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Roughening transition in quantum interfaces
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The roughening transition in interfaces of quantum crystals and spin systems is studied. Quantum-
mechanical solid-on-solid —like models are presented. I show that quantum interfaces of three-dimensional
systems are generally smooth at zero temperature and display a classical roughening transition. In two
dimensions, systems with discrete symmetry display a roughening transition at zero temperature.

The study of the properties of quantum interfaces has re-
cently attracted considerable attention. A number of years
ago, Andreev and Parshin' suggested that the surface of a
quantum crystal, such as solid helium, may be rough down
to zero temperature. This attractive idea has, however,
been challenged more recently by experiments which sug-
gest that these surfaces may be smooth at sufficiently low
temperatures. ~

In a recent Letter, Fisher and Weeks4 have put forward
an argument which indicates that the solid-fluid interfaces
of quantum crystals should be smooth at very low tempera-
tures. Using a coarse-grained Landau-Ginzburg-Wilson
Hamiltonian to describe the dynamics of the interface, they
showed that even if the interface is rough at finite tempera-
ture it is necessarily smooth at T =0.

In this Rapid Communication I study two models of
quantum interfaces. These are quantum solid-on-solid —like
models and are useful to discuss the classical-to-quantum
crossover. My resu1ts agree with the conclusions of Fisher
and Weeks. In particular, I show that the interfaces of
three-dimensional quantum systems with long-range order are
always smooth at T=O for all values of the coupling con-
stant. These results suggest that, at T=O, roughening can
take place only if the bulk looses its long-range order. The
interfaces of quantum two-dimensional systems may, in
some cases, exhibit a roughening transition at T=O. The
models discussed below apply to two types of systems: (a)
solid-to-vacuum surfaces of quantum crystals and interfaces
in quantum magnets with continuous symmetries (model I),
and (b) interfaces of quantum spin systems with discrete
symmetries. Although model I is not of the form of the
Fisher-Weeks Hamiltonian, I show below that they are in
the same universality class as far as their roughening prop-
erties are concerned. The details of the model are naturally
different. In particular, while the Andreev-Parshin-Fisher-
Weeks excitations have a spectrum ~ —k', for a solid-to-
vacuum interface I obtain (model I) co —k and for a mag-
netic interface co —k. These different properties, although
important to the dynamics of these systems, do not change
their equilibrium critical behavior.

I. THE MODELS

The first model (model I) I want to discuss describes the
solid-to-vacuum surface of a quantum crystal. It turns out
that it also describes the dynamics of an interface of an an-
isotropic spin- —Heisenberg ferromagnet. Consider a three-

dimensional cubic lattice with X sites and X/p (p & 1) fer-
mions. For the sake of simplicity I assume that the fer-
mions, which represent the atoms, are spinless and have an
attractive force between nearest neighbors of strength g.
The fermionic character of the atoms is unessential in what
follows and, in fact, will be safely replaced by bosons with
an infinitely strong hard core. The Hamiltonian is

H= —K g [c (r)c(r')+Hc. ]

—g g n(r)n(r )

where the e's are either Fermi operators or bosons with
hard cores and n( r ) is the local density. I will assume that
the coupling constant g is much bigger than the hopping
amplitude K. The sums of Eq. (1) run over nearest-
neighbor sites on the lattice. This model gives a crude
description of the quantum dynamics of a crystal of He
atoms, in a lattice-gas approximation, neglecting spin. The
equivalency between fermions and bosons with hard cores
in the strong-coupling limit makes this a model for 4He
crystals, too. Furthermore, Emery~ showed quite generally
that in the strong coupling limit -(g » K) the Hamiltonian of
Eq. (I) is equivalent to that of an anisotropic spin-2 quan-
tum ferromagnet (g & 0) of the form

(2)

The particle-number conservation symmetry of Eq. (1)
turns into the conservation of g —, o-3( r ) in Eq. (2). It is
worth mentioning that apart from the "hard-core" condition
cr~=l, Fermi statistics only contribute in higher orders in
the strong-coupling expansion.

Let us now discuss a model for the interface itself. Let us
first note that, in the classical limit (g/K ~) the state of
lowest energy is that which has an occupied close-packed set
of 1V/p sites. For p =2 this is just a half-space and the sys-
tem has a free interface. I can now imagine writing down
an effective Hamiltonian describing the dynamics of the
low-energy fluctuations of such an interface. Such a pro-
cedure can be carried out in the strong-coupling limit. The
low-energy configurations of the interface are the traditional
solid-on-solid type of the classical system. Define an
integer-valued height variable n(x, y) at point (x,y). An in-
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terface configuration is thus characterized by a set In (x,y) ).
A further, and minor, restriction is to impose that the
difference in height between any two neighboring points be
at most one. As usual, configurations with overhangs and
islands are excluded. This defines the Hilbert space.

Quantum dynamics can be introduced by defining an
operator p canonically conjugate to 6 Then I have

In the continuum limit, the Hamiltonian of model I is
1

H) = J d x ['711(r)]'+ g [V@(r)]
2

"
2

+
2

cos27ri)) (r)
i

[n( r ),p( r ')] =i&

[ ( r ) eiHP( r )] geii)P( r )S

(3a) where a is a lattice spacing in the xy plane and II( r ) is the
momentum canonically conjugate to @( r ), i.e. ,

[@(r, t);II( r ', t) ] = ih"'( r —r ')

and, if I n & represents an eigenstate of n,

e@'In
&

= In —
&& (3c)

I can now write the effective Hamiltonian in the restricted
Hilbert space. The result is, for model I,

H) = —K g cos[p( r ) —p( r ')]
(r, r')

++ g In(r) —n(r')I
(r, r')

in the continuum limit.
(10)

Ii. COULOMB-GAS REPRESENTATiONS

Likewise, the Hamiltonian for model II equals
1

2

H)) = J d'x II'(x) +—[V))) (r)]'+ " cos27r@(r)
2 2 a

which in the restricted Hilbert space is equivalent to

Hi= —K g cos[p( r ) —p( r ')]
(r, r')

+ g g [n(r) —n(r')]'
(r, r')

(5)

The roughening transition in classical interfaces can be
understood by transforming into a Coulomb-gas representa-
tion. 7 The first step toward such a picture is the path in-

tegral. At T=O I get

Z = )DII(r) dy(x) e's, (1 la)

This is the lattice Hamiltonian for model I.
Model II describes the dynamics of the interface of a

quantum spin system with a discrete symmetry group. The
prototype of such systems is the Ising model in a transverse
field (ITF) whose Hamiltonian is equal to

H)rF= —K X)r)( r ) —g g a3( r )o3-( r ')-
(r, r')

(6)

and g )0 for a ferromagnetic interaction. For g bigger than
some g, this system has a ground state with long-range or-
der. In this regime an interface may be forced on the sys-
tem either by imposing antiperiodic boundary conditions or
by changing the sign of the coupling constant g on a seam
of bonds running across the system. The same arguments
presented for model I yield a quantum solid-on-solid —like
model with an effective Hamiltonian equal to

H))= —K gcosp( r ) +L X [n( r ) —n( r ')]2 . (7)
~lI' (r, r )

Notice that the models differ only by the form of the kinetic
energy term. This reflects the different symmetry of the
two models.

In order to proceed further it is convenient to make a
continuum limit approximation. This is achieved by first
softening the restrictions imposed on the Hilbert space and
replacing the integer-valued states by regular bosonic states
labeled by a field P( r ). The restriction to integers is im-
posed by a potential with a minimum on @ integer, e.g. ,
V($) = u cos2mg.

where the action S equals
1

S= J dt d xII(x) (x) —H
Bt

(11b)

By integrating out the H fields, one finds the effective
Lagrangian

L)) = d x — —E('V$)ey'
2

2Xa2 Bt 2
cos27r@

a
(12a)

for model II and

L, = d'x ' d'y (x, t)G0(r —y) (y, t)
2Ka4 Bt Bt

d'X &('7@)2+ "
COS27r@a' (12b)

—v2g, (r-y) =a&»(r-y) . (13)

The partition function of the quantum system at tempera-
ture T= I/p is obtained by analytical continuation to ima-
ginary time r (0 ~ r (p),

Z —=Tre t'H= J/D$ e (14)

where the field Q(x, t) is periodic in r with period p and
the Euclidean action SE is, in terms of the dimensionless
imaginary time coordiriate z = rdgK, equal to

for model I, where Go( x —y ) is the two-dimensional
Green's function

gt))gal )1/2St("=Ji, dz J d'x
~

d2y (x,z)GO(x —y) (y,z)+J~ d'x —('7y)'+- 2" cosP)]i2a Bz
(15a)
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for model I, where P =27r(K/g) '~4, and

I' r

S,'"'= Jt"' dz Jt d'x -' & + —'(Vy)'
0 2a Bz 2

+ cospp
a E (15b)

for model II, where pp—= 2m@.
Thus the models under study are sine-Gordon-like on a

2+I cylinder of radius PJgK. As T 0, PugK ~ and
I get the sine-Gordon model in three dimensions.

The Coulomb-gas representation can now be found with
use of standard techniques. ' Let [m(x, z)} be a set of
integer-valued degrees of freedom (+1,0) defined on the
cylinder. The partition function is

—SE(q ) MZ= J1DP e =
&

Dgexp —Ko(P) +J, cos27rp d2x dz

2

Jt Dyexp —Ko(P) + J d'x dz, 'm(x, z)y(x, z) +,' ln
{m( x,z)}

where Ko(p) represents the kinetic energy terms. By intergrating out the P fields I get the "Coulomb-gas" representation

Z = g exp ——gm(xj, zj) m(xk, zk) V(xj —xk, zj —zk)
Im( x,z)}

(17)

The effective potential Vis different depending on whether T=0 or not and for the two models. At T=0 for model I, I
get

V~( x j x k, zj zk) = P G(( x j x k, zj zk) 5jk ln

where

d p
& dp, expli[p (x —x') +p, (z —z')]} exp( —Ix —x'I'/4a'Iz —z'I)

(2')' 2m p'+p, /p a 8~lz —z'I
(18)

while for model II one finds

Gi, ( x —x ', z —z') = a/4~( I
x —x 'I'+ a'I z —z'I ') '"

Thus model II is exactly, at T =0, a threedimensional
Coulomb gas in an anisotropic space.

The effective potentials can be calculated just as easily at
finite temperatures. The result, for both models, is

U(I x —x'I;z —z') = — ln —+ core terms
pg a

up to exponentially small terms in the limit
I
x —x 'I/a)) [(p/4m)dgK ]' 2 for model I and Ix —x'I/a ))pWgK

for model II.
Hence both systems become, at sufficiently long dis-

tances, equivalent to a two-dimensional Coulomb gas with a
finite (periodic) extent into the third dimension. Notice
that the argument of the logarithm does not depend on z,
the imaginary time.

III. THE ROUGHENING TRANSITION

It is clear from the results of Sec. II that both systems
have the same physics at finite temperature. As expected,
both systems display a roughening transition identical to
that of the classical interface models. This transition is well
understood by now. It is of the Kosterlitz-Thouless type. 8

Quantum mechanics does not affect this behavior. Thus at
temperatures lower than some critical value the interface
(quantum or classical) is smooth. Furthermore, neither sys-

t

tern shows a roughening transition at T =0 as a function of
K/g. Using the Coulomb-gas picture we see that model II
is, at T=—0, equivalent to a three-dimensional Coulomb gas
which Kosterlitz has shown is always in a plasma phase and
hence the interface is always smooth. In the case of model
I the interaction energy, Eqs. (17) and (18), although highly
anisotropic, is finite. Furthermore, the logarithmically
divergent entropy contribution will always offset the energy
and this system is also a plasma and hence the interface of a
quantum crystal is always smooth at T=O. Only if the
long-range order is lost does the interface become smooth.
It is worth noting that the Fisher-Weeks4 model has a
representation very much like model I, Eq. (12b). The only
change is to replace Go(x —y) by

i k ~ (x —y)
d'k '

1/2k

which is finite. Thus the Fisher-Weeks model is always
smooth at T=0 in agreement with the results of Ref. 4.

An important exception is the case of two bulk dimen-
sions. As expected, both models are rough at any finite
temperature. However, at T=0 model II is equivalent to a
two-dimensional Coulomb gas which has a transition at
some critical value of E/g. For E/g small the interface is
smooth at T=0, but it is rough for E/g large. Thus an in-
terface of a two-dimensional quantum spin system with
discrete symmetry will display a roughening transition at
T=0 as a function of K/g. This is, however, not the case
for interfaces of quantum crystals since Eq. (18) is modified
in two-dimensions by ([z —z'I) ~2 in the denominator. The
transition of model II may be exceedingly difficult to ob-
serve since this is an infinite order transition with an (infin-
itely) smooth specific heat.
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