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A diagrammatic expansion is developed for the partition function of a lattice of spin-j local mo-
ments interacting with a band via the Coqgblin-Schrieffer exchange interaction. By examining the
limit of large spin degeneracy, N=2j+1, a 1/N expansion is obtained for the partition function,
which clearly exhibits how local spin fluctuations are enhanced by large spin degeneracy. The com-
petition between the Ruderman-Kittel-Kasuya-Yosida interaction and local Kondo spin fluctuations
is examined using scaling theory, and the critical value of the Kondo coupling constant above which
a spin-compensated Kondo-lattice ground state is stable is shown to tend to zero as O (1/N), pro-
viding new justification for the applicability of the Kondo-lattice model to rare-earth systems.
Physical arguments are advanced, based on the nature of the crossover to the strong-coupling re-
gime, which suggest that the low-temperature excitations of the Kondo lattice form a narrow band

of heavy fermions.

I. INTRODUCTION

The ground-state properties of a lattice of localized mo-
ments interacting with an electron band via a Kondo
spin-exchange process are of particular interest to current
research on rare-earth ‘“mixed-valence” and ‘“Kondo-
lattice” systems.! =3 These systems are believed to be well
modeled by the Anderson Hamiltonian, describing a lat-
tice of localized f levels, hybridizing with a delocalized
spd electron band. When the atomic f level is well below
the Fermi level the rare-earth ion behaves as a localized
moment in which the orbital and spin angular momenta
are coupled together into a state of definite total angular
momentum j. Cogblin and Schrieffer* have shown that
for an impurity Anderson model, in this localized moment
regime the spin-j moment interacts with the band via a
generalized Kondo spin-exchange process. Extending
their result to a lattice of rare-earth ions with r sites, in
the local-moment regime the system will be described by a
Kondo-lattice Hamiltonian
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Here c%a creates a band electron of momentum E, spin
component o,
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creates a band electron at site / with energy E (k), in the
angular momentum state |j,m); f,, creates an f electron
at site / in the angular momentum state |jm). N =2j
+ 1 is the degeneracy of the f state.

For simplicity the band is taken to be featureless, with a
constant density of states p, halfwidth D, centered on the
Fermi level. The f level is below the Fermi energy and U
is taken to be >>D — Ey, so that charge fluctuations from
the state of single f occupation are quenched out.

Previous studies of the Kondo lattice have been con-
fined to the spin-3 case. Doniach®® treated the Kondo
lattice in a mean-field approximation and showed that
when the coupling constant Jp is greater than a critical
value (Jp). of order O(1), a spin-compensated ground state
is stable relative to a magnetically ordered one. The ef-
fects of spin fluctuations were incorporated in later work,
using real-space renormalization group”’® and approxi-
mate functional-integral techniques.” This work con-
firmed the essence of the mean-field result, setting a finer
value on (Jp). somewhat below one. These values for the
critical coupling constant cast doubt on the applicability
of the Kondo-lattice model to real systems because such
large coupling constants are neither observed in practice,
nor are they theoretically feasible for an Anderson lattice
in the local-moment regime.'°

For large spin degeneracy N =2j + 1, a new approach
to the Kondo-lattice problem can be taken that was first
suggested by Anderson.!! In this case the largeness of de-
generacy may be exploited to carry out an expansion of
the physical properties in terms of the small parameter
1/N. The hope is that the large-N limit will bear some
resemblance to the behavior of rare-earth systems, which
already have a large spin degeneracy. The work reported
here is motivated by these considerations. Of particular
interest in the results is the N dependence of (Jp)., which
is found to vanish as O(1/N) providing renewed confi-
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dence in the applicability of the Kondo-lattice model to
rare-earth systems.

II. DIAGRAMMATIC EXPANSION
OF PARTITION FUNCTION

The pseudofermion technique of Abrikosov!? can be ex-

tended to the Kondo lattice. Following Abrikosov it is
recognized that the large repulsive Hubbard term projects
out the states in which the atomic f states are singly occu-
pied. Rather than use (1), the Hubbard U term is omitted
and instead the partition function is calculated for a lat-
tice in which energies A; are assigned to the f state at site i
as follows:

HA=H,+3 H+ 3 Hf , (5)
Hi=33 il ri 6)

m
Since the f occupations are conserved by (5), its grand

partition function Z4(8) can be expanded in terms of
canonical partition functions of definite f occupation (n;)

ZAB)=T3 exp [—anik,- ]Z(n,,nz,. . ,n,) . (7)

(n;)

All energies are measured relative to the Fermi energy.
The Kondo partition function is simply

ZKBr=e PP Z(ny=1,n,=1,.. ,n,=1), ®)

and it may be projected out from Z A% ) by differentiating
with respect to the fugactities z;=e ' of each site:
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where the normalizing prefactor e —BrEy has been left out.

The advantage of this technique is that Z4 can be ex-
pressed as a time-ordered exponential of the interaction
H;=737_, Hg, and this can be expanded diagrammatical-
ly as a sum of closed-loop Feynman diagrams using
finite-temperature perturbation theory,

B
Z‘(B>=Z<Ho,ﬁ><Texp -/, H1(T)dr]>Ho .
Here Ho=H,+ 3, H; and
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Figure 1 summarizes the Feynman rules for the expansion
of the time-ordered exponential. In the diagrammatic ex-
pansion, the standard rules apply concerning closed fer-
mion loops, symmetry factors, and summations over com-
plex frequencies iw, =imkgT(2n +1). It is convenient to
represent the point interaction vertex f by a squiggly line
[Figs. 1(d) and 1(e)] where spins are conserved at each end
of the vertex. When counting closed fermion loops these
vertices are treated as point vertices. The f-electron line
that enters and leaves a vertex will be called “uninterrupt-
ed” as it represents one localized moment. The only com-
plication that arises in the diagrammatic expansion is that
matrix elements must be introduced for the propagation
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of a band electron from one site to another as a result of
the mixed local and extended representations used for the
band electrons in (1) [Fig. 1(b)].

In a given diagram each uninterrupted f-electron line
for site i contributes a factor z; to the diagram, so that the
projection operation projects out a cluster expansion for
the Kondo partition function

zXPB)=Z(H,,BIN"

x|1+3 By 3 2utas
i NZ,' ij N2Z"Zj
i>j {z;}=0

(12)

Here Z; is the sum of all connected closed-loop dia-
grams containing just one uninterrupted f-electron line for
site i, Z;; is the sum of all connected closed-loop diagrams
containing only one uninterrupted f-electron line for sites
i and j, and so on, as shown in Fig. 2. The factor 1/N?
multiplying a p-site cluster is a consequence of factoring p
terms of the fugacity from the time-ordered exponential,
and corresponds to a normalization factor that must be
used1 ;vhen calculating a physical quantity involving p
sites.

III. FORMULATION OF 1/N EXPANSION

If every site i =1,...,r were at the same point in space
then the matrix-element product for intersite propagation
of band electrons would be equal to 1 and diagonal in its
spin indices. For a finite separation of lattice sites these
terms will be oscillatory functions of site separation that
will have moduli less than 1 when diagonalized. For the
purposes of developing a 1/N expansion of the partition
function it is convenient to consider the extreme case of
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FIG. 1. Diagrams for propagators and vertices used in loop
expansion of partition function. (a) Band-electron propagator at
one site. (b) Band-electron propagations between sites. (c) f-
electron propagator at site i. (d) Spin-exchange interaction. (e)
Direct interaction.
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FIG. 2. Examples of connected closed-loop diagrams in the
cluster expansion of ZX. (a) One-site diagrams. (b) Two-site di-
agrams. (c) Three-site diagrams.

coincident lattice sites in the knowledge that at finite
separations the intersite contributions to the partition
function will be reduced.

In this extreme case, using the unconventional notation
for the interaction vertex, each closed fermion loop that is
not interrupted by a squiggly line must be summed over
all spin states m €[ —j, j] and thereby contributes a factor
N to the diagram. The dominant contribution to the one-
site diagrams Z; comes from multiple spin-flip processes
of the type shown in Fig. 3. It is these processes that are
responsible for the growth of the effective Kondo cou-
pling constant at low energies. Each loop summation con-
tributes a factor NJ =J to the diagram. In order to have a
well-defined large-N limit J must remain fixed as N is in-
creased. Later discussion will explicitly show that the
constraint J=const maintains a finite Kondo tempera-
ture.

When the Feynman diagrams for ZX are expanded in
. I
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FIG. 3. Multiple local spin-flip process showing how internal
loops contribute factors of N.

terms of J, each spin-exchange vertex [Fig. 1(d)] gives a
factor J /N while the direct vertices [Fig. 1(e)] give factors
of J/N?. If there is no closed-loop summation to provide
a factor of N to cancel the factors of 1/N from the ver-
tices, then the diagram is smaller by orders of 1/N. This
is exactly what happens to the intersite terms.

Figure 4 shows that the single-site terms in the partition
function are of leading order O (1), while many-site con-
nected diagrams lack the fermion loops to cancel the ver-
tices so that in general a p-site connected diagram is of
leading order O (1/NP~1).

Consequently, the amplitude for a correlated spin-flip
process is a factor 1/N?~! smaller when those spin flips
are spread over p sites rather than all occurring at one site.
The correlation function measuring the correlation of
spins at p sites depends on the square of this amplitude, so
the physical meaning of this result is that the correlation
of spins at p sites is O(1/N% ~2) smaller than the corre-
sponding correlation measured at one site. This can be
seen more explicitly by considering the spin-flip correla-
tion function

X7 (n)=( Tl i () f330)F 1, 0)) (13)

This can be calculated using the diagrammatic technique
by adding  the additional interaction term
-3, [h,-(r)f,',:r-f,',, +H.c] to H; and then calculating ZX
as a functional of the applied fields 4;(7). Consider a lat-
tice of just two sites. The correlation functions X77" (1)
and XY™ (1) are given as functional derivatives of ZX(h;):
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and the intersite function is accordingly O(1/N?2) smaller
than the one-site correlation function. These arguments
automatically extend to the case of finite separation of lat-
tice sites as discussed above, so that in the large-N limit,
local spin fluctuations dominate over nonlocal fluctua-
tions.

The perturbation expansion for ZX is only valid at tem-
peratures above the crossover temperature where the sys-
tem goes into a strongly coupled low-temperature regime.
For the single-site Kondo problem the perturbation expan-
sion is only applicable above the Kondo temperature. For
the lattice the crossover could take the form of a phase

[

transition to a state of long-range magnetic order. How-
ever, if local spin correlations dominate over nonlocal
correlations at all temperatures above the crossover, then
the above results suggest that in the large-N limit, long-
range magnetic order cannot occur before reaching a
strongly-coupled Kondo ground state. Scaling arguments
can be used to confirm this argument.

IV. SCALING THEORY FOR THE KONDO LATTICE

As in the impurity Kondo problem, the crossover to the
strongly coupled low-temperature regime can be studied
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FIG. 4. 1/N dependence of closed-loop diagrams and pseu-
dofermion interaction vertices. (a) One site. (b) Two site. (c)
Three site.

using Anderson’s scaling technique.!> The system is

mapped onto one with a smaller bandwidth D’, introduc-
ing additional interaction terms to the Hamiltonian H so
that the partition function is unchanged by the scaling:

ZX(H,D,, T)=Z(H'(D"),D",T) . (16)

Scaling corresponds to integrating out the high-energy ex-
citations at the band edge. D' is reduced until D'~T at
which point the remaining incoherent excitations can be
treated by high-temperature perturbation theory, provid-
ing that the interaction energies are not of order D’. The
process of scaling is thereby equivalent to examining how
the interactions scale with the temperature scale T ~D’.
A crossover to a strongly coupled regime occurs when one
interaction energy becomes of order D’. By identifying
the interaction energies that first grow to this size the
qualitative nature of the low-temperature ground state can
be determined and the parameter ranges for different
ground states can be identified.

Anderson’s scaling technique is carried out using the di-
agrammatic expansion for the partition function. Scatter-
ing through intermediate states at the band edges renor-
malizes the f-electron propagator 1/(w—A) to
d(w—A)/(w—A) and introduces new interaction vertices
I';; between the f and band-electron lines. The scattering
matrix element T}; induced by an interaction vertex I'j; is
given by

Tii(D)z [H d(win)n d(wgyt) ]l/zrij(D;winawout) »  (17)

out

where w;, and w,,; are the frequencies of ingoing and out-
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FIG. 5. Expansion of scattering matrix element in terms of
vertex function and f-electron legs.

going particles and the prefactor arises from the renormal-
ization of external pseudofermion legs (Fig. 5). When the
bandwidth D’ is reduced, the T;;(D) will change and addi-
tional interaction terms,

8H=3 |i)6H;(j|=~3 |)8T;D)(j| ,
ij hj

(18)

must be introduced to the Hamiltonian H (D') to compen-

sate. The scaling equation for these interaction terms is
accordingly

d0H;(D') _

aD

3
— 3D [Iinld(wm)l_[d(wom) 172

out

X I-\ij(D';wimwom) | H(D')=const * (19)

The right-hand side of this expression can now be calcu-
lated using the perturbation theory developed here.

For the single-site terms the scaling procedure renor-
malizes the Kondo coupling constant J. To lowest order,
the Kondo spin-exchange vertex and the pseudofermion
propagator are given by (Fig. 6)
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FIG. 6. Lowest-order leading-logarithm diagrams contribut-
ing to the renormalization of J. (a) Vertex I'. (b) Renormaliza-
tion of f-electron propagator. (c) Combination of vertex and
external legs in spin-flip scattering matrix.
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The scaling equation for J is then
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is the generalization of Wilson’s scaling function ®(x).'*
Integrating (26), the dimensionless coupling constant be-
comes of order unity at D' ~ Tk the Kondo temperature

Tx =Dg exp[®N(1)— V(T p)]
=Dge(Jop) Nexp(—1/Top) . Q7

Now for the lattice, the intersite terms in the partition
function cannot be ignored, but they will not affect the re-
normalization of the Kondo coupling constant. This can
be seen by considering a general p-site connected diagram
(Fig. 7), which contains p vertices that describe multiple
scattering of band electrons at each site. Each vertex con-
tains only one uninterrupted f-electron line and can al-
ways be divided into the product of a renormalized f-
electron line and an interaction vertex between the f and
band electrons. The effect of intersite interactions may be
completely incorporated into interaction terms between f
electrons at different sites. In particular, the Kondo tem-
perature Tk is unchanged.

In the large-N limit the dominant intersite interaction
between f electrons will be the two-site interaction and p-
site vertices will be O(1/N?~?%) smaller. Particle-hole
symmetry demands that the general form for the two-site
interaction is

Hy= 3 Thm(D)fm fie —(1/N)Spmn}]
m,m’

XL I — (/N8 pni] (28)

where the spin components are measured along the axis

between sites. Using (19) the scaling equation for

Ty (D) is
d

S—D_’T"Z'”'(D')=~

)

3D’ [dXo)T4, (W], (29)

5259

(20)

21
(22)
(23)

l

where T'¥, . is the intersite scattering vertex and four
external f-electron legs introduce the factor d? into the T
matrix.

When i and j are coincident the lowest-order
Ruderman-Kittel-Kasuya-Yosida (RKKY) diagram for
'y ..(D) [Fig. 7(b)] gives

TY,,{D)= —8,m(41n2)D (Jp)*/N?
while for finite separations,
T4, A D)= —ApmAKrR;;)D(Jp)?/N?

where A, (KpR;;) is the generalization of the
Ruderman-Kittel function to the spin-j case. Ky is the
Fermi momentum of the electron band. A,,,,(x) has been
calculated by Schrieffer and Coqblin,4 and it is an oscilla-
tory function of x which is O (1/x3) at large x. Since it is
only weakly dependent on D, this dependence is neglected
in further discussion, enabling A,,,,/(x) to be factored out
from the scaling equations. Making the substitution

Toim'(D')= —ApmA KpR;j)1(D') ,

then #(D') will be positive and by expanding (30), it is
governed by the scaling equation

D) _ Jp)l N (Jp)?

oD’ N? ND'

The first term simply gives rise to the growth of the

% B B o

(30

(31)

(32)

t(D') .

(a)

0 (1/N?)

(b)

FIG. 7. (a) Showing how interaction between sites does not
renormalize f-electron lines. (b) Lowest-order RKKY diagram.
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RKKY interaction as D’ is increased. The second term
(which is of opposite sign) corresponds to the quenching
of the RKKY interaction by local spin fluctuations. For
T >> Tk, (Jp)~(Jop) and the second term can be neglect-
ed. In this case

H(D")=(Jop)X(Dy—D")/N? . (33)

The energy scale of this interaction is given approximately
by the product of #(D’) with the number of nearest neigh-
bors in the lattice n, and a typical nearest-neighbor value
for Am(KpR;;). It is here that the dimensional depen-
dence will enter the problem. Taking nA,,, (KpR;j)~1 as
rough approximation (which is probably an overestimate
for a typical three-dimensional lattice), then in the absence
of Kondo fluctuations when D’ is of order T,,, where
T,,=t(T,,) and

Ty =T =(Jop)?Dy/N?, 34)

there would be a crossover (phase transition) to a state of
long-range magnetic order. In the large-N limit this tem-
perature tends to zero and will mean that Kondo local-
spin fluctuations can no longer be neglected.

From (32), the inclusion of local-spin fluctuations has
two effects. For D'~Tg the coupling constant (Jp)
grows to 1, significantly enhancing the growth of the
RKKY interaction. When D’ is less than the critical
value D,=t(D.)>NT,, the magnetic interaction no
longer grows, due to the quenching effect of spin fluctua-
tions. Equation (5) may be used to examine how ¢ scales
with the Kondo coupling constant Jp=g. Using (25) in
(32) the scaling equation for #(g) is

1/g
atg)  t Tke 1
— = o|l— |, 35)
3g + N Nie + N? (
where the substitution
D(g)=(Tk /e)expd(g) (36)

has been made using (26). The integral of (35) is

£ 1
. 2 1/x
t(g)_TK/NeLfop)e dx+0 |— |, 37
so that
1(g) e~'8 ce . 1
Do = N fu*op)e dx +0 | — (38)

In the weak-coupling regime g <1, ¢(g)/D’(g) is a mono-
tonically increasing function. Thus if Jop > (Jp), given by

1
J. e dx=NZ%, (39)

(Jp),
t(g)/D'(g) <1 for g < 1, and hence the magnetic crossover

will not be reached before the system goes into a strongly
coupled Kondo regime. An upper limit for (Jp), is

1
" In(N%)+In[In(N%e+---)] ’

or in terms of the unscaled parameter J =J /N,
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1
Vop)e N{In(NZ%)+In[In(N%e+ --- 1} “h
This corresponds to the condition T, < Tk.

When (Jp) is greater than this critical value a crossover
occurs to a strongly coupled Kondo regime with strong
local-spin correlations and no long-range magnetic order.

Two important features of the scaling theory presented
in this section must be emphasized: (a) There is a crucial
1/N dependence of (Jp), showing that large spin degen-
eracy enhances the stability of the Kondo-lattice ground
state. (b) In the large-N limit intersite spin correlations
vanish and this is true even at the crossover. The explicit
treatment of the two-site interaction shows that the two-
site correlation function is well behaved at the crossover
and vanishes as 1/N2. The 1/N arguments of the previ-
ous section enable this result to be generalized to p-site
correlation functions which must vanish as 1/N% ~2 even
at the crossover. This result plays a vital role in the dis-
cussion of the next section.

V. DISCUSSION: THE APPLICABILITY OF THE
KONDO-LATTICE MODEL AND THE NATURE
OF ITS LOW-TEMPERATURE EXCITATIONS

A rough calculation is sufficient to indicate that in
highly degenerate spin systems, such as the rare-earth
compounds, the coupling constant may become large
enough to stabilize a Kondo-lattice ground state. Natural-
ly, the expression (33) only sets the approximate N depen-
dence of (Jp).. However, the corrections that arise will
enter into the logarithms, and they will be independent of
N and small in the large-N limit. Taking the expression
literally, then for the case of cerium, where N =6, (Jp) is
~ . This is already smaller than values of the coupling
constant determined for cerium impurities in lanthanum
and ytterbium, typically of order 0.05—0.1.%!>16 Similar
values are expected in the lattice, providing important new
motiviation for the application of the Kondo-lattice model
to rare-earth systems.

What then is the nature of the strongly-coupled ground
state? Clearly, the diagrammatic approach cannot be ex-
tended into the strongly-coupled regime, and other tech-
niques are needed to quantitatively study this regime.
However, just as in the Kondo impurity problem the qual-
itative nature of the crossover into this regime is revealed
by the scaling and this enables conclusions to be drawn
about its properties. Broadly speaking, these conclusions
support the picture proposed by Martin'” in which the ex-
citations of the Kondo-lattice ground state form a
coherent Fermi liquid of extended, heavy quasiparticles.

In the impurity problem the crossover is characterized
by an increasing coherence of local spin fluctuations, sig-
naled in scaling by the growth of the coupling constant to
1. Since the coupling constant is antiferromagnetic this
indicates that the impurity ground state is a singlet and
Nozietes was able to elucidate the nature of the low-
temperature excitations'®!® via simple physical argu-
ments.

From this work a similar growth of the effective cou-
pling constant is seen to occur in the lattice and as
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remarked above, the importance of the large-N arguments
is to show that all nonlocal spin correlations vanish in the
large-N limit. It can hence be argued that to order 1/N
the Kondo-lattice ground state will be approximated by a
lattice of uncorrelated Kondo singlet states and the in-
terference between these states will be a 1/N effect. A
simple picture of the ground state emerges in this large N
limit.

Below the Kondo temperature, a band electron that is
excited from the Fermi sea will experience potential
scattering due to the slow flipping of the local moments
inside the Kondo singlets. This scattering is entirely due
to spin fluctuations. The flipping rate is given by the
Kondo temperature and excitations of this energy will ex-
perience resonant scattering. Ignoring the effects of crys-
tal symmetry on the scattering phase shifts, then the phase
shifts in each of the N scattering channels will be equal.
By the Freidel sum rule their sum must be 7 so a band
electron at the Fermi surface will experience a scattering
phase shift of 5= /N in the f channel at each site. Thus
an electron excited from the Fermi sea will see a narrow
Suhl resonance of width ~ Tk positioned just above the
Fermi energy. The periodic array of f-channel scatterers
will create a narrow band of f quasiparticles, with a Fermi
surface characteristic of scattering in the f channel. This
band will possess structure in its density of states, as sug-
gested by Martin,!? because of the lattice periodicity.

There is a subtlety connected with the Kondo lattice
which does not arise for the impurity problem and
deserves mention because it provides a link between the
Kondo- and Anderson-lattice models. The field theoretic
treatment carried out here is at a constant chemical poten-
tial, and implicit in the treatment is the need to determine
the final chemical potential self-consistently so as to con-
serve the number of band electrons. The development of
Kondo singlets implies that band states are pulled down
below the chemical potential to provide the additional
electrons that screen the local moments. The number of
bound states per moment is given approximately by the
Freidel sum rule,

N&(u,T)

np = ’
o

(42)

where 8(u,T) is the f-channel phase shift at temperature
T. Above the Kondo temperature, scattering is small and
there are few band states pulled down below the chemical
potential. However, below the Kondo temperature the
phase shifts rise to a maximum value of 7/N, and as this
occurs the chemical potential must drop by an amount Au
given by

No(u,T)

mp )
Now p is the density of band states per local moment. For
the lattice this is finite, but for the impurity this is infinite
and there is no corresponding renormalization of the
chemical potential.

The renormalization of the chemical potential has im-
portant consequences. If Ay is small enough that f level
is still well below the Fermi level, then the Kondo-lattice
model remains valid. However, if Au is comparable with

Ap=— 43)
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the initial separation between the f level and the chemical
potential, then a mixed-valent regime will be reached and
the full Anderson-lattice model becomes necessary. In gen-
eral, provided that the density of states per local moment
is large, as in say CeBg or CeAl;, then the Kondo-lattice
model is likely to be still applicable.

The picture of the large-N Kondo lattice as a lattice of
uncorrelated Kondo singlets enables the low-temperature
thermodynamic properties to be approximated to order
1/N by the impurity results. Thus the linear coefficient
of the specific heat ¥ must take the form

const [ 1

kim? o
= X +0 |+

3 e . (44)

14

A clearer picture of the situation can be obtained by re-
lating the Kondo-lattice model back to the Anderson-
lattice model from which it is derived. The f electrons in
the highly renormalized Fermi liquid of an Anderson lat-
tice in the local-moment regime are expected to have a
sharp quasiparticle pole in their propagators of strength
z <1 near the Fermi surface and it is this pole that is re-
sponsible for the narrow band above the Fermi level.
Since the quasiparticle bandwidth W* is very narrow we
may approximate the thermodynamic behavior by that of
a resonant level of width A*, where NA*=W* and
A*=zA. A is the bare resonant width of an impurity f
level. For such a resonant level, y is given by’

ki sin8/m) _kgm 1
3 A T3 NA

and comparing these two expressions the renormalized
bandwidth NA* is seen to be given by the Kondo tempera-
ture. The quasiparticle band will exist at temperatures
below A* =Tk /N. Because the energy scale of this renor-
malized band is compressed by a factor z, the effective
masses of these quasiparticles will be z~!=NA /Ty larger
than that of an unrenormalized f electron. Above
T ~Tg /N, excitations of the Kondo singlets will destroy
the coherence of the quasiparticle band and susceptibility
will fall rapidly. Below T~ Tx /N there is the interesting
possibility of phase transitions in the heavy f-electron sys-
tem. 222

In summary, it has been shown how high-spin degen-
eracy enhances local spin fluctuations in the Kondo lattice
and, most important of all, that due to this enhancement a
much lower Kondo coupling constant of order 0(1/2j+1)
is required to stabilize a Kondo-lattice ground state with
respect to a magnetically-ordered ground state. Physical
arguments based on the nature of the crossover to a
Kondo-lattice regime have been advanced to support
Martin’s picture of heavy quasiparticle excitations at low
temperatures.

y=N 45)
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