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Phase structure of a lattice superconductor
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A lattice Ginzburg-Landau model of superconductivity is explored in a Monte Carlo computer simulation
{for charge e =5). The superconducting-normal transition is strongly first order deep in the type-I region
and becomes more weakly first order moving in the direction of the type-II region. Beyond a certain point,
the data suggest a second-order transition. The data are consistent with the existence of a tricritical point
separating these two regimes.

The description of superconductivity has a rich history.
The Ginzburg-Landau model (at tree level) predicts
second-order behavior; this model has become a prototype
for second-order transitions. But later, Halperin, Lubensky,
and Ma' argued that fluctuations in the electromagnetic
field might drive the transition first order. More recently,
Dasgupta and Halperin argued that, in the extreme type-II
limit, this first-order behavior does not occur; instead, there
is a second-order transition of inverted-XYtype. This study
further explores the phase diagram of the superconductor.

The Ginzburg-Landau model of superconductivity in
three dimensions has action

S[~, @]= Jt[l (d„Ie&„)@I'+ ,
' r—2„+V(@)]d—3x,

with partition function

Z =, e
—s[wy]f

where P is a complex scalar field (Cooper-pair wave func-
tion), A„ is the photon field, F„„=B„A„—B„A„, and the
potential is V(@)=a!$! +b!$!;e is the charge coupling

to @. The Ginzburg-Landau parameter (ratio of
penetration depth to correlation length) is K=Wb/e; a su-
perconductor with K & I/J2 is called type I, and one with
K ) I/v 2 is called type II. This study addresses the nature
of the transition as ~ is varied.

Halperin, Lubensky, and Ma' reasoned that for the

I

strongly type-I case (K 0), the transition is first order.
They obtained an effective action by integrating out the A„
field (taking argP =const). A I@I' term with negative coef-
ficient is induced in the potential, indicating a first-order
transition. This argument seems plausible in a regime
where the correlation length, penetration depth, and e2 are
small. ' In the strongly type-II case (K ~), a lattice reali-
zation of S[A, Q] (Villain form) duals2 4 5 into the general-
ized Villain XY model. The pure XY model exhibits
second-order behavior; Dasgupta and Halperin pointed out
that if the generalized model does also it suggests that the
superconductor has an "inverted-XY" transition in this re-
gion. Further, Dasgupta and Halperin did Monte Carlo
simulations on the generalized Villain XY model and did
find evidence for a second-order, inverted-XY transition at
e2 =5.

The study attempts to reconcile these two analyses by ex-
ploring the phase diagram between these two extremes.
Summarizing the results, it is found that for e2=5, the
jump in !$! across the transition indeed is large in the
strongly type-I region, indicating strongly first-order
behavior. The jump decreases as b (hence K) increases and,
beyond a certain point, is consistent with zero, suggesting a
second-order transition. The approach of the jump to zero
is consistent with the existence of an ordinary @4-g6 tricriti-
cal point separating a line of first-order transitions and a line
of second-order transitions.

One realization of S[A, @] on the lattice is

SL[A, p, s] = g —2 gp(x) p(x+p) cos(8„8—eA„) +
~ I'„, +(a +6)p +bp

X

where p= pe'e, p (positive real) and S (0 (8 & 27r) are site
fields, and A„(real) is a link field. The sum on x is over
sites, and the sum on p, is over directions of the three-
dimensional cubic lattice. 7

The Metropolis algorithm was used in a Monte Carlo
simulation of SL. At each b value, for various lattice sizes,
from 6 to 13 runs at different a values were made. Data
were extracted from typically 8000 iterations on a 5 lattice,
6000 on a 93, and 3000 on a 153 (fewer fixed-a runs were
usually made in the 15 case). In total, approximately 1000
h of Vax CPU (central processing unit) time were used.
Once in equilibrium, the expectation value of p, (p), and

other data were measured. Error bars were determined by
blocking the data in successively larger bins until the errors
appeared uncorrelated.

Graphs of (p) vs a at fixed b are shown. Figure 1(a), for
b =0.25, shows a clear, strong, first-order transition. This
validates the predicted first-order behavior of Halperin, Lu-
bensky, and Ma. Figure 1(b), for b =0.7, shows continu-
ous behavior in (p), indicating the transition is by now
probably second order.

To further isolate the critical value of a, a„ the system
was prepared with half the lattice in a representative disor-
dered state and half in an ordered state. Two methods of
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F1G. 1. {p) vs a for e2=5; (a) b =0.25 (first-order regime) on a

9 lattice; (b) b =0.7 (second-order regime) on a 15 lattice. The
error bars are within the size of the dots.
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setting starting configurations were used: (a) The config-
uration for the disordered state was p's = (p) determined by
other Monte Carlo runs at the given parameter values, A„'s
random (within a range), and 8's random. For the ordered
state, p's= (p) from Monte Carlo runs, A„'s=o, and 8's
all equal. (b) Equilibrium field configurations were taken
from previous Monte Carlo runs for two a values straddling
a, . The system was then allowed to evolve over 500 to
3000 iterations, choosing the preferred state. At a given b,
for the various lattice sizes, from S to 19 such runs were
made. Figures 2(a) and 2(b) display example equilibrations.

A graph of Ap, the jump in (p) across the transition,
versus b, for e =S, is shown in Fig. 3. Beyond b =0.44,
b,p is consistent with zero. These results show there is a re-
gion of strongly first-order behavior for b sufficiently small.
As b increases, b p decreases, until it cannot be dis-
tinguished from zero, suggesting a regime of second-order
behavior. However, a very weakly first-order transition for
all large b cannot be ruled out.

There arises the possibility of a tricritical point. A simple
renormalization-group argument predicts that near a stand-
ard $4-$6 tricritical point b„, b,p~ b„b.'a Figure 3 shows-
the decrease of 6p to be consistent with linearity; the
scatter in the points is discussed below. A power-law fit to
the last seven 9' points gives the exponent of b„—b as
0.97 +0.03 with bt, =0.44 +0.01." Including more or fewer
points in the average does not affect bt, substantially.

FIG. 2. Disordered-ordered mixed starts for e2=5, b =0.325 on
a 93 lattice; (a) !a!=1.4775 ( Ia, l equilibrating to disorder; (b)
!a!=1.4975 &!a, ! equilibrating to order.

The (p) vs a data are straightforward to obtain, and the
data are of good quality. The key question is in determining
a„which gives the point to take the difference of (p)
between the two phases. For the various lattice sizes, the
branches of the (p) vs a curves are nearly identical in their
region of overlap; finite-size differences in Ap are due pri-
marily to differences in a, .

The two methods of disordered-ordered starts give differ-
ences in a sufficient to account for the Ap variation with
lattice size and the scatter of the points from linearity (see
the displaced error bar for b =0.35 in Fig. 3 ). These error
bars are roughly consistent with the range in a of metasta-
bility achievable in runs of several thousand iterations.
Kinetic effects at the disordered-ordered interface may be
important, and affect, at least in the short run, the vacuum
preferred.

On the 9 lattice, near the hypothesized tricritical point,
there were found modes in (p) versus time of very long
periods (many thousand time steps). For the 15' lattice,
near bt„ it was impossible to sample over a requisite
number of cycles to get a good (p) value; in the running
time available, (p) seemed to depend on the starting confi-
guration. Therefore it was impossible to get nearer to the
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FIG. 3. The jump in (p) across the transition vs b for e2=5 on
9 (closed circles) and 15 (open circles) lattices. The displaced
sample error bar, for the 15 b =0.35 point, results from using both
methods to determine a„as descibed in the text. The point at
b =0.7 gives an upper bound for hp (15 lattice). The line results
from a power-law fit of the last seven 9 points.

tricritical point than indicated in Fig. 3. Because more itera-
tions could be made on the 9 lattice near b„, and because
as such these points have greater reliability than the 15'
ones there, the power-law fit was made to the 9 points.

The differences between the 15' and 9' points are in
themselves a measure of error. To distinguish between
weakly first-order tunneling between vacuua and long-
period cycles, analyses of size dependence must be made.
Finite-size effects were hard to control at small Ap. To
have convincing evidence of tricriticality, analyses right at
b„are needed.

To further address the hypothesized region of second-
order behavior, Fig. 4 shows a specific-heat curve for
b =0.7 (153 lattice) (C = ASL/ha). '2 The singularity is
weaker than the 5 function spike seen for b ( b„. Note the
slight rise of the right shoulder on the side of increasing I a I

(decreasing temperature). In the b ~ limit, Dasgupta
and Halperin found a pronounced shoulder on the opposite
(left) side. Figure 4 thus seems to exhibit crossover
between tricritical and inverted-XY behaviors. (The
behavior in the XY limit at e2 = 5 has been checked and the
shoulder is indeed found to be on the left side —the re-
versed asymmetry from the pure-XI; e =0 case. )

For a real metal with e~=22(4rr/137) =0.37, the phase
diagram might also have a tricritical point; however, other
possibilities exist. Also, at sufficiently high e, the model
may always be in the normal state. '

In conclusion, evidence has been presented showing

FIG. 4. Specific heat for e =5, b =0.7 on a 15 lattice.

strongly first-order behavior in a type-I superconductor
which becomes weaker moving toward the type-II region.
Beyond a certain point, the jump is consistent with zero,
suggesting a second-order transition. The data are con-
sistent with a tricritical point separating a line of first-order
transitions and a line of second-order transitions, but the
possibility always does exist of a vanishingly small first-
order transition throughout the whole type-II region.

The first-order jump for a real metal is expected to be
small' and, so far, hard to detect experimentally. The jump
is expected to be larger for certain liquid crystals, where a
similar phase structure is expected'4; this may be the best
place to look for a tricritical point.

Note added in proof There is a he.uristic argument con-
cerning the type of tricritical point expected: At the tricriti-
cal point, the p field is massive, which implies effective
short-ranged interactions between vortices in the dua14 5 XY
model. This presumably can be represented as an ordinary
XYmodel with local, but complicated, interactions. It is be-
lieved this model has an ordinary n =2, $4-$s tricritical
point lying in the space of Hamiltonians. (I thank Stephen
Shenker for pointing this out. )
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