PHYSICAL REVIEW B

VOLUME 28, NUMBER 9

Phase structure of a lattice superconductor

John Bartholomew* The Enrico Fermi Institute and the Department of Physics, The University of Chicago, 5640 Ellis Avenue, Chicago, Illinois 60637 (Received 25 July 1983)

A lattice Ginzburg-Landau model of superconductivity is explored in a Monte Carlo computer simulation (for charge $e^2 = 5$). The superconducting-normal transition is strongly first order deep in the type-I region and becomes more weakly first order moving in the direction of the type-II region. Beyond a certain point, the data suggest a second-order transition. The data are consistent with the existence of a tricritical point separating these two regimes.

The description of superconductivity has a rich history. The Ginzburg-Landau model (at tree level) predicts second-order behavior; this model has become a prototype for second-order transitions. But later, Halperin, Lubensky, and Ma¹ argued that fluctuations in the electromagnetic field might drive the transition first order. More recently, Dasgupta and Halperin² argued that, in the extreme type-II limit, this first-order behavior does not occur; instead, there is a second-order transition of inverted-XY type. This study further explores the phase diagram of the superconductor.

The Ginzburg-Landau model of superconductivity in three dimensions has action

$$S[A,\phi] = \int [|(\partial_{\mu} - ieA_{\mu})\phi|^2 + \frac{1}{4}F_{\mu\nu}^2 + V(\phi)]d^3x ,$$

with partition function

$$Z = \int_A \int_{\phi} e^{-S[A,\phi]} ,$$

where ϕ is a complex scalar field (Cooper-pair wave function), A_{μ} is the photon field, $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$, and the potential is $V(\phi) = a |\phi|^2 + b |\phi|^4$; *e* is the charge coupling A_{μ} to ϕ . The Ginzburg-Landau parameter (ratio of penetration depth to correlation length) is $\kappa = \sqrt{b}/e$; a superconductor with $\kappa < 1/\sqrt{2}$ is called type I, and one with $\kappa > 1/\sqrt{2}$ is called type II. This study addresses the nature of the transition as κ is varied.

Halperin, Lubensky, and Ma¹ reasoned that for the

strongly type-I case $(\kappa \rightarrow 0)$, the transition is first order. They obtained an effective action by integrating out the A_{μ} field (taking $\arg \phi = \text{const}$). A $|\phi|^3$ term with negative coefficient is induced in the potential, indicating a first-order transition. This argument seems plausible in a regime where the correlation length, penetration depth, and e^2 are small.³ In the strongly type-II case $(\kappa \rightarrow \infty)$, a lattice realization of $S[A, \phi]$ (Villain form) duals^{2,4,5} into the generalized Villain XY model. The pure XY model exhibits second-order behavior; Dasgupta and Halperin² pointed out that if the generalized model does also it suggests that the superconductor has an "inverted-XY" transition in this region. Further, Dasgupta and Halperin did Monte Carlo simulations on the generalized Villain XY model and did find evidence for a second-order, inverted-XY transition at $e^2 = 5$.

The study attempts to reconcile these two analyses by exploring the phase diagram between these two extremes.⁶ Summarizing the results, it is found that for $e^2 = 5$, the jump in $|\phi|$ across the transition indeed is large in the strongly type-I region, indicating strongly first-order behavior. The jump decreases as b (hence κ) increases and, beyond a certain point, is consistent with zero, suggesting a second-order transition. The approach of the jump to zero is consistent with the existence of an ordinary $\phi^4 - \phi^6$ tricritical point separating a line of first-order transitions and a line of second-order transitions.

One realization of $S[A, \phi]$ on the lattice is

$$S_{L}[A,\rho,\theta] = \sum_{x} \left\{ -2 \sum_{\mu} \rho(x)\rho(x+\mu)\cos(\partial_{\mu}\theta - eA_{\mu}) + \frac{1}{4}F_{\mu\nu}^{2} + (a+6)\rho^{2} + b\rho^{4} \right\}$$

where $\phi = \rho e^{i\theta}$, ρ (positive real) and θ ($0 \le \theta < 2\pi$) are site fields, and A_{μ} (real) is a link field. The sum on x is over sites, and the sum on μ is over directions of the three-dimensional cubic lattice.⁷

The Metropolis algorithm⁸ was used in a Monte Carlo simulation of S_L . At each *b* value, for various lattice sizes, from 6 to 13 runs at different *a* values were made. Data were extracted from typically 8000 iterations on a 5³ lattice, 6000 on a 9³, and 3000 on a 15³ (fewer fixed-*a* runs were usually made in the 15³ case). In total, approximately 1000 h of Vax CPU (central processing unit) time were used. Once in equilibrium, the expectation value of ρ , $\langle \rho \rangle$, and

other data were measured. Error bars were determined by blocking the data in successively larger bins until the errors appeared uncorrelated.

Graphs of $\langle \rho \rangle$ vs *a* at fixed *b* are shown. Figure 1(a), for b = 0.25, shows a clear, strong, first-order transition. This validates the predicted first-order behavior of Halperin, Lubensky, and Ma. Figure 1(b), for b = 0.7, shows continuous behavior in $\langle \rho \rangle$, indicating the transition is by now probably second order.

To further isolate the critical value of a, a_c , the system was prepared with half the lattice in a representative disordered state and half in an ordered state.⁹ Two methods of

<u>28</u> 5378

PHASE STRUCTURE OF A LATTICE SUPERCONDUCTOR

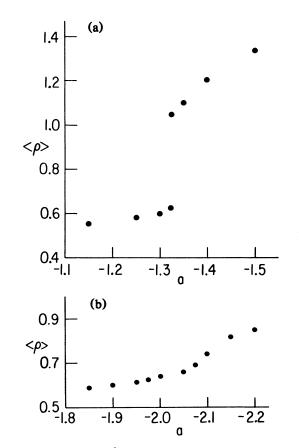


FIG. 1. $\langle \rho \rangle$ vs *a* for $e^2 = 5$; (a) b = 0.25 (first-order regime) on a 9³ lattice; (b) b = 0.7 (second-order regime) on a 15³ lattice. The error bars are within the size of the dots.

setting starting configurations were used: (a) The configuration for the disordered state was $\rho's = \langle \rho \rangle$ determined by other Monte Carlo runs at the given parameter values, A_{μ} 's random (within a range), and θ 's random. For the ordered state, $\rho's = \langle \rho \rangle$ from Monte Carlo runs, A_{μ} 's=0, and θ 's all equal. (b) Equilibrium field configurations were taken from previous Monte Carlo runs for two *a* values straddling a_c . The system was then allowed to evolve over 500 to 3000 iterations, choosing the preferred state. At a given *b*, for the various lattice sizes, from 5 to 19 such runs were made. Figures 2(a) and 2(b) display example equilibrations.

A graph of $\Delta \rho$, the jump in $\langle \rho \rangle$ across the transition, versus b, for $e^2 = 5$, is shown in Fig. 3. Beyond $b \approx 0.44$, $\Delta \rho$ is consistent with zero. These results show there is a region of strongly first-order behavior for b sufficiently small. As b increases, $\Delta \rho$ decreases, until it cannot be distinguished from zero, suggesting a regime of second-order behavior. However, a very weakly first-order transition for all large b cannot be ruled out.

There arises the possibility of a tricritical point. A simple renormalization-group argument predicts that near a standard $\phi^4 - \phi^6$ tricritical point $b_{\rm tc}$, $\Delta \rho \propto b_{\rm tc} - b.^{10}$ Figure 3 shows the decrease of $\Delta \rho$ to be consistent with linearity; the scatter in the points is discussed below. A power-law fit to the last seven 9³ points gives the exponent of $b_{\rm tc} - b$ as 0.97 ±0.03 with $b_{\rm tc} = 0.44 \pm 0.01.^{11}$ Including more or fewer points in the average does not affect $b_{\rm tc}$ substantially.

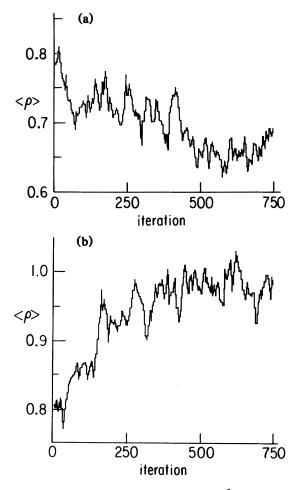


FIG. 2. Disordered-ordered mixed starts for $e^2 = 5$, b = 0.325 on a 9³ lattice; (a) $|a| = 1.4775 < |a_c|$ equilibrating to disorder; (b) $|a| = 1.4975 > |a_c|$ equilibrating to order.

The $\langle \rho \rangle$ vs *a* data are straightforward to obtain, and the data are of good quality. The key question is in determining a_c , which gives the point to take the difference of $\langle \rho \rangle$ between the two phases. For the various lattice sizes, the branches of the $\langle \rho \rangle$ vs *a* curves are nearly identical in their region of overlap; finite-size differences in $\Delta \rho$ are due primarily to differences in a_c .

The two methods of disordered-ordered starts give differences in a sufficient to account for the $\Delta \rho$ variation with lattice size and the scatter of the points from linearity (see the displaced error bar for b = 0.35 in Fig. 3). These error bars are roughly consistent with the range in a of metastability achievable in runs of several thousand iterations. Kinetic effects at the disordered-ordered interface may be important, and affect, at least in the short run, the vacuum preferred.

On the 9³ lattice, near the hypothesized tricritical point, there were found modes in $\langle \rho \rangle$ versus time of very long periods (many thousand time steps). For the 15³ lattice, near b_{tc} , it was impossible to sample over a requisite number of cycles to get a good $\langle \rho \rangle$ value; in the running time available, $\langle \rho \rangle$ seemed to depend on the starting configuration. Therefore it was impossible to get nearer to the 5380

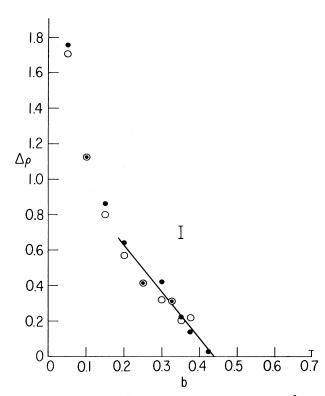


FIG. 3. The jump in $\langle \rho \rangle$ across the transition vs b for $e^2 = 5$ on 9³ (closed circles) and 15³ (open circles) lattices. The displaced sample error bar, for the 15³ b = 0.35 point, results from using both methods to determine a_c , as described in the text. The point at b = 0.7 gives an upper bound for $\Delta \rho$ (15³ lattice). The line results from a power-law fit of the last seven 9³ points.

tricritical point than indicated in Fig. 3. Because more iterations could be made on the 9^3 lattice near b_{tc} , and because as such these points have greater reliability than the 15^3 ones there, the power-law fit was made to the 9^3 points.

The differences between the 15^3 and 9^3 points are in themselves a measure of error. To distinguish between weakly first-order tunneling between vacuua and longperiod cycles, analyses of size dependence must be made. Finite-size effects were hard to control at small $\Delta \rho$. To have convincing evidence of tricriticality, analyses right at $b_{\rm tc}$ are needed.

To further address the hypothesized region of secondorder behavior, Fig. 4 shows a specific-heat curve for b = 0.7 (15³ lattice) ($C = \Delta S_L / \Delta a$).¹² The singularity is weaker than the δ function spike seen for $b < b_{tc}$. Note the slight rise of the right shoulder on the side of increasing |a|(decreasing temperature). In the $b \rightarrow \infty$ limit, Dasgupta and Halperin found a pronounced shoulder on the opposite (left) side. Figure 4 thus seems to exhibit crossover between tricritical and inverted-XY behaviors. (The behavior in the XY limit at $e^2 = 5$ has been checked and the shoulder is indeed found to be on the left side—the reversed asymmetry from the pure-XY, e = 0 case.)

For a real metal with $e^2 = 2^2(4\pi/137) \approx 0.37$, the phase diagram might also have a tricritical point; however, other possibilities exist. Also, at sufficiently high e^2 , the model may always be in the normal state.^{2,13}

In conclusion, evidence has been presented showing

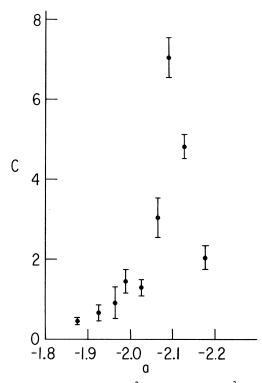


FIG. 4. Specific heat for $e^2 = 5$, b = 0.7 on a 15^3 lattice.

strongly first-order behavior in a type-I superconductor which becomes weaker moving toward the type-II region. Beyond a certain point, the jump is consistent with zero, suggesting a second-order transition. The data are consistent with a tricritical point separating a line of first-order transitions and a line of second-order transitions, but the possibility always does exist of a vanishingly small firstorder transition throughout the whole type-II region.

The first-order jump for a real metal is expected to be small¹ and, so far, hard to detect experimentally. The jump is expected to be larger for certain liquid crystals, where a similar phase structure is expected¹⁴; this may be the best place to look for a tricritical point.

Note added in proof. There is a heuristic argument concerning the type of tricritical point expected: At the tricritical point, the ρ field is massive, which implies effective short-ranged interactions between vortices in the dual^{4,5} XY model. This presumably can be represented as an ordinary XY model with local, but complicated, interactions. It is believed this model has an ordinary n=2, $\phi^4 - \phi^6$ tricritical point lying in the space of Hamiltonians. (I thank Stephen Shenker for pointing this out.)

ACKNOWLEDGMENTS

I thank Stephen Shenker for proposing this project and for many helpful discussions. This research was supported by the National Science Foundation under Grant No. DMR 82-16892 and by the U.S. Department of Energy under Contract No. DE-AC02-81ER10957.

This work was submitted to the Department of Physics, the University of Chicago, in partial fulfillment of the requirements for the Ph.D. degree.

- *Address after 1 January 1984: Department of Chemistry, Columbia University, New York, NY 10027.
- ¹B. I. Halperin, T. C. Lubensky, and S.-K. Ma, Phys. Rev. Lett. <u>32</u>, 292 (1974).
- ²C. Dasgupta and B. I. Halperin, Phys. Rev. Lett. <u>47</u>, 1556 (1981).
- ³Reference 1 also gave an ϵ -expansion argument that the type-II region should flow into the type-I region under renormalization group, and so experience first-order behavior. But, as $\epsilon = 4 d = 1$, the expansion may have broken down, invalidating this conclusion.
- ⁴M. Peskin, Ann. Phys. (N.Y.) <u>113</u>, 122 (1978).
- ⁵P. R. Thomas and M. Stone, Nucl. Phys. <u>B144</u>, 513 (1978).
- ⁶Exploration of tricriticality has also been carried out by H. Kleinert, Lett. Nuovo Cimento <u>35</u>, 405 (1982).
- ⁷In polar coordinates, $-\log \rho$ is added to S_L due to the measure in the functional integral. Note also that the Q.E.D. is noncompact.
- ⁸N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. <u>21</u>, 1087 (1953).
- ⁹M. Creutz, Phys. Rev. D <u>20</u>, 1915 (1979).
- ¹⁰The marginally irrelevant ϕ^6 operator in three dimensions pro-

- duces logarithmic corrections; these data suggest that these corrections are not extremely large. Much higher-precision data are necessary to ascertain their amplitude and the detailed shape of the curve; this would be necessary to determine the number of spin dimensions *n* in an "order parameter"; a guess might be that n = 2. See M. J. Stephen, E. Abrahams, and J. P. Straley, Phys. Rev. B <u>12</u>, 256 (1975); F. J. Wegner and E. K. Riedel, *ibid.* <u>7</u>, 248 (1973).
- ¹¹For $e^2 = 5$, the critical *b* separating the two types of superconductors is $\frac{5}{2}$, so that the tricritical point occurs in the nominal type-I region.
- ¹²The data in Figs. 1(b) and 4 may not be completely equilibrated; however, this would tend to accentuate the size of any jump. While the data may not be precise quantitatively, the curves display general shapes.
- ¹³For runs made at e^2 different from 5, it was found that for fixed *b*, as *e* increases, $|a_c|$ increases.
- ¹⁴B. I. Halperin and T. C. Lubensky, Solid State Commun. <u>14</u>, 997 (1974). I thank John Toner for discussions on this point.