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Exact solution of a one-dimensional XY model in a random field
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We present an exact solution of a one-dimensional XY model in a random magnetic field in the limit of
strong-field pinning. The structure factor exhibits Lorentzian-squared behavior at nonzero temperatures.

The scaling behavior of the correlation length as a function of randomness is different from that obtained

in the weak-field pinning regime. We also study the dynamical behavior of the system using a simple re-
-er'/3

laxational model. The magnetization decays anomalously with time as t 6e

Much attention has been focused in recent years on the
behavior of spin systems with quenched random fields.
Domain arguments developed by Imry and Ma' predict that
the lower critical dimensionality for such systems is two for
the Ising case and four for the vector spin case. This result
for the vector spin model has been substantiated by
renormalization-group calculations and a "Mermin-
%agner" style proof. The Ising situation remains less
clear, however. Besides predicting a shift in the lower criti-
cal dimensionality, the domain arguments also give the size
of the domains below the lower critical dimensionality. If
we consider a general model where the random fields are di-
lute with concentration p and strength h, then the domain
size Lp will be given by

r ' 2/(2 —d)

Lo- J (Ia)
!h pj

for the Ising case and
f ' 2/(4 —d)

Lp- J
, hWp

(lb)

for vector spins. Here J is the exchange energy. The densi-
ty of sites with random fields within a domain is then given
by the product pLg~. However, in deriving (1) one assumes
that this density is large so that the field energy is a JW,
where N is the number of sites with random fields in the
domain. Thus two regimes emerge: a "weak-pinning" re-
gime where pL p && 1, and a "strong-pinning" regime
where pLod ( 1. The domain results (1) are not valid in
the latter regime.

In the "weak-pinning" regime one expects that the zero-
temperature correlation length will be identified with the
domain size Lp. Indeed low-temperature renormalization-
group arguments for the Ising and vector systems, and a
one-dimensional calculation valid in the weak-pinning re-
gime, yield correlation lengths which scale with the random-
ness in the manner predicted by (I). Grinstein and Mu-
kamel recently considered an exact solution of the strong-
pinning regime of the Ising model in onc dimension and
found that the zero-temperature correlation length scales as
predicted by the domain argument, i.e.,

0, —I/p

(Their model assumes that h is "infinite" or equivalently
greater than 2J. ) This result is not surprising since in the
strong-pinning regime each field site forms a domain around
it, and hence the domain size or correlation length scales as
I/p. In d dimensions we would expect the correlation length
to scale as p

' in the strong-pinning regime. It is clear
from (la) that the correlation length will scale in the same
fashion in the weak- and strong-pinning regimes only in one
dimension. On the other hand, for the vector models we
see that the strong-pinning result g~

—p '~~ will agree with
the domain result (lb) only in two dimensions. In this pa-
per we present an exact solution of the strong-pinning re-
gime of the one-dimensional XY model and show, in partic-
ular, that the correlation length scales as in (2) rather than
(lb). We also find that, as in the Ising case, the structure
factor exhibits a Lorentzian-squared term only at T Ao.
Additionally, we calculate the susceptibility and the
Edwards-Anderson order parameter. %e also study the
dynamical behavior of the system using a simple relaxation-
al model. %e find that for large times t the magnetization

1/3
decays anomalously with time as t e

The model we consider is defined by the Hamiltonian

H= —J QS; Sy —$h; S;
&~J)

where S; is an XY spin, given in polar coordinates by (coss, ,
sins; ). The fields h; are distributed spatially with probabili-
ty p. The field strength is infinite and the field directions
are distributed uniformly over the unit circle. %e will speci-
fy the field direction by a polar angle @;. From (lb) we see
that the density of impurities per domain is given by

' 2/3J
Lpp —p

h
(4)

Therefore for h & 0(J), Lop & 1 and we are restricted to
the strong-pinning regime. The infinite pinning fields allow
an exact solution of the model since we need only consider
finite chains bounded by impurity sites. %e first consider
the static correlation functions
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and
X(l) = [(S„S„+()—(S„). (S„+I)],„, (6)

where the angle brackets denote a thermodynamic average and the square brackets denote the average over h, and @;. The
correlation function S(l) is given by

S(l)= g (&+I) '(I — ) " "'
(Sn Sn+l)N~+I+1""N+i+i o

N 0 0 m'

OO OO

+ 3r xM+N+I ~ d pN+n+1 ~~ d @M+I—n+1 i w '@0 I i &0 @M+I—n+1
p &&-pj j(n)N+n+1'(Sl —n)M+I —n+1

N 1M 1 n 1 2' (7)

The first sum takes into account configurations with no
magnetic field between the spins, while the second term
averages over the configurations with a magnetic field at
one intermediate site. The thermodynamic average

(S„S„+I)N+t+~+'+' is the spin-spin correlation function on
a chain of length N+I+2 with boundary conditions speci-
fied by the angles $0 and $N+I+~. In the second term of
(7) we have made use of the fact that for configurations
which involve a field at an intermediate site one may re-

place (S„S„+I)by (S„)(S„+I).Then, (S„)N+„+~"+'
represents the average magnetization at site n in a chain of
length N+n+2 with boundary conditions specified by the
angles @0 and QN+„+~.

The evaluation of the thermdynamic averages appearing
in (7) is carried out for T = 0 and T & 0 separately. At
T = 0, the spin configuration between two field sites is given
by a spin-wave solution with maximum possible wavelength
subject to the boundary conditions. Thus for a chain of
length Iv'+ 1 with boundary angles @0 and @N we have

n (4N+ 40) ". . n (4N 40)S„=cos 0+ i +sin 0+ j
N

(8)

Using (8) in (7) we find, after performing all of the sums
and integrals, that S(l) does not exhibit a term of the form
l(1 —p)', and thus the Fourier transform of S(l) which is
the structure factor does not show a Lorentzian-squared
behavior. Similar behavior is seen in the Ising case. The
correlation length is given by

4p=
ln(1 —p) n-0

in agreement with the argument presented after (2).
For T W 0, we expand the Boltzmann factors appearing in

the thermodynamic functions in a series of modified Bessel
funct10nS, 1.e.,

exp [PJ cos(8; —8, ) ] = $ l„(PJ ) exp[in (9;—Hi) ]
n ~

(10)

With this representation the partition function, the average
magnetization, and the correlation function for a chain of
length % + 1 with boundary conditions specified by @0 and

QN are as follows:

I.(PJ)
Z =lo (PJ) 1+2 X cosm(PN —Po).-i, Io(PJ)

(11a)

(exp " ) N =Z ' X I"(pJ)I":~"(pJ)exp[im@0 —i (m —1)@N] (11b)

(exp[i(4. —d. +g)])N+ +I =z g I (pJ)I —](pJ)exp[im(@0 —@N+„+()] (1 1c)

S (I) = Al (1 —p )'z'+8 (1—p )'z', (12a)

where A and B are given by

A =p+O(z'),
8 =1—p(1 —p)z+ 0 (zz)

(12b)

(12c)

Equation (12a) implies that the inverse correlation length is

Then we find from (7) that for large T satisfying
z = [I~(PJ)/Io(/3J)] (( 1 the leading terms in S(l) are

given by

where gr '= —lnz and g~
' is given by (9). These quanti-

ties are the thermal and random inverse correlation lengths,
respectively. Fourier transforming (12a) we find that the
structure factor has a Lorentzian form proportional to B and
a Lorentzian-squared term proportional to A.

In calculating X(i) we need only consider configurations
with no intermediate fields, and thus it is given by
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OO N

X(I) g 2(1 ) N+I g jP @iv+t+ t @o
( (S 8 &

O' N+I+1 (S &

O' %+[+1 (S &

0' %+1+1)
N 0 n-0 0 7T

(14)

For large I satisfying z (( I we find to leading order that X(l) —(I —p), i.e. , it is purely exponential. This difference in
behavior between X(I) and S(/) at T A 0 is to be contrasted with the behavior of the XI' model in two dimensions in the
presence of a random field in the Gaussian approximation. In that case, the disconnected piece of X(I) vanishes and X(l)
and S(l) are identical.

For the Edwards-Anderson order parameter we have

0—= r&s. & &s.&~-= g p'(I p)"—$ j7 ' (s.&
'+' (15)

N 0 n-0 7T'

and after calculations analogous to those above we find

t)&.(t) 5H
dt 88„(t)

(g„(t)g (t')& =2ksTI 5 „r(t—t')

((.(t)& = 0

(17a)

(17b)

(17c)

If we write tl„(t)= H„(t)+ e„(t), where tl„(t) is the
ground-state solution corresponding to (8), then the linear
(in e) approximation to (17a) is

1, T=0,
ip+2z'p(I —p)+O(z'), 7 ~0 .

Unlike the Ising case, 0 is saturated at T = 0 for all values
of p since the ground-state solution (8) is unique, whereas
in the Ising case the kink separating up and down spin re-
gions is free to slide.

It is also straightforward to consider the dynamical
behavior of this system. We consider here a simple relaxa-
tional model defined by the equations'

and $o. The infinite pinning fields require that eo= en=0.
Averaging over the noise („(t),Eq. (18) can be solved easi-
ly, since (g„(t)&=0.

The solution with the longest relaxation time is given by

(e„(t)& = A o(N, @o, @~)e 'sin
N

(19a)

where

n = no/N 2

Po1
n0= m JI cos

N

(19b)

~ o(N 4o. 4w ) =—
1

2NH . 4lv —4o + . wn
sin n+ o sin

and Ao(N, $o, $~) is determined by the initial conditions.
To study the relaxation of the total magnetization M(t), we
apply a small magnetic field 0 in the 0=0 direction to the
system for t ~ 0 and calculate M(t) for t ) 0 when H =0.
Using Eq. (17) we find that

at
=I J cos

N
(e„+1+e„ 1

—2e„)+ g„(t) (18) (20)

for a chain of length N + 1, with boundaries specified by @~ The magnetization is given by

(21)

Linearizing Eq. (21) in e„(t)and performing the sum over
n and the integrals over @o and @~ we find

M(t) —g N'(1 —p) 'e
N 1

Replacing the sum by an integral we get

A similar model for diffusion in a medium with randomly
distributed traps has been studied. " It has been shown that

, i/3
the density of particles in such a medium decays as e
for long times. The prefactor t't in (24) is specific to
M(t). Analysis of a different thermodynamic function is
expected to yield a different prefactor.

M(t) —t4" j" x'exp —t'" ' + rin(I —p) rx dx (23)
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M(t) —t e
1/3

(24)

where

c = 3 x 4-'t' .'t'rin(I —p) r"' (25)

where x = N/t't'. Using the saddle-point approximation we
find that for large times M(t) is given by
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