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Enumeration of self-avoiding walks on mixed binary lattices
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We use a new algorithm for calculating the exact number of self-avoiding walks on random binary lat-

tices made of open hand closed sites. We provide a simple method for estimating the average value of this
nu'»ber for Monte Carlo —generated lattices. We also present their statistical distribution, and explain the

observed trends in this distribution. Finally, we mention several potential applications of these calculations
and comnient on the relation to the localization-function theory which is to appear in a future paper.

I. INTRODUCTION

There has been a considerable interest in the properties of
self-avoiding walks on lattices both recently' and over the
past 25 years' ' with many potential applications. A self-
avoiding walk (SAW) is a type of random walk with the re-
striction that each lattice site is visited only once. Properties
that have interest include the enumeration of such general
walks, the enumeration of walks that end in a closed loop,
the calculation of the average end-to-end distance (mean-
square radius), the mean-square deviation from the center
of gravity (radius of gyration), etc. Most work up to
now" " has been limited to perfect lattices (no disorder)
where all sites are accessible (open) to a random walker.
Several of the properties mentioned above have been stud-
ied on such lattices with the use of different methods to in-
vestigate problems such as the excluded-volume problem
and the Ising model of ferromagnetism, " the configuration
and dimension" ' of polymer molecules, etc.

Considerable interest was shown recently' ' for mixed or
diluted lattices where some of the sites are declared as inac-
cessible (closed) to the random walker. This has an im-
mediate consequence of reducing the number of SAW's on
the lattices, according to the ratio of open to closed sites.
The situation is analogous to a stochastic random walk
where the number of sites visited at least once during a ran-
dom walk is reduced as the concentration of open sites is re-
duced. ' '" The interest on this new problem stems from
applications in disordered lattices, such as in the estimation
of critical exponents, " ' where it was recently observed
that dilution of the lattice affects the critical behavior of
SAW''s. This was done' with use of the Harris criterion,
and instigated the development of other approaches such as
renormalization group methods, " Monte Carlo simula-
tions, ' and methods of random transfer matrices. ' Howev-
er„ these approaches do not all agree, and the question is
still open. Other applications include the motion of poly-
mers in disordered media and the calculation of the extent
of localjzatjon ' jn the tjght-bjndjng model, wherp the
number of SAW's is needed in calculating L (E), the locali-
zation function.

We present here a simple method of estimating
(Cz(P)), the average value ot' the number of SAW's of
length N on a lattice with any concentration P of open sites,
if the quantity C~(P =1} is known. We also give the sta-
tistical distribution of (C~(P)) for Monte Carlo —generated
lat tices.

Depending on the properties examined in this type of cal-
culation, several different methods have been used. It is
possible to consider only a statistical random sample out of

the total number of walks, and thus be able to extend to
high-N values. ' This method is appropriate for estimating
end-to-end distances, radii of gyration„etc. , but obviously
not for enumerating the total number of walks. In another
approach a maximum value of N (of the order of 20) is ini-
tially chosen, and starting from a fixed point of origin alter-
nate lattice configurations of the same concentration are
considered until this maximum N is realized. At this point
all walks are enumerated, thus ensuring that at concentra-
tions P close to P, the walker is not trapped in a small clus-
ter of open sites, thus severely limiting N. Finally, the
average connective constant p. is calculated by extrapolating
to N —~; and to achieve such a good extrapolation small-
N values were purposely avoided in this approach.

In the present work we perform an enumeration of all
SAW's of length N on a given lattice, starting from a ran-
dom origin. All walks of length ~ N are accounted for, and
all possible random dilutions are considered. For concentra-
tions P close to 1.00 our method resembles the previous
one. ' But for P close to P, we account for all walks, rather
than only for those which can achieve a maximum N. We
do this by developing a very efficient algorithm (described
in Sec. II), which permits us, in this concentration region,
to average over a large number of runs, typically 1000 or
2000, at a very low computer cost. In these calculations the
maximum value of N varied from 9 to 25, depending on the
coordination number. Since we are interested in investigat-
ing how extended or localized the lattice states become as a
function of small and large disorder (see Sec. III) we must
include all walks and average over all possible random situa-
tions. This was the rationale of our approach.

II. METHOD OF CALCULATION

A lattice of the appropriate topology is generated and kept
in the computer memory by establishing at random the
character of each site as accessible or inaccessible (open or
closed) according to a prescribed concentration„and utilizing
a standard IBM subroutine (URAND) for the random
number generation. Thus each lattice when generated has
an exact concentration P of allowed sites and 1 —P of unal-
lowed sites. The random walk starts at a randomly chosen
position on the lattice. We enumerate the number of walks
of length N that are self-avoiding, i.e. , they do not cross
themselves. If a closed site is encountered no walk can go
over it. The simple "brute force" method of doing this cal-
culation is to account for all possible ways of arranging a
random walk, checking at each point whether the site has
been visited before (in which case it is discarded because it
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is not a SAW) or whether the site is a closed one (in which
case the walk is not permitted). However, this is an expen-
sive process because it involves a tremendous number of
combinations even for moderate N. What is done instead is
to enumerate all walks that are self-crossing and all walks
that contain at least one closed site. Then this number is
subtracted from C~(P = 1), the number of SAW's on a per-
fect lattice, and we thus arrive at the wanted quantity. This
is done by constructing an appropriate matrix whose ele-
ments are the identities of' all lattice sites, so that all closed
sites are easily identified. Then from the value of the coor-
dinates of each closed site in the matrix and by using com-
binatorial arguments we calculate the number of walks to be
eliminated without actually performing them. When a max-
imum N is specified all walks are computed for all N smaller
than or equal to this maximum value. The savings is
greater for concentrations that are close to the critical per-
colation concentration, P, because if.a closed site or loop is
encountered early in the walk (which happens with a high
probability) then the number of combinations to be elim-
inated is very large and is calculated at a small fraction of
what it would cost to perform the actual walk. A typical run
for a three-dimensional simple-cubic lattice (where
P, =0.31, for site percolation) for a calculation with N = 9
and P = 0.35 takes only a CPU (central processing unit)
time of 0.013 sec, while for P = 0.90 it takes 76 sec, a factor
of about 6000, on the IBM 360/67 system.

III. RESULTS AND DISCUSSION

The primary purpose of this work is to derive a method
by which one could predict the number of SAW's on a
given binary randomly mixed lattice. We first derive a sim-
ple formula that gives the average value of this quantity in
terms of the number of SAW's on a perfect lattice.

Consider a lattice with a concentration (mole fraction) of
open sites equal to P, where 0 & P ~ 1. A SAW of N =1 is
a walk one site away from the point of origin. For this case
the probability of finding an open site, and therefore having
a permissible walk, is equal to P. Then the total number of
SAW''s of length N = 1 is

(C~(P)) =PC~(p= 1)

For a square lattice (C~(p)) = 4P, for a simple cubic

(C, (p)) =6p, etc. For any length N this quantity becomes

TABI F l. Number of SAW's for a perfect lattice.

Squ lre lattice Simple-cubic lattice

1

2

3

4
5

7

8

9
10
11
12
13
14
15
16

4
12
36

100
284
780

2172
5916

16 268
44 100

120 292
324 932
881 500

2 374 444
6 416 596

17 245 322

6
30

150
726

3534
16 926
81 390

387 966
1 853 886

CD
CD

C3

LA

C3
CD

1% with Eq. (2) for all concentrations and lattice types.
This is also a test that the computer programming is indeed
correct. But what has also an interest is the statistical distri-
bution of the data as a function of the concentration P of
open sites, and also of the length of the walk N. . In all

cases, for a constant N, we observe that the statistical
spread is large close to the critical percolation concentration
P„and decreases as the concen tration of open sites in-

(C~(p) ) = P Cg(P = 1) (2) C~
Thus knowing the quantity C~(P =1) we can easily predict
(Cz(P) ) for any concentration P.

We use three lattices: (1) the directed square, which is a
regular square planar lattice, but x and y can only increase
for purposes of random walks, (2) a regular square planar
lattice, and (3) a three-dimensional simple-cubic lattice. It
is rather obvious that for the first case of the directed
square lattice,

CD

P)

C (P =1)=2 (3)
C3
CD

For the other two lattices Table I contains the values of
C~(P = 1), as has been previously reported, " and was also
found to be the same with the use of our method.

We now perform the calculations for binary lattices using
the algorithm described in Sec. II. The average value of
several individual runs (i.e. , runs on different random lat-
tices with the same concentration P) agrees within about

0.50 0.60 0.80 0.90 1.00

I=IG. 1. Ratio of the standard deviation (J over the number of
SA%''s (C~) is plotted vs P for N =5, 10, 15, 20, and 25, lower to
higher curves. The lattice here is the directed square (two
dimensional). The number of runs was 2000 for each concentration
P. The solid lines are drawn by hand and they are only visual aids.
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F1G. 2. Ratio ~r/C~ is plotted vs P for A' =4, 8, and 12, lower to
higher curves. The lattice here is regular square planar (two-
dimensional). The nuniber of runs varied from 1000 (for P =0.60)
to 100 (for P =0.90), due to the increasing cost as explained in the
text. The solid lines are drawn by hand hand they are only visual
aid».

creases and approaches P = l. Also, for a given concentra-
tion P, the spread increases as the value of the length of the
walk N increases. These trends are all shown in Figs. I —3.
Apparently what happens is that for concentrations close to
P„where there is an abundance of' closed sites, the posi-
tioning of each individual closed site relative to the rest
plays a very important role, so that small variations in this
positioning may result in significantly dif'ferent C~ values,
thus increasing a- {the standard deviation). This is not so in

high concentrations, where we have only a few isolated
closed sites and their relative positioning does not affect C~
to a large extent, and therefore here ~r drops drastically.
The same reasoning applies in explaining the variation of a-

as a function of N. For a constant concentration P, as N
gets longer it spans a greater lattice area which. includes a
greater number of closed sites, where again their relative
positioning plays an important role in determining C~.
These trends are rather smooth in all lattices examined, as it
is intuitively expected if' we use the above qualitative argu-
ment. In general, our numerical results are in good quanti-
tative agreement with the results of Ref. 6 for the high-P
range where, as previously discussed, the two approaches
are similar. Exact comparisons cannot be made because the

FIG. 3. Ratio ~T/C& is plotted vs P for % = 3, 5, 7, and 9, lower
to higher curves. The lattice here is a three-dimensional simple cu-
bic. The number of runs varied smoothly from 2000 (for P = 0.40)
to 100 (for P =-0.90), due to the increasing cost as explained in the
text. . The solid lines are drawn by hand and they are only visual
aids.

reported results are for the N —~ limit, after extrapola-
tion.

In conclusion, we have presented a method for estimating
the average number of SAW's on random binary lattices.
We reported their statistical distribution on Monte
Carlo —generated lattices and qualitatively explained the ob-
served trends. In a previous work"' it has been shown
that the localization function 4 {E ) {which is based on
Anderson's pioneer work") is equal to one for the square
lattice, ' and larger than one for the three-dimensional
simple-cubic lattice" when the lattice is in the limit of infin-
itesimal disorder {all open sites). It is also interesting to in-
vestigate now the existence of localized states in the region
P ( I, and it is in this definition of 4 (E) where the
number of SAW"s and its statistics are needed. We plan to
report these results elsewhere.
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