
—2.05

4.18
+0.08

4.356
+0.01

4.342
+0.009

4.35

2.05

2.40—2.02O,SL

—1.66 2.01O,SL

O,SLReduced

'Bo and BOBO' are derived from Bo, a, and P.
'Alternative nonlinear least-squares fits to the data. These data are those referred to in Table II, footnote d.

dBased on Vo(295 K~ P=O

Bridgman to 40 kbar and Vaidya et aI. to 45 kbar.
The differences remain relatively small for both potassium
and rubidium (where the 45-kbar compressions are ap-
proximately V/Vo ——0.60 and 0.57, respectively), while the
differences between the sodium representations (where
V/Vo ——0.7 at 45 kbar) are significant. The comparison
with Bridgman's results (see below) suggests better

20 kbar is quite satisfactory for potassium and rubidium
(these results were weighted heavily in establishing the re-
duced parameters), and is marginally satisfactory for the
two equivalent fits to the sodium data for each tempera-
ture. These differences are extended to 45 kbar using ex-
trapolations of the same relations, since these extrapola-
tions will be compared below to direct measurements of

TABLE VI. Differences between compressions at each temperature as calculated from the MME [Eq. (28)] using the reduced pa-
rameters, ( V/Vp), ~, and the parameters obtained from direct fits to the data, ( V/Vp)f, , Parameters are as given in Table V, unless
otherwise noted. Values above 20 kbar are extrapolated.

( V/Vp)red ( V/Vp)ft
(10 ')

P
(kbar)

RbNa
4 K295 K 295 K

—0.3

295 K

+ 0.4b

+ 0.4b

—0.5
—1.9
—2.7'

+ 0.1

+ 0.5
+ 0.8
+ 1.3
+ 1.6

—0.3'
—1.1'
—2.0'
—2.0'
—2.8'

+ 0.4'
+ 0.6'
+ 0.7'
+ 1.0'
+ 1.2'

—0.3
—1.1

10
20
30
40
45

0
04

—0.8
—1.4
—1.7

+ 0.4
+ 0.7
+ 0.8
+ 0.9
+ 1.0

—0.5
—0.6—2.4

—4.0
—4.7

—0.7
—0.8

'( V/Vp)f, , from the 294-K ME-2 parameters, Table II and Eq. (15).
( V/Vp)q, from the parameters labeled b, Table V.

'( V/Vo)f, , from the parameters labeled c, Table V.

TABLE V. MME parameters [Eq. (28)] for fits to the Na, K, and Rb data for 295 and 4 K and for the static lattice (SL). Parame-
ters for a reduced relation, which is based on the K and Rb results, are given also for each case.
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FIG. 17. Differences between the room-temperature
compressions reported by Bridgman (Ref. 37) {top half ) and by
Vaidya et al. (Ref. 39) (bottom half ) and the present results as
extrapolated for pressures greater than 20 kbar. TS refers to
Ref. 90. The dashed lines through the Bridgman results
represent adjustments to the extrapolations from 5 kbar to I'=0
which are needed to Inake these results consistent with the
present results. See the text.

agreement when the reduced relation is used for sodium
(and possibly also for potassium), so a reasonable con-
clusion is that the MME relation, when combined with
the "reduced" parameters from Table V, gives a reason-
able representation of our data to 20 kbar at 295 and 4 K
which also can be used for extrapolation to higher pres-
sures.

The top and bottom halves of Fig. 17 present
Bridgman's 1948 measurements and those of Vaidya
et al. in terms of their differences from extrapolations
of the direct MME fits [Eq. (28)] to our 295-K data [Eq.
(28)] and Table V]. Up to our limiting 20-kbar pressure,
Bridgman's results for all three metals can be made con-
sistent with ours (to +1.5X 10 in V/Vo) by postulating
that his extrapolations to P =0 from his lower pressures
(2.5—5 kbar) were underestimated. This is reasonable,
since his extrapolations were accomplished through the
use of large graphical representations. ' The adjust-
ments which must be made to his published volume
changes (hV/Vo = 1 —V/Vo, ' see the dashed lines in Fig.
17) are 4X 10 for sodium, 1.5 X 10 for potassium and
21.5 & 10 for rubidium, where the lowest point must be
discarded also. The higher-pressure comparisons, which
involve extrapolations of our results, are consistent with

this interpretation for rubidium and possibly also for po-
tassium, but not for sodium. If the reduced relation had
been used to extrapolate the sodium results rather than the
MME fit to the actual data (see the first sodium column
in Table VI), the magnitude of the difference between the
dashed line and Bridgman's results at 40 kbar would be re-
duced from 7&(10 to 3&10 . This suggests, as was
stated above, that our sodium data are not of sufficient
quality to be able to determine with any accuracy the
higher-order terms for the MME relation which are im-
portant for extrapolation. The above discussion indicates
that our data for these three metals are consistent with
Bridgman's results to 20 kbar, and that the MME rela-
tions which represent these data for potassium and rubidi-
um also are consistent with them to 40 kbar. The reduced
relation could be preferable for the extrapolation of the
sodium data.

The results of Vaidya et al. to 20 kbar cannot be
made consistent with ours by an adjustment of the extra-
polation to P=0. The deviations of these sodium and po-
tassium results from our assumed relations (and from
Bridgman's results, see Fig. 17) for each metal are con-
sistent with a piston compression correction which is too
small and which is roughly the same for both sets of data.
This correlation becomes somewhat worse if the reduced
relations are used in the comparison. No such elementary
interpretation applies to the rubidium results which,
perhaps fortuitously, agree well with ours at 20 kbar and
for the extrapolation to 45 kbar. For lithium, which has
one-half the compression of sodium, we find good agree-
ment with Bridgman's results and a difference from
Vaidya et al. which is smaller but of opposite sign from
those in Fig. 17. This suggests inconsistencies in the re-
sults of Vaidya et a/. which have no simple relationship
to the magnitude of the compressions.

The lower half of Fig. 17 also contains the difference
between the diamond anvil x-ray lattice parameter results
of Takemura and Syassen and our extrapolated rubidium
relation. Again, the agreement at 22 kbar may be fortui-
tous since the deviations for their higher-pressure results
at —13&&10 at 66 kbar and —12&10 at 70 kbar,
where they observe a first-order transition from the bcc to
the fcc phase.

The rather extensive equation-of-state results which
were described in some detail in the preceding section pro-
vide such information for the first time for rubidium met-
al, and confirm with appreciably higher accuracy previ-
ously published results for sodium and potassium. The
use of common sample holders and identical experimental
procedures for all three metals provides a rather rigorous
test for the existence of systematic errors in these experi-
ments. The internal consistency of the results for a given
metal, which are taken to 20 kbar over a wide range of
temperature (both absolute and with respect to 0 ), and
the correlations which exist between the results for these
three metals, again for a wide range of relative tempera-
tures (T/0 ) and pressures (P/Bo), provide confirmation
of a general picture of the temperature-dependent equa-
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P ( V/ Vn, T) =P ( V/Vo, T~ ) +P*(T), (8')

where P* is independent of V/Vo (Figs. 2, 9, and 13) and
has a linear temperature dependence for T &0 [Eq. (5),
Figs. 4, 10, and 14]. Once the form of the reference iso-
therm has been established, the simplicity of this relation-
ship allows a sensitive display of the actual data and a
straightforward means for carrying out the analyses.

tion of state of solids which was proposed previously.
The overall consistency (see Figs. 2, 9, and 13) suggests an
absolute accuracy of the results which probably is better
than +10 in V/Vo. Systematic problems could arise
due to an incorrect reference equation of state for indium
metal or to an incorrect pressure scale, but our internal
checks and overall agreement with other results (see
below) suggests that the above uncertainty limit probably
is realistic, in spite of occasional disagreements with pre-
vious results which cannot be understood.

A number of conclusions follow from the discussions
which were given in the preceding section, and these are
summarized in the following. The isotherms which
represent the pressure-volume-temperature relationships
for potassium and rubidium, and to an understandably
lower accuracy for sodium where the bcc-hcp martensitic
transformation causes difficulties, can be represented by
Eq. (8),

The second-order Murnaghan equation [Eqs. (13)],
which has been used routinely to represent our results, is
unsatisfactory at high compressions where it exhibits non-
physical behavior, while the commonly used Birch rela-
tion [Eq. (18)] does not represent our data at all well.
Since one use of accurate data is to provide a basis for ex-
trapolation to higher pressures, we also have reported our
results for 295 and 4 K in terms of a modified form of the
Murnaghan relation, the MME, Eqs. (26)—(28). This rep-
resentation (Table V) has been used to extrapolate the
295-K relationships from 20 to 40 kbar for comparison
with Bridgman's 1948 results. The agreement is quite
satisfactory (Fig. 17) if his extrapolations to P=O from 5
kbar or so are made consistent with ours. The results for
sodium do not fit this picture as well as do those for po-
tassium and rubidium, most likely because the relatively
smaller compressions for this metal result in parameters
that are not sufficiently well defined for extrapolation
purposes. The differences between the results of Vaidya
et al. to 45 kbar and both our data to 20 kbar and the
extrapolations are clearly outside experimental uncertain-
ties and are not understood.

The results in Tables V and VI show that at both 295
and 4 K the isotherms for the three metals can be
represented to 20 kbar by a reduced form for the equation
of state. For sodium, this reduced form probably is

TABLE VII. Smooth values for the P(V/Vo) relations at 295 and 4 K using the MME [Eq. (28)]
and the parameters for individual metal fits from Table V.

P (kbar)

V/Vo'

1.00
0.975
0.9542
0.950
0.9487
0.9436
0.925
0.900
0.875
0.850
0.825
0.800
0.775
0.750
0.725
0.700
0.675
0.650
0.625
0.600
O.S75
0.550

295 K

0
1.62
3.13
3.46

5.57
7.99

10.48
14.02
17.77

(22.14)
(27.2)
(33.2)
(40.3)
(48.6)

Na
4 K'

( —3.11)
( —1.51)

0
0.32'

2.42
4.82
7.59

10.76
14.41
18.63

(23.5)
(29.1)
(35.6)
(43.1)

295 K

0
0.79

1.70
1.75

2.74
3.92
5.29
6.86
8.68

10.78
13.21
16.03
19.31

(23.12)
(27.5)
(32.7)
(38.7)
(45.7)

( —1.76)
( —0.96)

( —0.05)
0

0.99
2.17
3.S4
5.11
6.92
9.01

11.44
14.25
17.52

(21.33)
(25.8)
(30.9)
(37.0)
(44.0)

295 K

0
0.61

1.31

1.51
2.12
3.03
4.08
5.29
6.69
8.31

10.17
12.33
14.84
17.75

(21.14)
(2S.1)
(29.6)
(35.0)
{41.1)
{48.3)

Rb
4 K

( —1.51)
(0.89 )

( —0.20)

0
0.61
1.52
2.58
3.79
5.19
6.80
8.67

10.83
13.34
16.25
19.63

(23.6)
(28.1)
(33.4)
(39.4)
(46.5)

'Vo (295 K, P=O) in cm /mole is 23.748 for Na (Ref. 53), 45.535 for K (Ref. 72), and 55.74 for Rb
(Refs. 79 and 80).
Values in parentheses are extrapolated.

'From the second set of parameters (labeled c) in Table V.
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preferable to the actual fits to the data since it gives better
agreement with Bridgman's results on extrapolation (see
Fig. 17, Table IV).

Table VII contains a summary of our 295- and 4-K
pressure-volume results for these metals as they are calcu-
lated from direct fits of the MME relation [Eq. (29), Table
V] to the data. The data which were used to obtain the
representations for each metal at each temperature are in-

dependent, except that the relative P=O volume change
from 295 to 4 K is calculated from the room-temperature
isotherm and P'(4 K) using Eq. (8). The 295- and 4-K
isotherm as represented by these fits are parallel to 2O

kbar for potassium and rubidium (that is, P* is constant),
as would be expected from Figs. 9 and 13, but not for
sodium where the martensitic transformation appears to
cause problems at low temperatures and high pressures
(Fig. 2). This parallel behavior persists for extrapolations
of the 4-K isotherm to negative pressures (to V/Vo ——1),
and also, unexpectedly, for extrapolations of the two iso-
therms to 45 kbar for both potassium and rubidium. This
suggests a high degree of consistency between our model
(that P* is a function of temperature only) and the extra-
polation functions which we have used. The magnitude of
P for sodium, however, increases from 3.13 kbar at P=O
to 5.6 kbar at roughly 45 kbar. The use of the reduced re-

lations in this case would result in lower 295-K pressures
Rnd higher 4-K pressures (Table VI), and a decrease of the
magnitude of P' to approxiInately 4 kbar at 45 kbar. Be-
cause the reduced relations are only marginally unsatisfac-
tory for sodium to 20 kbar, and, indeed, would give better
agreement with Bridgman's results to 40 kbar (see Table
VI, Fig. 17), we cannot conclude that the isotherms for
sodium have a different shape from those of the other two
metals.

Other direct comparisons of these isotherms with high-
pressure results at specific temperatures give confirmation
within experimental accuracy for sodium (Makarenko
et al. , see Fig. 2) and rubidium (Copley et al. , "see Fig.
14), with discrepancies of opposite sign appearing for two
quite different experiments for potassium (Makarenko
et al. and Kim and Ruoff, see Figs. 8 and 9). The
room-temperature isotherm and the extrapolations of the
lower-temperature isotherms to P=O (Figs. 2, 9, and 14)
give the temperature dependences of the relative molar
volumes (Figs. 5 and 15) and of the P=O isothermal bulk
moduli (Figs. 7, 11, and 16). These are given in Tables
II—IV also. Our relative volume changes for potassium at
P=O agree very well (to within roughly +5&&10 in

V/Vo) with those obtained in direct measurements by
Schouten and Swenson (Table IV), who also discuss pre-
vious measureInents. A similar accuracy is expected for
the sodium and rubidium thermal expansions, since these
data were taken using the same sample holders and correc-
tions. No differences from other results are found for
sodium (Fig. 5) and rubidium (Fig. 15) above 77 K, while
at lower temperatures our relative volume changes from
77 to 4 K agree with those found by Barrett from x-ray
measurements, although the absolute magnitudes of V/Vo
differ in opposite directions for these two metals. Our re-
sult also is consistent with the dHvA result for rubidium
(Flg. 15) and pclllaps a discrepancy could bc cxpcctcd fol.

sodium where the dHvA result corresponds to a single-
crystal, single-phase sample (Fig. 5). The discussion for
sodium indicates, however, that inconsistencies appear to
exist which are outside estimated experimental uncertain-
ties. New determinations of the low-temperature lattice
parameters or expansivities would be useful for sodium
and rubidium to remove a reliance on the present results,
and possibly also for potassium, where a difference exists
between direct and neutron scattering results.

The present results can be used to obtain thermal ex-
pansion coefficients [p= (I)ln V/I) T)p] directly since

' BP =pBT . (30)

The agreement between the resulting P's and published
values for sodium and potassium (roughly 4% near room
temperature) reflects the good agreement in the relative
thermal expansions V/Vo which is shown in Fig. 5 for
sodium and in Table III for potassium.

Equation (5), which relates P* to the high-temperature
Griineisen parameter y, represents the present results for
sodium, potassium, and rubidium very well. Since P* is
independent of volume, it follows that y/V also must be
independent of volume for a harmonic solid. The P vs
T relations in Figs. 4, 10, and 14 [Eqs. (19), (23), and (25)]
can be used together with the 295-K molar volumes (Table
VII) and CI ——3R to calculate y = 1.24, 1.24, and 1.26 for
sodium, potassium, and rubidium, respectively. These are
consistent with previous results for sodium and potassi-
um, with Martin's early estimate for rubidium too
large. Boehler ' has determined the temperature and pres-
sure dependence of y for lithium, sodium, and potassium
through measurements of (I)T/I)P)s and concludes that
his results, which are tied to room-temperature thermo-
dynamic determinations of y (similar to those given
above), are consistent with y / V= const, as we propose.
His Rnalysis uses Bridgman s datR Rnd representations
which are based on the Birch relations. He has similar
data for rubidium metal which will be analyzed using the
present results.

A number of different measurements of low-pressure
(mostly P=O) elastic properties give results with which
our P=O isothermal bulk moduli can be compared. No
significant discrepancies occur for rubidium, for which
only limited data exist (Fig. 16). Our results for potassi-
um agree with other results below room temperature (Fig.
1 1), wltll R dlffclcncc fl'OIII tllc lllgllly plcclsc direct
room-temperature measurements of Kim and Ruoff
(4.5%%uo) which appears to be well outside our estimated ex-
perimental uncertainty (1.2%%uo). The situation for sodium
is even more confusing (Fig. 7), with a reasonably clear bi-
furcation of the results at the 5% level from 77 to 300 K
and agreement at 350 K. Since our results should be accu-
rate to 1% or so, these discrepancies for sodium and po-
tassium, although not serious in a broad sense, should be
resolved. The T=O, P=O bulk moduli which can be de-
rived from dHvA measurements under pressure and the
assumption of a free-electron model are systematically
larger than the present determinations of Bo by
(8.5+2.5)%, 4.6%, and 6.7%%uo, respectively, for sodium,
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potassium, and rubidium (Figs. 7, ll, and 16). These
differences are appreciably greater than our estimated ex-
perimental uncertainties, and are believed to be real.

Comparisons with experimental determinations of the
pressure dependences of elastic constants, and hence of Bo
show that our results generally are somewhat larger, al-
though it is difficult to decide whether or not discrepan-
cies exist. Our parameters are determined by fitting
empirical relations to data over a wide range of pressure, a
range which may not be justified [see Eq. (13')] by the ter-
mination of the power series which is used. The analysis
of pressure-dependent ultrasonic results is complicated by
the need to include in a self-consistent manner the changes
in the sample length which occur with pressure, and also
the conversion of adiabatic elastic constants to isothermal
values. Our results are consistent with the very slight de-
crease in Bo with decreasing temperature which would be
associated with 80'.

A comparison with theoretical calculations has been
given for each metal (see the preceding section) with, on
the whole, satisfactory agreement. The theoretical results,
especially at high temperature, depend greatly on the use
of realistic pseudopotentials and proper screening func-
tions, with the degree of agreement increasing with the so-
phistication of the theory. Most of the calculations are
parametrized to some extent, if only to obtain the ap-
propriate lattice parameter for a given temperature, al-
though "no-parameter" calculations have been report-
ed' which are based on free-atom configurations. It is
unclear whether or not our low-temperature data reflect
the hcp to bcc transition in sodium which is predicted by
Moriarty and McMahon.

One application of the present results is to provide gui-
dance for the extrapolation of room-temperature
equation-of-state results to higher temperatures and pres-
sures. The rubidium results, which cover a wide range of
reduced pressures (P,„/Bo ——0.85, V/Vo ——0.7) and tem-
peratures (T,„/0„=4.6), can be represented very well

by Eq. (8) with the MME relation [Eqs. (26)—(28)] as the
reference function and P* calculated from Eq. (5) with the
Gruneisen parameter proportional to the volume. Figure
17 indeed suggests that the MME with low-pressure pa-
rarneters is valid for extrapolation to 40 kbar for rubidium
(P/Bo 1.7, ——V/Vo ——0.58). These considerations also
should be applicable to other less compressible solids for
which T &0, and, to a first approximation, explicit
anharmonic effects can be neglected. A rash use of these
reduced limits suggests that this form of the equation of
state would be valid to 1400 K and at least 900 kbar for a
real metal for which 0=300 K and Bo——10 kbar. We
have serious reservations about the use of the Birch rela-
tion for the accurate representation of data or for extrapo-
lations since it cannot be fit to our present results with the
same reliability as either the ME-2 or MME relations.
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