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Universality classes for the critical wetting transition in two dimensions
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Universality classes and critical exponents for the wetting transition in two dimensions are deter-
mined with the use of a continuum planar solid-on-solid model. Effective substrate potentials
BU(f) & 0 falling off no slower than f, where f is the distance from the substrate, are shown to
lead to wetting transitions at finite potential strength B. For potentials which go to zero at least ex-
ponentially fast with f, the interface free energy F, is analytic in the thermal scaling field t. In the
case of longer-range substrate potentials with a finite first moment, I', remains proportional to t to
leading order, but higher-order nonanalytic terms in t appear, while in the borderline case

~
U(f)

~

—f, F, has an essential singularity at the wetting transition. For potentials going to zero
more slowly than f ~, there is no transition at finite B. It is shown that F, -B2~~'~ for B~0+ for
potentials asymptotically proportional to f ~ ', a &0.

I. INTRODUCTION

Our understanding of multilayer adsorption phenomena
on attractive substrates is based largely on the analysis of
simple Ising lattice-gas models originally introduced by de
Oliveira and Griffiths. ' These models exhibit a wide
range of phenomena, including layering, roughening, and
wetting, many of which have been observed experimental-
ly, and are believed to yield a realistic picture of the sys-
tematics of the surface phase diagrams. In particular,
lattice-gas models should provide a good framework for
investigating the so-called critical wetting transition,
where the thickness of the adsorbed film diverges and the
adsorbate-gas interface becomes diffuse.

However, analysis of even these relatively simple
lattice-gas models beyond mean-field theory has proven to
be very difficult, and it has been found useful to consider
a simpler, closely related class of models based on the
Onsager-Temperley sheet, or solid-on-solid (SOS) approxi-
mation. The SOS approximation provides a way of focus-
ing attention on the interface fluctuations, which play the
crucial role in adsorption phenomena, while ignoring ir-
relevant bulk fluctuations. The resulting models consist
of a structureless (i.e., zero width) adsorbate-gas interface
bound to a flat surface (the substrate) by a potential well.
The wetting transition corresponds to the thermal unbind-
ing of the interface from the well. For short range poten--
tials these models have proven to be remarkably successful
in treating the wetting transition and have been found in
fact to yield the correct critical singularities in two bulk
dimensions (d =2). '

Even for d =2, however, no attention has been paid to
long-range potentials and in particular, no attempt has
been made to determine universality classes as a function
of the range of the interaction potential. This is an impor-
tant point; in the wetting problem the adatom-adatom and
the adatom-substrate interaction is generally of the van
der Waals type. This implies long-range tails in the
lattice-gas interaction potentials. These long-range tails

may well alter the form of the critical singularities at the
wetting transition.

In this paper we investigate this problem for d =2. The
Hamiltonian we consider is given by

H = Jd 'x[ ,'(Vf) +B—U(f)+hf],

where f (x) ) 1 denotes the perpendicular distance of the
interface from point x on the substrate, located at f=1.
The energy contribution from the first term in (1) is pro-
portional to the extra length of an interface which is not
flat. The second term is the potential well, which local-
izes the interface below the transition temperature. In the
last term h is proportional to p —po, the difference of the
chemical potential of the adatom gas from its value at
coexistence. In lattice-gas terms, this term is the bulk
field. The critical wetting transition occurs at coexistence,
i.e., h =0.

The potential U(f) in (1) is given by the local free-
energy density of a rigid interface located a distance f
from the substrate in the original lattice-gas model. At
T=0, U(f) can be evaluated exactly. In the case of
strong substrate potentials for which there is complete
wetting at coexistence at T=0, U(f) is positive. Equa-
tion (1) then implies complete wetting for all finite B In.
the more interesting case of intermediate substrate poten-
tial strengths, U(f) can be negative. Generally, when a
mean-field analysis of the original lattice-gas model
predicts a state with finite coverage at coexistence, U (f)

will be negative with a minimum at finite f. This is the
case we consider here. In particular, we parametrize the
large-f behavior as

U(f) ~ —I If'+',
van der Waals interactions in d =2 correspond then to
a =1.

In Sec. II, after briefly discussing the transfer-matrix
method in one dimension, the classes of potentials
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U(f) & 0 which lead to wetting transitions at finite 8 =8
are characterized and discussed. First, in order to make
explicit the scaling behavior of the interface free-energy
density F, at the critical wetting transition, results for the
square-weH potential

(2)

tional integration by an eigenvalue problem. In this one-
dimensional case the eigenvalue problem can be reduced to
a one-particle quantum-mechanical problem. This ap-
proach has been discussed by several authors and is simply
related to Feynman's path-integral formulation of quan-
tum mechanics.

For the present problem, the interface free-energy densi-
ty F, is given in the thermodynamic limit by the lowest-
energy eigenvalue of the Schrodinger equation

r

are reviewed. Next, it is shown in general that potentials
U(f) & 0 with a finite first moment

2

2p2 df 2 +BU(f)+hf @;(f)=E,C, (f), (3)

f, f I
U(f) Idf &

have a wetting transition at finite 8 =8 . In this case a
perturbative method is used to determine the dependence
of F, on the thermal scaling field 68 =8 —8'~0. It is
shown that if

f e f
i
U(f) i df & ao

for some a & 0, F, is analytic in 5B, while if

d " U d =oo

for some n ~ 1, some derivations of F, diverge as the wet-
ting transition is approached from below (58~0+). Po-
tentials asymptotically proportional to f are considered
next. Taking U(f) = f it is poss—ible to obtain an ex-
act solution, and we find that

F, -exp( —58 '
)

at the wetting transition. The transition is quite unusual
in this case in that an infinite number of bound states
breaks off from the continuum spectrum of the transfer
matrix simultaneously at the transition.

Potentials which drop off asymptotically more slowly
than f are considered in Sec. III. It is shown that the
interface is bound to the substrate for a/I 8 & 0 in this case
so that no wetting transition occurs. Further, we show
that for

(
U(f)

(
-f

we have

F, -B"i ~ fo B 0+.
In particular, for

~

a
~

=3 [U(f)-f] this result yields the
dependence of F, on the bulk field h ( =—8)

I 2/3

a result obtained by other methods in Sec. II.

II. CRITICAL WETTING TRANSITION

A. Square-well substrate potentials and scaling behavior

For d =2, the partition function for (1) is rather easy to
evaluate using transfer-matrix methods. In particular, the
transfer-matrix technique allows us to replace the func-

where p=(k~T) ' and f& 1. Denoting the ground-state
solution by subscript 0, we have

F, =Eo (4)

and furthermore,

f, df @o(f)f~'o(f)

f, @o(f)@o(f)

At h =0, the existence of a bound-state solution (Eo &0)
to (3) means that (f ) is finite, i.e., that the interface is lo-
calized and that we have finite coverage. When the bound
state ceases to exist, Eo~O and (f)t~ao, signaling the
critical wetting transition.

For the potential (2) the behavior near the critical wet-
ting transition is easily determined in closed form. For
h =0 and B =B*we find Eo ——0 for

2(R —1)(28*)'i

Deviations from the critical point are given by t, h, and M
(all greater than 0), where t =p —p~ and 58 =8—8". In
fact, direct calculation shows that

F, =t2Q(hit'),

where the scaling function Q has the properties
Q(0) =const and

Q(x)~x ~, as x~no .

Thus F,-t for h =0 and Fs -h for t =0. As can al-
ready be seen directly from (3), 58 is a so-called nonorder-
ing field and

BF, BF,
BB Bt

is a nonordering density. In other words, 5B has the
same scaling dimension as t. generally, the interface
free-energy density F, has the scaling form

F, =t 'Q(h It~)

and the exponent governing the behavior of m, -t ' is
called p, . In the present case we therefore have a, =O
and b, =3, and since p, =2—a, —b, p, = —1. For the
singular part of the nonordering density m& -t ' we ob-
tain p&

——1 —a, = 1, and similarly

Fg —y1111 t s

BB2
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implying y» ——0 for h =0. Qther exponents follow by dif-
ferentiation and various scaling relations can be derived in
the usual manner.

There are thus two independent exponents, u, and 6,
and in general they may both be determined by consider-
ing (3) with h =0 if we determine both the ground-state
energy Eo and the asymptotic behavior of the correspond-
ing wave function No(f). a, is determined by (4) and P„
and therefore b, is determined by (5). This is the approach
we shall apply here.

B. General substrate potentials with finite first moment

For general U, it is not possible to solve Eq. (3) explicit-
ly. However, general properties of the spectrum and the
dependence of the lowest eigenvalue on t can be deter-
mined as follows. Equation (3) has the generic form

d —x P —BU(x)/=0,
dx

(6)

IC(x,y)=
i
U(x)

i

'i 6(x,y)
i

U(y)
i

'

The trace of the integral operator on the right-hand side
of (9) is given by

f K(x,x)dx .

K(x,x)= (1—e "" "')
~

U(x)
~

1

2K

&(x —1)
i
U(x)

i
&x

i
U(x)

i

for all K) 0, the trace is bounded by

f x iU(x)idx,
independent of K. If this integral is finite, the integral

where ~ — Eo and—x =f & 1. We are interested in the
ground-state solution to (6), and in particular how v ~0
as 58~0+, where 58 =8 —8* and x (8')=0. To lowest
order, 58 is equivalent to the thermal scaling field t (The.
factor 2P has been adsorbed in B.)

Utilizing the boundary condition P(1)=0, (6) can be
rewritten as a Fredholm integral equation

P(x) =8 f, 6(x,y)
~

U(y)
~
P(y)dy, (7)

where the Careen's function

6 (x y) (e
—«

I
» —x I e 2« —«~«+)'~)1

2K

is the finite solution of

d 6 —a 6= —5(x —y)
dx

with boundary condition 6 ( l,y) =0. Defining
g(x) =

~

U(x)
~

'
&P(x), (7) reduces to a Fredholm equation

with symmetric kernel K (x,y):

1t(x)=8f K(x,y)g(y)dy, (9)

operator in (9) is trace class, and it follows immediately
that (9) has a real, discrete, infinite spectrum

(the operator is positive) with a point of
accumulation at B '=0. Each eigenvalue has finite mul-
tiplicity and the eigenvectors [P„I, n =0, 1, . . . , oo form
a complete orthonormal basis on [1,oo ). ' In fact, in the
present case we know further that the eigenvalues are not
degenerate. " This can be seen most easily by considering
(7). Let P~ and P2 be two eigenfunctions corresponding to
an eigenvalue B. A straightforward calculation utilizing
(6) and (7) shows that

(4l42 4'142)
dx

or equivalently P~Pq —P~P2
——const, where primes denote

derivatives with respect to x. However, $~(1)=$2(1)=0
so that the constant is zero. It follows that P& is propor-
tional to f2

For potentials asymptotically proportional to x
the above results hold f.'or a ~0. It is important that the
bound leading to the requirement

f x
~

U(x)
~

dx finite (10)

is independent of K since we are interested in the behavior
of the spectrum in the v~O limit. In particular, since the
above results hold for ~=0, we see that the wetting transi-
tion occurs at 8 =8*=BO (~=0). For 8 &80 (x =0)
there is no bound state in the transfer-matrix spectrum for
any ~&0. At 8 =8' the first bound state appears, and
for 8 &8* this state is at finite ~. Furthermore, as noted
above, this state is not degenerate.

In order to determine the behavior of thermodynamic
quantities at the transition, we need the dependence of ~
on 5B =B—B*~ 0. To do this we use a perturbative ap-
proach, expanding about the K=O state at B =-B*. For
x &0, the solution P(x) to Eq. (6) is proportional to e
as x~00. Writing $(x)=8(x)e "", 8(x) satisfies the
equation

d 8(x) d8(x)
( )8(

. 0
dx

or, choosing a normalization 8(x)~1 for x~ 0o, the Vol-
terra equation

8(x)=1— f (e '"'~ "'—l)U(y)8(y)dy .B
2K

From the above results it follows that this eigenvalue
problem has a complete set of orthonormal eigenfunctions
with weight function

~

U(x)
~

and corresponding eigen-
values 8„(x). In particular, this is true for ~ =0, and
Bo(~=0) is the critical potential strength for the wetting
transition. If

~

U(x)
~

=x, the eigenfunctions for
K=O can be determined explicitly. ' Denoting the K=0
eigenfunctions by u„, n =0, 1, . . . , co and the v=O eigen-
values by B„,we have

u„(x)-x' J,q, [2(8„)' x ' /a],
where Ji&, is a Bessel function of order 1/a. The eigen-
values B„are determined by Jt&,[2(B„)'~ /a] =0. For de-
creasing a, 80 is a monotonically decreasing function such
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that Bo~ 4 for a —+0+.
Now let 8 =8*+58 [B*=Bo(a=O)] and consider a.

and M infinitesimal. To lowest order in 58 and ~, (11)
can be rewritten as

8(x)=1+8*f dy (y x) U—(y)8(y)+F(x), (12)

where

F(x)=M[8 (x) 1]/—8*
oof dy[e "' "'—I+2m(y —x)]

X U(y)Ho(y)dy,
and 8o(x) is the solution of (11) for v=O and
B=Bo(K=O)=8*. Expand 8(x) in the set Iu„] of x'=0
eigenfunctions:

determined from (13).
Integrating by parts, (15a') reduces to

f dx uo(x)F'(x)=0,

where

F'(x) = Ho(x)
68

8—*f "(e '"-'» "'-I—) U(y)8, (y)dy .

This implies

58/uo( ao ) =8*f dx uo(x) f (e 2"'» "'—1)U(y)

X Ho(y)dy .

8(x)= g a„u„(x) .
n=0

First assume that

e U x dx&ce (17)
Recalling that 8( ~ ) = 1,

1= g a„u„(oo)
n=0

so that (12) leads to the equation

(13)

for some a&0. This implies that U(x) goes to zero at
least exponentially fast for x~~. In this case the ex-
ponential e "'~ "' can be expanded and all resulting in-
tegrals (to all orders in a) converge because of the cutoff
provided by U(x). It follows that

0= g a„(1—8*/8„)[u„(00 ) —u„(x)]+F(x) . (14)
n=1

Multiplying (14) by
I
U(x)

I
uo(x) and integrating from 1

to ao we obtain

y f, «
I U(x)

I
"o(x)+ f, «

I
U(x)

I
"o(x)F(x)=0

where

y = g a„(1—8'/8„)u„( ~ ) .
n=l

(15a')

ak(l 8*/Bk)= f dx—
I
U(x)

I
uk(x)[F(x) —F(1)],

k&0 . (15b')

We use (15a') to determine x.(58). Equation (15b') can
then be used to determine uk for k & 1, and ao can then be

I

Multiplying (14) by
I
U(x)

I ul, (x), k&0, and integrating
we get

y f, dx
I
U(x)

I
uk(x) —ak(1 —8*/Bk)

+f dx
I
U(x)

I
uk(x)F(x)=0. (15b)

Since u„(l)=0, (14) implies y+F(1)=0. Equation (15a)
therefore becomes

dx Ux uox +x —+ l =0
and (15b),

58= g b„~"
n=1

or, inverting,

a.= g c„58"
n=l

so that s. and therefore F, is analytic in M (or the thermal
scaling field t). ' Assume now that

f x"
I U(x) Idx&ao

but

f x"+'
I
U(x)

I
dx = oo

for some n ) 1. Restricting attention to the class of poten-
tials for which

I
U(x)

I
-x ' for large x, the above as-

sumption implies n —1&a &n. To see what happens in
this case consider first n =1, 0&a &1 and rewrite the
right-hand side of (16) as

duo( oo )+8*f dx uo(x) f dy[e "'" »'+2m(y —x)—1]

X U(y)Ho(y) .

We break up the remaining integral into parts by choosing
a constant c, independent of v, such that Ho(x) =Ho( oo ) = 1

for x &c. Defining

Y(x,y) =e "'» "'+2~(y —x) —1,
we write the integral as

f dx "o(x) f Y(x y)U(y)Ho(y)dy+ f Y(xy)U(y)dy + J dx uo(x) f Y(x y)U(y)dy .

The first integral has an analytic expansion in v, starting with a . The second and third integrals are not analytic in ~.
The leading sc dependence in these two integrals is the same and can be determined as follows. Taking

I
U(x)

I
-x
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for x & c and defining z =z(y —x),

f dx uo(x) f dy I'(x,y)U(y} — ~'+'f dx uo(x) f dz(e '+2z —1)
1 C 1 z(c —x) (Z +KX)2+a

c158 +c2(»)'
I
»(»)

I +
and a free energy

F, -t +at
~

lnt
~
+

so that the next-to-leading term contains a logarithmic
correction.

For general a ~ 0 the analysis is similar and one finds

n]
F, = $d t +"+d t +'+. . .

for noninteger a, where [nj is the largest integer smaller
than a, and

a —1

F, = $ d„t'+"+d, t'+'
~

lnt
~
+ .

n=0
(19)

for integer a.
The leading term in the free-energy density F, is there-

fore t for all potentials U(x) &0 such that (10) is ful-
filled. ' Furthermore, for potentials such that (17) holds,
F, is analytic in t, while if (17) is not fulfilled, F, is not
analytic in t and some derivatives of F, will diverge at the
wetting transition. In particular, for the physically
relevant class of potentials

~

U(x)
~

-x ',x~ ao, F, is
given by (18) or (19) depending upon whether a &0 is an
integer or not.

Since the ground-state wave function is proportional to
e ""for x~ ao for all potentials satisfying (10), the lead-
ing divergence of m, is given by 11 '. m, therefore has the
asymptotic divergence t ' for all potentials in this class,
but there exist in general nonanalytic correction terms
given by the above analysis.

Finally, we note that at and above the wetting transition
F, —Ii ~ for all a ~ 0. This is understandable since in this
case the asymptotic behavior of the wave function is
determined by the magnetic field term, regardless of the

For 0&a &1 we can take the limit ~—+0 in the integral.
The resulting contribution is proportional to ~'+'. The
third integral can be handled in a similar fashion. Col-
lecting results we have

58 =b1~ b2~—'+'+0(v )

or, inverting,

a =c)58 +c2(58)'+'+

lmplylng

Fs —t ~+«~+'+
The leading term in F, is still t, but the next-to-leading
term, t +', is not analytic in t. For a =1, a similar
analysis yields

» =bi~ b2~'
i
I~—

~
+

form of the substrate potential.
These results characterize the wetting transition for po-

tentials which drop off faster than x at large distances.
In the next section it is shown that there is no wetting
transition for potentials which drop off more slowly than
x . In this case the interface remains pinned to the sub-
strate at all finite temperatures. Potentials asymptotically
proportional to x are a borderline case. There is also a
wetting transition, but of a very different nature than that
described above.

C. U{x)= —x

For U(x) = —x, Eq. (6) can be solved explicitly. ' A
bound-state solution

P(x)-x'~ K;q(ax)

exists for 8 ~8' = —,', where K;q is a modified Bessel func-
tion of imaginary order iland A, ,=(B 8*)'~ . For—small
argument,

K;2(~x) —sin[A. In(~x /2) ]

so that the boundary condition P(1)=0 implies

A, jn(a. /2) = n1r—
ol

~=2 exp( nr)/A—), . .

where n is a positive integer. In contrast to the previously
studied cases, infinitely-many bound states break off from
the continuum simultaneously at the wetting transition.
These bound states form a point spectrum with a point of
accumulation at zero. The interface free energy F, now
has an essential singularity'

F, -exp( t 'i)—
at the wetting transition and since P(x)-e ""for x —+ oo,
m, diverges as

m, -exp(t '~
) .

III. LONG-RANCiE POTENTIALS
AND PINNING FIELDS

Potentials which drop off more slowly than x for
large x have sufficiently long tails to pin the interface for
all finite values of B. This is proven below for the re-
stricted class of potentials asymptotically proportional to
x ', a & 0. It is also shown that

g&~I& I

S

for 8~0+ in this case. This restriction on the form of
the potential is in no way necessary; however, the physi-
cally interesting potentials are of this form and it is
straightforward to extend the analysis to other potentials.
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First, we consider potentials with —2~a ~0 so that
U(x) —~0 for x~00. Both upper and lower bounds are
constructed which show that the ground-state energy ~
satisfies

2 g2/ia /

Assume that p(x) is a solution for some (Ir,B). Equation
{20) then holds as an equality. Utilizing (21) we obtain

f, dx P'(x)( —x '—+48x-'-')
4f dxp

in this case. Next we consider pinning fields
U(x)-x i' i

'

with
i
a

i
)2. In this case the bound-state

energy eigenvalues E are positive, and using similar
n':ethods we again find that the ground-energy eigenvalue

In both cases the coverage m, diverges as

for 8~0+.

& max( —x +48x ')/4 .

The maximum occurs for a (0 at
—1

2(2+II )

so that

I~ & —,
' ia i

[2(2+a)] ' '8 i''' .

Since both the upper and lower bounds have the same 8
dependence, it follows that

In order to obtain an upper bound on the ground-state
energy (a lower bound on ~ ), we consider the mini-max
problem equivalent tu (6) (Refs. 8 and 11)

dx[ —(P') +8/ x ']
a' =-max- (20)

dX $

where f(x) bcloIlgs to thc space of continuous functions
such that P( 1 ) =0 and ${x)~0 for x~ ao. Since
P(x)-e "" for x —+no, a suitable choice of trial wave
function for (20) is

for 8~0+ and —2 & o & 0. Similar arguments show
furthermore that

g —1/)a i

S

in this case.

B. U(x)-x''', ia i
)2

The same methods applied in Sec. III A can be utilized
here. Since U(x) )0, the energy eigenvalues of (3) are
positive so that (6) takes the form

est(1 —x) 2z(1 —x)(~b

Utilizing PT in (20) we have

—((P' ) )+8f, dxg x

wher e

y" +Ey Byx )' i
-'—=0

or equivalently,

f, dx[(P') +8/ x I I

—
]

dxg

(22)

(23)

To leading order in a.,

with C4 positive and finite. The ground-state energy —~
is thus bounded from above by a finite negative number
for all finite 8 so that the interface remains pinned to the
substrate for all B ~ 0.

A lower bound can be obtained with the use of the iden-
17, 18

f dx(p') ) —,
' f dxp /x (21)

dx y', x -'—'=~I+'C, ,
1

where C], Cz, and C3 are finite positive constants. Equa-
tion (20) therefore becomes

a. ')BC3/(CI+C2) .

For a )0 the bound is not useful, but for a & 0 we obtain

for solutions P(x) of (22). An upper bound on Eo, the
ground-state energy, can be obtained using the mini-max
principle based on (23). Thus

f dx[(P') +BP x I I

—
]

Eo =min oo

dx

for general continuous functions P(x) such that P(1)=0
and P(x)~0 for x~oo. Noting that the asymptotic
behavior of a solution P(x) to (22) is

P(x)-exp( —
) x i' ii ),

with y-~B, a suitable choice of trial wave function is

PT(x)=exp[ —y(x i'i —1)]—exp[ —2y(x 'ii2 —1)] .

Employing this choice with y-V 8, we find to leading
order in y

(C F2~1& I

where C& is a positive constant.
Similarly, a lower bound can be obtained utilizing (21)

and (23) as in the previous section (III A). One finds that
the functional dependence of the upper bound is again
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B"l'l so that

F -B~/'I

for B~O+ and a & —2. Similarly, m, again diverges as
B ' l'l. For a bulk magnetic field h, a = —3 so that
E, -h and m, -h ' above the wetting temperature
for h~0+. These results agree with those of Sec. II ob-
tained with the use of other methods.

IV. CONCLUSIONS

Utilizing the SOS Hamiltonian (1) for a one-
dimensional interface, we have investigated wetting transi-
tions for various classes of substrate potentials U(x). Po-
tentials U(x) (0 with a finite first moment

f x
i
U(x) idx

have been found to lead to transitions at finite potential
strength B. For short-range potentials satisfying (17) the
interface free-energy density F, is analytic in t. However,
longer-range potentials lead to nonanalyticities in F, . The
leading term in F, is still t, but the higher-order terms
are changed. In particular, for

~

U(x)
~

-x ',x~ao,
F, is given by (18) or (19) depending upon whether a is an
integer or not. Thus, considering only the leading t depen-
dence of F„one would again have a, =0 and 5=3 as in
the case of short-range potentials (2). However, the non-
analytic terms could, in certain situations, be observable.
For example, for van der Waals interactions in d =2,
U(x)- —x so that

The specific heat has a discontinuity at the wetting tem-
perature Tz and a leading nonanalytic temperature depen-
dence t

~

lnt
~

for T & Tz.
The wetting transition for U(x) = —x is special.

This is the longest-range substrate potential which leads to
a wetting transition at finite B. Furthermore, the behavior
of the transfer-matrix spectrum and the thermodynamic
singularities are drastically different in this case. Whereas
the wetting transition is caused by one bound state break-

ing off from the continuum spectrum of the transfer ma-
trix in the case of shorter-range substrate potentials, here
an infinite number break off siinultaneously at the transi-
tion. This infinite-point spectrum has a point of accumu-
lation at zero. Furthermore, the behavior of F, and the
coverage m, are completely different; both have an essen-
tial singularity as discussed in Sec. II.

Finally, potentials and pinning fields of the form
~

U(x)
~

-x ' with a ~0 were investigated and it was
shown that the interface remains pinned to the substrate
for all finite potential strengths. Furthermore, it was
found that

F -B2~I& I

S

and

S

for both —2 & a &0 and a & —2, implying the critical ex-
ponents a, =2—2/

~

a
~

and b, =3/
~

a [ .
These last results are of particular interest in light of re-

cent work on pinning transitions in d =3 for short-range
pinning potentials. ' ' There, effective field theories for
interface delocalization transitions were derived. In these
models the dynamic variable is the local interface height,
just as in (1). Preliminary results show that at least two
types of transitions are possible. For large surface ten-
sions, the transition remains of mean-field type, albeit
with renormalized exponents. This corresponds essential-
ly to a transition in (1) for B~O+. Here something simi-
lar happens for long-range potentials: The fluctuations
are not strong enough to cause a transition at finite poten-
tial strength, but there are new fluctuation-induced singu-
larities for B~O. On the other hand, for small surface
tension, a new fluctuation-induced mechanism was found.
In the present context this corresponds to a transition at
finite potential strength B.
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