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Dynamic correlation functions in quantum systems: A Monte Carlo algorithm
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We propose a new algorithm to compute dynamic correlation functions in quantum systems at zero tem-
perature using Monte Carlo techniques. The method, which avoids inverse-Laplace transforms, is based
on a representation of the Dirac & function as the limit of a Gaussian. We illustrate the method on the

one-dimensional harmonic oscillator.

I. INTRODUCTION

The linear response A4 (¢) of a many-body system to an
externally applied force F(¢') can be expressed in terms of
the correlation function

Cus(t—t')=(4()B()) , 1)

where B(t') is conjugate to F(t'). At zero temperature
( ) denotes the ground-state expectation value and as usu-
al

A =eM'ge M V)]

Experiments such as inelastic neutron scattering measure
the time Fourier transform of C,p with ¢ and ¢’ real,

Cas(w) = 3(0l41n)(n|B|0)3(w— (E,— Eo)) , (3)

where the summation extends over all the eigenstates |n)
of H with energy E,.

There has been recently considerable interest in the appli-
cation of Monte Carlo techniques to the study of interacting
quantum systems.! Since these methods deal with real
J

quantities, one can compute directly correlation functions in
imaginary time

Cus(7)=(0le""4e~""B|0) . @)

However, it is well known that the inverse-Laplace
transform required to obtain C4p(w) is highly unstable to
the statistical error in C45(7).

We propose here an alternative scheme which deals
directly with the correlation functions in real frequency. It
is based on the Gaussian representation of the § function

S(w—e)-—-Elim \/E/7‘re_§(°'_‘)2 , (5)

and the correlation function Eq. (3) becomes

CAB(w)=£Lm B/mw (0|4 expl —B(H — Eo— w)?1B|0) .

(6)

We generate the ground state by the conventional imaginary
time filtering procedure!

2 (xle~#"4 expl — B(H — Eo— w)’]1Be ~#4|)

—\\V
Cap(w) = lim lim Ifi]
w

BB o0

(xle=2"g)

where |{) and |x) are arbitrary states that have nonvanish-
ing overlap with the ground state of the system. The
denominator cancels the unknown overlap matrix elements
of ) and |x) with the ground state. Equation (7) consti-
tutes the basic equation in our approach. Note that we need
to perform an independent evaluation of E,, which can be
done by standard Monte Carlo methods.!

We evaluate (7) numerically using a stochastic technique.
First, divide both the 8 and B axis in small slices of size At
and A7, respectively,

e A= (e=ATH)L |
_ _ (8)
expl —B(H —\)?] = {expl — AT(H —1)2)L |
where L =B/A7, L =B/A7, and A= Eo+w. Next, evaluate
the matrix elements V¥, and V¥, of e %% and
expl —A7(H — A)?] approximately, with errors proportional
to A72 and A72 For fermions on a lattice, for example, an
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|
efficient method is the checkerboard breakup.? One obtains

_\1/2 -
= o _|B]" «xivtaviBriio
Cup(w) [’n] XIVETD

For large B,L and B,L, C43(w) converges to the desired
correlation function. To compute Eq. (9), we propose to
use a random walk method, originating with von Neumann
and Ulam® and developed recently by several authors.®~®
Following the recent work of Kuti,’ we write for the matrix
elements of V; (i=1,2)

(ilViljy=PiR} | (10)

9

where the transition probability P} satisfies
Pyj=0, 3 Pj=1 (1)
and R} is the residue. There is considerable freedom in the
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decomposition (10), which can be used to optimize conver-
gence. The stochastic procedure consists of generating ran-
dom walks for the numerator and denominator of Eq. (9),
governed by the transition probabilities defined above, and
computing for each walk a score as the product of the resi-
dues. The average of the scores converges to the expres-
sions in Eq. (9) for a large number of walks.>¢

II. HARMONIC OSCILLATOR

We consider the Hamiltonian
(12)

and scale H, p, and x so that these operators are dimension'-

H=1p24 Lo
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less, with wo=1, and [p,x]= —i. We consider the correla-

tion functions Eq. (3),

Coe(@) = =15 (0 — wo) a3)
2wy

and

C.a2(0) === [8(w) +28(0—200)] . (14)
xlx 40}

Approximants for these functions for finite ,1_3 are shown in
Fig. 1. A finite B can be interpreted as a finite Gaussian
‘‘experimental’’ resolution.

We construct the matrix elements of the time-evolution
operator as

1/2
' — )2
Vi(xx') = (xe "AH|x'y = (xIe—(A‘r/4)x2e—(A-r/2)pze—(A‘r/4)x 2|x:> _ 1 exp ——ﬁ(x2+x’2) exp _x=x)? a1s)
2wAT 4 2A7T
which is correct to order A73. For the Gaussian operator, we write
: : i (1 ’ a7 (1 ?
Vo(xx') =(x|exp| — A7 [&- + —x2— | ||x" )=exp| - S [=x2—\| |F(oxD) exp|— =5 |=x" 2= |, (16)
2 2 2 |2 212
where F(x,x') is given, to lowest order in A7, by
’ 1 ’ ol _L4 _Lz 1 2 2
F(x,x')=— ) dpcosp(x—x')exp|—Ar + —(x*+x") =21 . an
w JO 4 212
C,,(w) Unfortunately, we were unable to find a closed analytic
XX (@) form for Eq. (17) so that this integral was computed numer-
ically.
Figure 2 shows the matrix elements V,(x,x’) for fixed x’
101 as a function of x for the case w =0. Unlike V, V,(x,x') is
negative in a small region and this leads to certain difficul-
16 ties in the numerical computations. We define
£ = fax|Valxx)] (18)
ost I\
and the transition probability and residues as
g4
, [Va(x,x")
| Py(x,x") E;Tq' , 19)
2
1 41/ 1 ’ ' ’
2 0 2 4 Ry(x,x") =f20x")sgnVy(x,x") , (20)
w
C 2((1.)) T T T T T T
xx (b)
1.0+ ~
104
16 -
:. o5 ~
05 =
4
{ o
=2 0 2 4
w 1 1 L 1 1 1

FIG. 1. Approximants for the harmonic oscillator dynamic corre-
lation functions for the position and position squared operators, for

B=1, 4, and 16.

-4

FIG. 2. Matrix elements of the Gaussian operator V,(x,x’) vs x
for x’=0and —2. A7=0.1.
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FIG. 3. Numerical results of the stochastic evaluation of the
correlation function for 8=1. Fifty states were propagated simul-
taneously and the procedure repeated 250 times. The smooth lines
are the exact results for 8= 1.

so that Egs. (10) and (11) are satisfied. The matrices for
the usual time-evolution operator are constructed in the
same way.

The convergence of the matrix elements Vi(x,x’) with
At is very fast, and we find that A7 =0.1 gives negligible er-
rors (less than 0.01%). The convergence of V, is slower,
and we find errors for the matrix elements of about 2%,
0.6%, and 0.2% with A7 —0.1, 0.05, and 0.025, respectively.
In the numerical computations, we have taken At =0.025.

To compute Cx and szxz, we use a discrete mesh of 21

values for —4 < x <4, and choose the initial and final
states |{) = |x) as the uniform wave function in that inter-
val. Taking B=4 ensured that the ground state was accu-
rately projected out. To compute Eq. (9) stochastically, one
can use two slightly different procedures. In one,® one pro-
pagates only one state at a time and calculates the average
over numerator and denominator many times. This pro-
cedure fails for the present case because of the negative ma-
trix elements (Fig. 2): the convergence becomes very poor
for L >10. Thus, we follow a different procedure.* We
propagate a population of many states at the same time. In-
stead of carrying separate residues, we add or delete states
at each At step according to their statistical weight. The
only residue that is carried is the sign. However, the crucial
step is that after each step we collect together the weights
(positive and negative) of each state |x) and reproduce the
net weight of |x), as input to the next Ar step. In this way
we are able to overcome the negative matrix elements of
V,.

In Fig. 3, we show results for the correlation functions for
the case 8= 1, where we have propagated 50 states repeat-
ing the procedure 250 times. In Fig. 4, we propagated 100

states 600 times for the case B3=4. As B gets larger, the

sz X2 (w)

(b)
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w

FIG. 4. Same as Fig. 3 for 8=4. Here, 100 states were propagat-
ed 600 times.

cancellations become more important and more states have
to be taken to obtain reasonable results.

Finally, we remark that the procedure of inverse-Laplace
transforming would be difficult even for this simple prob-
lem. For example, the Laplace transform of the sum of
three & functions at w =0, wy, and 3w, differs by less than
2% from the Laplace transform of Cx2x2(w) [Eq. (14)] over

the range 0 =<7 =<2, if the weight of the & functions is ap-
propriately chosen. The same applies to the Laplace
transform of a & function at the origin plus a flat response
from w=0 to 3.75wg. Thus, a Monte Carlo simulation of
C.22(7) for B=4 with statistical error of about 2% would

be unable to distinguish between these widely different
spectral functions. In contrast, our results [Fig. 4(b)] clear-
ly indicate that the largest response occurs at w =0 and 2w,.

III. CONCLUSIONS

We have discussed a new algorithm to compute dynamic
correlation functions in quantum systems using Monte Car-
lo techniques, which eliminates the difficult problem of
inverse-Laplace transform of noisy data. We have applied
our approach to the harmonic oscillator and found promis-
ing results. To get accurate results it is necessary to take a
time step Ar in the Gaussian propagation which is small
compared to A7 in the ground-state filtering. Possibly this
can be avoided by using the Green’s-function Monte Carlo
method.* A complication found was that the Gaussian pro-
pagator had some negative matrix elements which could be
handled by propagating the net weights of many states at
each time step. We are presently attempting to apply this
algorithm to the calculation of dynamic correlation functions
in one-dimensional many-body problems.
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