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A Monte Carlo simulation of the two-dimensional random (+J) Ising model has characterized the
equilibrium and dynamic behavior of the model. The spin-glass correlation length diverges algebrai-
cally with absolute temperature. The equilibration time obeys an Arrhenius law at low temperature.
There is a “phase transition at zero temperature” and a glass transition at finite temperature. In the

. . . . . Uda) _
spin-glass frequency (f) regime the noise power spectrum is proportional to 1/f with a=0.28.

I. INTRODUCTION

The two-dimensional random (+J) Ising model’ is stud-
ied by Monte Carlo simulation. This model has been
studied previously by Monte Carlo?~> and transfer-
matrix>®~% methods. Excluding Ref. 5, previous Monte
Carlo simulations have not been extensive enough to
characterize the behavior of the model; the present exten-
sive simulation is performed on the Monte Carlo comput-
er at the University of Illinois at Urbana.

II. MONTE CARLO METHOD

We study the two-dimensional random Ising model on a
square lattice with nearest-neighbor interactions of magni-
tude J and of random sign. The model is simulated using
the Monte Carlo method® with the “heat-bath” update al-
gorithm.!® The lattice is divided into two sublattices. The
spins on the first sublattice are updated simultaneously,
followed by the spins on the second. A single configura-
tion of interactions for N =8124 spins with periodic boun-
dary conditions is studied. Averages are taken for 10° up-
dates per spin after ignoring the first 10° updates. The
Hamiltonian is

H=— JijSiSj ’ (1)
ij

and we calculate the spin-glass correlation function

gr(R)=—L3(s5,5,)%8(R;—R) , @)
N3

which is a spatial average of (S;S;)? for fixed separation
of the spins. Angular brackets {( ) indicate a Monte
Carlo time average which is equivalent to the thermo-
dynamic average; for a large system the spatial average is
equivalent to a configuration average over interactions.
We define the Monte Carlo time ¢ to be the number of up-
dates per spin and calculate the relaxation function

QT(I)—_—I_L‘E(Si(t')Si(t-Ft’)) , 3)

in which a spin is correlated with itself at a later time.

III. SPATIAL CORRELATIONS

The correlation function for several temperatures in the
range 0.86J < T < 3J is shown in Fig. 1. System equilibra-
tion is extremely slow at low temperatures and 0.86J is
the lowest temperature for which we obtain a reasonably
accurate equilibrium average. We first test the scaling hy-
pothesis'! and write

gr(R)=ArG(R /&), (4)

where £ is the correlation length and G (x) is a universal
scaling function. We further assume a parametrized form
for £7. We have

§r=a(T—T.)""+& . (5)

We perform a least-squares fit of the data to (4) using
the measured variances to weight the data points in the
usual way. We represent In[G (x)] by a Taylor series in
In(x). The four parameters in (5) as well as Ay at each
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FIG. 1. Spin-glass correlation function vs distance for several
temperatures: a, T=0.86J; b, T=J; ¢, T=1.2J;d, T=1.5J; e,
T=2J; f, T=2.5J;and g, T =3J.
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FIG. 2. Scaled spin-glass correlation function vs scaled dis-
tance.

temperature are treated as fitting parameters together with
the coefficients of the Taylor series. The resulting weight-
ed mean-square error is X-squared and we use the stan-
dard X-squared test to determine goodness of fit. For this
procedure and 0.86J <T <3J we find a good fit with
T.=(0.10+0.25)J. The model has no small parameter
and we expect T, to be zero or of order J. We conclude
that T, is zero and use that value in subsequent analysis.
With T.=0 and 0.86J <T <3J we find a good fit for
v=2.42+0.10. The scaled data are shown in Fig. 2. We
find that the scaling function

G (x)=exp(—x)/x" (6)

provides as accurate a fit to the data as the Taylor series.
Note that (4) is in the proper scaling form only if A7 is
proportional to £7": This is true only over the restricted
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FIG. 3. Spin-glass relaxation function vs time for several
temperatures: a, T=0, b, T=0.86J; ¢, T=J; d, T=1.2J; e,
T=1.5J; f, T=2J;and g, T =2.5J.
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FIG. 4. Néel plot of the spin-glass relaxation function vs
T In(t/7n).

temperature range 0.86J < T <1.5J. We incorporate this
constraint by using

gr(R)=Bexp(—R /Er)/R", ™

with £ given by (5) to fit the data and find a good fit for
0.86J <T <1.5J. The temperature range is not broad
enough to determine T, accurately and we must assume
T,=0. We then find v=2.64%+0.23 and 7=0.281+0.04
using the X-squared test. The parameters in (5) are
a=2.34 and £,=0.442.

The Monte Carlo simulation is in good agreement with
the transfer-matrix method® which found T,=(0.02
+0.11)J and v=2.59+0.13. Previous estimates of the ex-
ponent by Binder'? and Young® yielded v~2. Static scal-
ing of magnetic properties has been proposed by Kinzel
and Binder.!>13
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FIG. 5. Scaled spin-glass relaxation function vs scaled time.
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FIG. 6. Arrhenius plot of equilibration time vs inverse tem-

perature.

IV. SPIN RELAXATION

The relaxation function gr(¢) for several temperatures
in the range 0.86J < T <2.5J is shown in Fig. 3. The data
for T=0 shows that the system relaxes between degen-
erate ground states connected by single spin flips. We
divide out this zero-temperature relaxation to remove the
microscopic time scale and then test two models. We first
test the Néel model'* which considers relaxation over
fixed energy barriers. We write

gr()/g0(0= [ "P(E)exp(—t /75)dE , (8)
with
TE =TNexp(E/T) . (9)

For large t we find

E(T)/J
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T
FIG. 7. Energy barrier determined from Eq. (14) vs tempera-
ture. Open circles are the data points and solid line is the
Taylor-series fit discussed in the text.
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FIG. 8. Scaled relaxation-time distribution function vs scaled
relaxation time.

qT(t)/qo(t)=I(Tlp(t/rN)) , (10)

where

I(x)= [ "P(E)E . (1

The Néel model therefore predicts that the relaxation
function is a universal function of T In(¢/7x). In Fig. 4
we plot logio[gr(2)/qo(t)] vs TlIn(t/7y) with 7y
=0.0087,. Data for four temperatures 0.86J <7 <1.5J
are shown in the figure. The data should lie on a single
universal curve if the Néel model were applicable; clearly,
universal behavior is not observed even over this narrow
temperature range. The plot is not improved by changing
Ty or by introducing a vertical scale factor. We conclude
that the Néel model is not applicable to the two-
dimensional random Ising model.
We now test the dynamic scaling hypothesis'®

qr(t)/qo(t)=CrQ(t/T7) , (12)

where 7 is the equilibration time and Q(x) is a universal
scaling function. We fit the data assuming a parametrized
form for Q(x) treating C; and 71 at each temperature as
free parameters. The data scale nicely for ¢ >2 as shown
in Fig. 5.

The equilibration time is normalized so that
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FIG. 9. Scaled power spectrum vs scaled angular frequency.
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The plot of the logarithm of 7 vs 1/7 in Fig. 6 shows
that the equilibration time exhibits Arrhenius behavior
T7r=74exp(Ey/T) at low temperature; the straight line
drawn through the three low-temperature points has a
slope E(y=13.2J. However, the coefficient of the ex-
ponential 7, is not the microscopic relaxation time 7,
(equal to 1) but is of order 0.0087,. It is therefore physi-
cally incorrect to interpret this behavior as thermal activa-
tion over a fixed energy barrier. We can define an energy
(or free-energy) barrier E(T) as follows

Tr=7,explE(T)/T] . (14)

(13)

Arrhenius behavior is equivalent in the critical regime to a
temperature-dependent energy barrier

E(T)=Eo—TIn(r,/7,) . (15)

The scaling theory'® also predicts linear behavior of E(T)
at low temperatures. We fit E(T) from (14) using a Tay-
lor expansion in 7 and find a good fit with
E(T)=14.16—6.59T 4+0.785T2. Figure 7 shows the fit
to the energy-barrier data. The energy barrier increases
with decreasing temperature as the correlation length in-
creases. Young® finds an energy barrier linear in 1/7; this
functional dependence is inconsistent with the present
Monte Carlo data. From a transfer-matrix study of ener-
gy barriers, Morgenstern!’ estimates that a typical energy
barrier in the +J model is (13+1)J.

The following scaling function provides a good fit to
the data:

Q(x)=exp(—1.781x%28 —0.605x %% —0.230x) . (16)

The first exponent and the three coefficients were treated
as free parameters in the least-squares-fitting procedure.
We can interpret this universal relaxation function in
terms of a scaled distribution of relaxation times D (7/71)
where

Q(t/rr)= [ "D(r/rr)exp(—t /7)d7/7 . (17

D (x) is proportional to the number of relaxing modes per
decade. We calculate D(7/77) by performing the inverse
Laplace transform of (17) numerically; the result is shown
in Fig. 8. D(7/77) is proportional to 7, with a=0.28 for
7 <<7r and the distribution cuts off at r~7;. At a partic-
ular temperature the scaling treatment is only valid for
T>>Ty.

We define the scaled power spectrum S(w7r) in the
usual way from the scaled relaxation function

Sorp)=4 [ "Q(t/rr)cos(wtdt /7 . (18)

The scaled power spectrum is shown in Fig. 9; it is con-
stant for w7 << 1 and falls off as 1/w''*® for w7y >>1.
This scaled power spectrum is only valid for o << 1/7,.
The noise spectrum is similar to 1/f noise (w=27f).

The present model does not have a spin-glass phase
transition at finite temperature. However it does exhibit
glasslike behavior. If one makes a measurement on a time
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scale 7,,, the system will appear to be paramagnetic and re-
versible for 7,, >>77. It will appear to be frozen and ir-
reversible for 7,, <<77. It therefore undergoes a glass
transition for 7,,~77. There is no spin-glass phase but
there is a spin-glass regime of time scales ¢ such that
Tr >>t >>7,. In the spin-glass regime the system is ir-
reversible and exhibits 1/f1%%) noise. We reserve the
term “glass transition” for systems whose equilibration
time increases at least as rapidly as exp(E /T) at low tem-
peratures.

V. CLUSTER PICTURE

We interpret the above Monte Carlo results using a sim-
ple cluster picture. The system behaves as though it were
made up of independent clusters of spins with spins in a
given cluster frozen together. A cluster picture of this
sort has been used previously by Kinzel.*!® The radius of
a typical cluster is the correlation length £7. In order to
reverse the direction of the spins within a cluster of Ising
spins one must pass a domain wall across the cluster with
all spins behind the domain wall reversed. There is an en-
ergy (or free-energy) barrier which is the maximum energy
of the domain wall as it crosses the cluster. With increas-
ing radius £7 this energy barrier should increase, explain-
ing the qualitative behavior of the energy barrier in (15).
Within the cluster picture this energy barrier exists only
for Ising spins. For a cluster of planar or Heisenberg
spins one can reverse the spin direction by simultaneously
rotating all the spins. This costs no energy and there is no
energy barrier to cluster rotation. This cluster picture is
in qualitative agreement with my Monte Carlo'® simula-
tion of the two-dimensional random planar model where
no activation energy to spin relaxation is found, and with
several other simulations of random planar and Heisen-
berg models.?°~2* Random anisotropy fields or anisotro-
pic interactions can convert a planar or Heisenberg model
into an Ising model at low temperature and such models
are expected to exhibit glasslike behavior.

V1. CONCLUSIONS

The Monte Carlo simulation has characterized the
behavior of the two-dimensional random (+J) Ising
model. The correlation function scales and we find a
“phase transition at zero temperature” with the correla-
tion length depending algebraically upon temperature [Eq.
(5) with T, =0]. This is qualitatively and quantitatively in
agreement with the transfer-matrix results. The relaxa-
tion function also scales and we find that the equilibration
time obeys an Arrhenius law at low temperatures. For a
fixed measurement time there is therefore a “glass transi-
tion” at finite temperature T, such that Tm =TT, For

T > T, the system equilibrates and behaves as a paramag-
net; for T < T, the system does not equilibrate within the
measurement time and appears frozen and irreversible.
For fixed T there is a paramagnetic regime of time scales,
t>>7r, and a spin-glass regime of time scales
Ty <<t <<7r. In the spin-glass regime the noise spectrum
is proportional to 1/f!+¢,

The simple cluster picture enables one to understand the
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behavior of the model at length scale £r. The scaling
model'® encompasses a range of length and time scales; it
predicts algebraic behavior of £, linear behavior of E (T),
and approximately 1/f noise. The scaling model is in
qualitative agreement with the present Monte Carlo simu-
lation.
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