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With the use of Monte Carlo methods, the effects of particle drift on diffusion-limited aggrega-
tion have been investigated. If particle-drift effects are dominant, the particles follow essentially
linear trajectories (Hausdorff dimensionality D, = 1.0) and the resulting clusters have uniform struc-
ture on all but the shortest length scales (D, =d =2 for clusters grown on a two-dimensional lattice).
If the effects of drift are small, the particles follow Brownian trajectories (D, =2.0), and the clusters
have a Hausdorff dimensionality given by D.~5d /6 (for small d). For intermediate cases, the clus-
ters have a structure similar to clusters grown with the use of the Witten-Sander model of
diffusion-limited aggregation on short length scales (D.~5d /6) but are uniform on longer length
scales (D,=d). All of the simulations reported in this paper have been carried out using two-
dimensional square lattices. However, similar results have been obtained with closely related non-
lattice models, and we expect that similar results will also be obtained in higher dimensions. A
crossover from a fractal structure on short length scales to a uniform structure (D =d) on longer
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length scales should also be observed for the deposition of particles on fibers and surfaces.

INTRODUCTION

At the present time there is considerable interest in the
formation of large aggregates or clusters from small parti-
cles. A number of models for cluster formation have been
proposed! ~7 during the past two decades, and a variety of
computer simulations have been carried out to investigate
the relationship(s) between the cluster geometry and
growth mechanism. There is also considerable theoretical
interest in this area.®~!> Much of the work on cluster-
formation processes has been motivated by a need to ob-
tain a better understanding of the formation of biological
structures>!® and the flocculation of colloidal systems.

The two models which are the most relevant for colloid
flocculation are the Vold-Sutherland model>®'* (VS) and
the Witten-Sander’ (WS) model for diffusion-limited ag-
gregation. In the VS model, particles are assumed to fol-
low random linear trajectories (Hausdorff!’> or fractal'®
dimensionality D, =1.0). If the particle contacts the clus-
ter, it is incorporated into the cluster and the cluster
grows. In the WS model, the particles are assumed to fol-
low Brownian trajectories (D;=2.0). Again the particles
are incorporated into the growing cluster on contact. De-
tails concerning the growth of VS clusters on the comput-
er can be found in Refs. 5, 6, and 14, and the growth of
WS clusters is described in Refs. 7 and 17.

In many real systems the trajectories of small particles
are perturbed by the presence of adventitious or intention-
ally applied external fields. If the external fields are
essentially constant in space and time, and the particles
are in a dissipative medium, the trajectories may be
described as a random walk with a superimposed drift.
On short length scales the particle trajectory behaves like
an ordinary random walk with a Hausdorff dimensionali-
ty of 2.0, whereas on longer length scales, the drift be-
comes dominant and the Hausdorff dimensionality of the

28

walk is 1.0. At the present time the relationship between
the Hausdorff dimensionality of the cluster and the Haus-
dorff dimensionality of the particle trajectories is not fully
understood. However, it is clear from numerical simula-
tions that the Hausdorff dimensionality of the cluster D,
is approximately 5d /6 (where d is the Euclidean dimen-
sionality of the system) if the particle trajectory is a ran-
dom walk (Hausdorff dimensionality D,=2.0) for suffi-
ciently small d.”"%1718 Similarly, if the particles follow
linear paths (D,=1.0), D,~d.>%'* Consequently, if a
cluster is grown starting from a single “seed” particle in a
system in which the particles follow a drifting random
walk, we might expect the cluster to have a morphology
similar to that of a WS cluster on short length scales
(D, ~5d/6) and an essentially uniform density (D, ~d)
on longer length scales.

In this paper, the results of numerical simulations
which were carried out to investigate the effects of parti-
cle drift on diffusion-limited aggregation are described.
The simulations reported here were carried out using
two-dimensional lattice models. Similar results have been
obtained with a nonlattice model, and we expect our gen-
eral results to carry over to higher dimensionalities also.

MODEL

The simulation of diffusion-controlled cluster forma-
tion in the presence of particle drift was carried out with
the use of a simple square lattice. We start out with a sin-
gle occupied lattice site (shown by the black square in Fig.
1) and allow particles to follow biased random trajectories
in the vicinity of the original occupied site or seed. The
particle trajectories are generated by first generating a ran-
dom number in the range 0—1. If this random number is
smaller than the “drift probability,” the particle is moved
one lattice unit in the direction of the drift. If the random
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FIG. 1. Schematic representation of the model used to simu-
late the effects of particle drift on diffusion-limited aggregation.
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number is greater than the drift probability, a second ran-
dom number is generated to select one of the four
nearest-neighbor sites, with equal probability, and the par-
ticle is moved to this site. If the drift probability has the
value 1.0, the particle follows a linear trajectory in the
direction of the drift, and if the drift probability is 0.0, the
particle follows a random walk on the lattice. If the parti-
cle reaches a lattice site which is at a nearest-neighbor po-
sition with respect to an already occupied lattice site, it is
stopped and incorporated into the growing cluster as an
occupied lattice site. Figure 1 shows a schematic repre-
sentation of the simulation method used in this paper at
an early stage of cluster growth.

Since particles which become incorporated into the
cluster may be considered to originate at a random point a
long way “upstream” from the growing cluster and will
cross a line which is upstream from the cluster for the
first time at some random position, the particles are start-
ed out on a randomly chosen lattice site five lattice sites
further upstream than the most upstream lattice site in the
cluster (Fig. 1). Since trajectories starting from most such
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FIG. 2. Typical clusters grown with the use of the model shown in Fig. 1, and described in text, with relatively large drift proba-
bilities. (a) Cluster of 9582 particles grown with the use of a drift probability of 1.0 (linear particle trajectories in the drift direction).
(b) Cluster of 9742 particles grown with the use of a drift probability of 0.5. Particles are drifting from the bottom of the figure. (c)
Typical cluster of 7902 particles obtained from a simulation with the use of a drift probability of 0.25. (d) Cluster of 4629 particles
grown with the use of a drift probability of 0.1. Local structure resembles that of a cluster grown in two dimensions using the WS

model.
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FIG. 3. Shows a cluster of 24711 particles, or occupied lat-
tice sites, grown with the use of a drift parameter of 0.05. (a)
Entire cluster is shown which indicates that the cluster is quite
uniform on large length scales. The region enclosed by the small
rectangle is shown in (b). (b) Part of the large cluster of 24711
particles shown in (a). This figure shows the local structure
which closely resembles the local structure in a statistically self-
similar WS cluster (D =~ —;— ).

points will almost certainly miss the cluster, the starting
position is also restricted to a position which is within a
distance of xR, lattice units (x >2.0) from the origin
(R max is the maximum distance from any occupied lattice
site in the cluster to the origin). If xR,, is less than 20
lattice units, points on a line perpendicular to the drift
direction, five lattice units upstream from the cluster,
which are within 20 lattice units of the origin, are chosen
at random to start the trajectories. Figure 1 shows the
three possible results of a particle trajectory. Trajectory 4
eventually moves the particle a long distance from the
cluster (greater than xR, from the origin, or 20 lattice
units from the origin if R, <20). In Fig. 1, x is 2.0. In
this case, the trajectory is stopped to conserve computer
time and a new trajectory is started 5 lattice units
upstream from the cluster. This procedure does not intro-
duce any significant error since most trajectories which
travel a long distance from the cluster will never return to
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the cluster because the drift component will carry them
“downstream” past the cluster. Trajectory B misses the
cluster and eventually arrives at a position which is so far
down stream that a return to the vicinity of the cluster is
very improbable. This trajectory is also terminated to
conserve computer time and a new trajectory is started.
In most of the simulations, a trajectory is terminated if it
reaches a position 10.0/(drift probability) lattice units
down stream from the cluster origin. Trajectory C soon
reaches a position which is a nearest-neighbor site to an
occupied lattice site in the cluster. The particle is now in-
corporated into the cluster. In most of our simulations,
the parameter x was set to a value of 2.0, but larger values
were used in some cases to check on our results.

RESULTS

Figure 2 shows results obtained for a few relatively
small clusters using the procedures outlined above. The
cluster shown in Fig. 2(a) was obtained using a drift prob-
ability of 1.0 (i.e., linear particle trajectories in the direc-
tion of the drift). Overall the cluster looks like a sector
with uniform density on all but very short length scales.
The opening angle of the sector (which cannot be mea-
sured directly from Fig. 2 because of distorters in the
computer graphics) is about 75°. A considerably smaller
opening angle is found with a corresponding nonlattice
model.

Figure 2(b) shows a cluster of 9742 particles grown with
the use of a drift parameter of 0.5, and Fig. 2(c) shows a
cluster of 7902 particles grown with the use of a drift pa-
rameter of 0.25. The structure is now becoming more
open, and density fluctuations are beginning to extend to a
longer range. As the drift probability is reduced still fur-
ther to a value of 0.1 [Fig. 2(d)], the local structure begins
to resemble that seen in two-dimensional WS clusters.

As the drift probability is lowered further and further,
the WS structure extends to longer and longer length
scales. To investigate the effects of drift on diffusion-
limited aggregates, the largest clusters which were practi-
cal on a DEC VAX 11/780 computer were generated.
Figure 3(a) shows a cluster of 24 711 occupied lattice sites
generated with the use of a drift parameter of 0.05 and a
sticking probability of 1.0 at nearest-neighbor positions
only. The portion of the cluster contained in the rectangle
in Fig. 3(a) is shown in Fig. 3(b) so that the local structure
can be seen.

Figure 4 shows density-density correlation functions ob-
tained from four large two-dimensional clusters grown us-
ing drift probabilities of 1.0, 0.2, 0.1, and 0.05. For com-
parison, the density-density correlation function obtained
from a WS cluster (drift probability =0) is also shown in
Fig. 4.

DISCUSSION

The crossover in the fractal dimensionality of the clus-
ter from D, ~ < on short length scales to D, ~2.0 on long
length scales is associated with a similar crossover in the
dimensionality of the particle trajectory from D,=2.0 on
short length scales to D, =1.0 on long length scales. For a
random walk on a Euclidean lattice we have
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FIG. 4. Density-density correlation functions shown in the
form of log-log plots for four clusters grown with the use of dif-
ferent drift probabilities (P). 4—40000 occupied lattice sites,
P=1.0. B—40000 occupied lattice sites, P=0.2. C—27210
occupied lattice sites, P=0.1. D—24711 occupied lattice sites,
P =0.05. Curve E is the density-density correlation function ob-
tained from a WS cluster. At small distances the slope of curves
C—E, are close to —+.

(R2>1/2:AN1/2, (1)

where (R2)!/2 is the rms displacement and N is the num-
ber of steps in the walk. For a square lattice 4 =1.0. The
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particle displacement resulting from the drift is given by
(x)=PN, (2)

where (x ) is the average displacement and P is the drift
probability. Consequently we expect a crossover from
D,=2.0 to D,=1.0 when PN ~AN!/? or when the walk
length (Pythagorean length) is given by

1~A%/P . (3)

Equation (3) tells us that the length scale over which the
cluster exhibiting a WS structure is propcertional to 1/P.
This seems to be supported by our results shown in Fig. 4.
A similar crossover from a fractal to a uniform geometry
as the length scale increases should also be observed in re-
lated phenomena, such as the deposition of particles on
fibers and surfaces.!®
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