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Dynamic correlation functions in quantum systems: A Monte Carlo algorithm
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We propose a new algorithm to compute dynamic correlation functions in quantum systems at zero tem-
perature using Monte Carlo techniques. The method, which avoids inverse-Laplace transforms, is based
on a representation of the Dirac 5 function as the limit of a Gaussian. We illustrate the method on the
one-dimensional harmonic oscillator.

I. INTRODUCTION

The linear response A (t) of a many-body system to an
externally applied force F(t') can be expressed in terms of
the correlation function

C~ji(i —r') = (A (r)8(r'))
where 8(t') is conjugate to F(r') At .zero temperature

( ) denotes the ground-state expectation value and as usu-
al

quantities, one can compute directly correlation functions in
imaginary time

C„(r)= (Ole"'Ae "8IO)- (4)

However, it is well known that the inverse-Laplace
transform required to obtain C„s(co) is highly unstable to
the statistical error in C~s(r).

We propose here an alternative scheme which deals
directly with the correlation functions in real frequency. It
is based on the Gaussian representation of the 5 function

A ( r) e iHiA e
—iHi (2)

Experiments such as inelastic neutron scattering measure
the time Fourier transform of C&~ with t and t' real,

5(0j —e) = lim JP/me
P~ ao

and the correlation function Eq. (3) becomes
C~s(~) = g(OIA In) (n 1810)5(i0 —(E„—Eo)) (3)

where the summation extends over all the eigenstates In)
of 0 with energy E„.

There has been recently considerable interest in the appli-
cation of Monte Carlo techniques to the study of interacting
quantum systems. ' Since these methods deal with real

I

Cps(i0) = lim VP/rr(OIA exp[ —/3(H —Eo —i0) ]8 IO)

(6)

We generate the ground state by the conventional imaginary
time filtering procedure'

(pie a A exp[ —p(H —Eo i0)']Be lg)—C~s(oj) = lim lim
P oo P oo VT (x le -'P"I q)

(7)

where lg) and lx) are arbitrary states that have nonvanish-
ing overlap with the ground state of the system. The
denominator cancels the unknown overlap matrix elements
of lg) and IX) with the ground state. Equation (7) consti-
tutes the basic equation in our approach. Note that we need
to perform an independent evaluation of Eo, which can be
done by standard Monte Carlo methods. '

We evaluate (7) numerically using a stochastic technique.
First, divide both the P and P axis in small slices of size A~
and 3 ~, respectively,

I

efficient method is the checkerboard breakup. ' One obtains

(XI VtAV2BVi Ig)

(~l v"
I &

(9)

For large P, L and /3, L, Cqs(co) converges to the desired
correlation function. To compute Eq. (9), we propose to
use a random walk method, originating with von Neumann
and Ulam and developed recently by several authors.
Following the recent work of Kuti, ' we write for the matrix
elements of V, (i =1, 2)

—PH (
—krH) L

exp[ —P(H —X) ] = (exp[ —A7 (H —X)2]IL
(il v;Ij& =Pij+ij

where the transition probability P„"satisfies

(10)

where L =P/Ar, L =P/Ar, and A. =EO+co. Next, evaluate
the matrix elements Vl and V2 of e ' and
exp[ —hr(H k) ] approximately, with e—rrors proportional
to 47' and 4v'. For fermions on a lattice, for example, an

Pj «0, QPj =1

and R,~ is the residue. There is considerable freedom in the
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decomposition (10) ' c
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II. HAARMONIC OSC ILLATOR

C (~)= 5( —
oo)
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(13)

c„„,„,( )= (8(oi ) + 25 (oi —2oio) ] (14)
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2 QJOX

and scale H, p, and, p, and x so that these oese operators are d'imen
'

(12)

sion

Vi(x,x') = (xeV ' = e IX')=—(xle ' ' '" ' '' ex e (kT'/2)p (d /4)
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(17)

w rrect to order Av . ForFor the Gaussian opera

Vq(xx') =
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+ 2 g
& ~ 2

where F(xx') '
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FIG. 3. Numerical results of the stochastic evaluation of the
correlation function for P=1. Fifty states were propagated simul-
taneously and the procedure repeated 250 times. The smooth lines
are the exact results for P = 1.

FIG. 4. Same as Fig. 3 for P =4. Here, 100 states were propagat-
ed 600 times.

so that Eqs. (10) and (11) are satisfied. The matrices for
the usual time-evolution operator are constructed in the
same way.

The convergence of the matrix elements V~(x,x') with
47. is very fast, and we find that 4~ = 0.1 gives negligible er-
rors (less than 0.01'/o). The convergence of V2 is slower,
and we find errors for the matrix elements of about 2%,
0.6%, and 0.2% with 57 —0.1, 0.05, and 0.025, respectively.
In the numerical computations, we have taken 4r = 0.025.

To compute C and C 2 2, we use a discrete mesh of 21

values for —4 (x (4, and choose the initial and final
states ~g) = ~X) as the uniform wave function in that inter-
val. Taking p= 4 ensured that the ground state was accu-
rately projected out. To compute Eq. (9) stochastically, one
can use two slightly different procedures. In one, one pro-
pagates only one state at a time and calculates the average
over numerator and denominator many times. This pro-
cedure fails for the present case because of the negative ma-
trix elements (Fig. 2): the convergence becomes very poor
for L & 10. Thus, we follow a different procedure. " We
propagate a population of many states at the same time. In-
stead of carrying separate residues, we add or delete states
at each 57 step according to their statistical weight. The
only residue that is carried is the sign. However, the crucial
step is that after each step we collect together the weights
(positive and negative) of each state ~X) and reproduce the
net weight of ~X), as input to the next Ar step. In this way
we are able to overcome the negative matrix elements of
V2.

In Fig. 3, we show results for the correlation functions for
the case P = I, where we have propagated 50 states repeat-
ing the procedure 250 times. In Fig. 4, we propagated 100
states 600 times for the case p= 4. As p gets larger, the

cancellations become more important and more states have
to be taken to obtain reasonable results.

Finally, we remark that the procedure of inverse-Laplace
transforming would be difficult even for this simple prob-
lem. For example, the Laplace transform of the sum of
three 5 functions at au=0, coo, and 3~O differs by less than
2'/o from the Laplace transform of C 2 2(~) [Eq. (14)j over
the range 0» 7» 2, if the weight of the 5 functions is ap-
propriately chosen. The same applies to the Laplace
transform of a 5 function at the origin plus a flat response
from ~=0 to 3.75~o. Thus, a Monte Carlo simulation of
C 2 2(r) for p=4 with statistical error of about 2% would

be unable to distinguish between these widely different
spectral functions. In contrast, our results [Fig. 4(b)] clear-
ly indicate that the largest response occurs at ~=0 and 2Mo.

III. CONCLUSIONS

We have discussed a new algorithm to compute dynamic
correlation functions in quantum systems using Monte Car-
lo techniques, which eliminates the difficult problem of
inverse-Laplace transform of noisy data. We have applied
our approach to the harmonic oscillator and found promis-
ing results. To get accurate results it is necessary to take a
time step A~ in the Gaussian propagation which is small
compared to Av in the ground-state filtering. Possibly this
can be avoided by using the Green's-function Monte Carlo
method. A complication found was that the Gaussian pro-
pagator had some negative matrix elements which could be
handled by propagating the net weights of many states at
each time step. We are presently attempting to apply this
algorithm to the calculation of dynamic correlation functions
in one-dimensional many-body problems.
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