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Monte Carrlo simulation of th e two-dimenensional random (+J} Ising model
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FIG. 8. Scaled relaxation-time distribution function vs scaled
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qT(t)/qo(t) =I(T In(t/r~)), (10)
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FIG. 6. Arrhenius plot of equilibration time vs inverse tem-

perature.

IV. SPIN RELAXATION

rF rzexp(E/T) ——.
For large t we find

The relaxation function qT(t) for several temperatures
in the range 0.86J(T (2.5J is shown in Fig. 3. The data
for T=O shows that the system relaxes between degen-
erate ground states connected by single spin flips. We
divide out this zero-temperature relaxation to remove the
microscopic time scale and then test two models. We first
test the Neel model' which considers relaxation over
fixed energy barriers. We write

qT(t)/qo(t) = J P(E)exp( t/rE)dE—, (8)

with

where

I(x)= J P(E)dE . (11)

The Neel model therefore predicts that the relaxation
function is a universal function of T ln(t/rz). In Fig. 4
we plot log&o[qT(t)/qo(t)] vs T ln(t/r~) with
=0.008'„. Data for four temperatures 0.861&T&1.5J
are shown in the figure. The data should lie on a single
universal curve if the Neel model were applicable; clearly,
universal behavior is not observed even over this narrow
temperature range. The plot is not improved by changing
~~ or by introducing a vertical scale factor. We conclude
that the Neel model is not applicable to the two-
dimensional random Ising model.

We now test the dynamic scaling hypothesis'

q T ( t ) /q 0 ( t ) =CTQ ( t /r T ) (12)

where rT is the equilibration time and Q(x) is a universal
scaling function. We fit the data assuming a parametrized
form for Q(x) treating CT and rT at each temperature as
free parameters. The data scale nicely for t )2 as shown
in Fig. 5.

The equilibration time is normalized so that
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FIG. 7. Energy barrier determined from Eq. {14)vs ternpera-
ture. Open circles are the data points and solid line is the
Taylor-series fit discussed in the text.
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FIG. 9. Scaled power spectrum vs scaled angular frequency.
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Q(t/rr)t dt
7T 00 ~ (13)f Q(tlrr)dt

The plot of the logarithm of rz vs 1/T in Fig. 6 shows
that the equilibration time exhibits Arrhenius behavior
rr ——rzexp(E0/T) at low temperature; the straight line
drawn through the three low-temperature points has a
slope Eo 13.2J——. However, the coefficient of the ex-
ponential wz is not the microscopic relaxation time ~@
(equal to 1) but is of order 0.008'&. It is therefore physi-
cally incorrect to interpret this behavior as thermal activa-
tion over a fixed energy barrier. We can define an energy
(or free-energy) barrier E(T) as follows

rz- r„exp—[—E(T)/T] . (14)

Q (x)=exp( —1.781x —0.605x —0.230x) . (16)

The first exponent and the three coefficients were treated
as free parameters in the least-squares-fitting procedure.
We can interpret this universal relaxation function in
terms of a scaled distribution of relaxation times D (r/rr )

where

Q(t/rr ) =f D(r/rz-)exp( t/r)dr/r . —
0

(17)

D(x) is proportional to the number of relaxing modes per
decade. We calculate D(rlrr) by performing the inverse
Laplace transform of (17) numerically; the result is shown
in Fig. 8. D(~/rr) is proportional to r with a=0.28 for
~ «~z- and the distribution cuts off at ~=~&-. At a partic-
ular temperature the scaling treatment is only valid for
'T »7p.

We define the scaled power spectrum S(cour) in the
usual way from the scaled relaxation function

S (carr) =4f Q(t/rr)cos(cot)dt/7 y (18)

The scaled power spectrum is shown in Fig. 9; it is con-
stant for corz&~1 and fa.lls off as I/co" + ' for corz. &&1.
This scaled power spectrum is only valid for co «1/~ .P'
The noise spectrum is similar to 1/f noise (co = 2m f).

The present model does not have a spin-glass phase
transition at finite temperature. However it does exhibit
glasslike behavior. If one makes a measurement on a time

Arrhenius behavior is equivalent in the critical regime to a
temperature-dependent energy barrier

E(T)=ED —T ln(r&/rq ) . (15)

The scaling theory' also predicts linear behavior of E(T)
at low temperatures. We fit E(T) from (14) using a Tay-
lor expansion in T and find a good fit with
E(T)=14.16—6.59T+0.785T . Figure 7 shows the fit
to the energy-barrier data. The energy barrier increases
with decreasing temperature as the correlation length in-
creases. Young finds an energy barrier linear in 1/T; this
functional dependence is inconsistent with the present
Monte Carlo data. From a transfer-matrix study of ener-
gy barriers, Morgenstern' estimates that a typical energy
barrier in the +J model is (13+1)J.

The following scaling function provides a good fit to
the data:

scale ~ the system will appear to be paramagnetic and re-
versible for r »rr I.t will appear to be frozen and ir-
reversible for ~ &&~z. It therefore undergoes a glass
transition for ~ =~&-. There is no spin-glass phase but
there is a spin-glass regime of time scales t such that
~z» t »~&. In the spin-glass regime the system is ir-
reversible and exhibits I/f" + ' noise. We reserve the
term "glass transition" for systems whose equilibration
time increases at least as rapidly as exp(E/T) at low tem-
peratures.

V. CLUSTER PICTURE

We interpret the above Monte Carlo results using a sim-
ple cluster picture. The system behaves as though it were
made up of independent clusters of spins with spins in a
given cluster frozen together. A cluster picture of this
sort has been used previously by Kinzel. ' The radius of
a typical cluster is the correlation length gz. . In order to
reverse the direction of the spins within a cluster of Ising
spins one must pass a domain wall across the cluster with
all spins behind the domain wali reversed. There is an en-
ergy (or free-energy) barrier which is the maximum energy
of the domain wall as it crosses the cluster. With increas-
ing radius gz. this energy barrier should increase, explain-
ing the qualitative behavior of the energy barrier in (15).
Within the cluster picture this energy barrier exists only
for Ising spins. For a cluster of planar or Heisenberg
spins one can reverse the spin direction by simultaneously
rotating all the spins. This costs no energy and there is no
energy barrier to cluster rotation. This cluster picture is
in qualitative agreement with my Monte Carlo' simula-
tion of the two-dimensional random planar model where
no activation energy to spin relaxation is found, and with
several other simulations of random planar and Heisen-
berg models. Random anisotropy fields or anisotro-
pic interactions can convert a planar or Heisenberg model
into an Ising model at low temperature and such models
are expected to exhibit glasslike behavior.

VI. CONCLUSIONS

The Monte Carlo simulation has characterized the
behavior of the two-dimensional random (+J) Ising
model. The correlation function scales and we find a
"phase transition at zero temperature" with the correla-
tion length depending algebraically upon temperature [Eq.
(5) with T, =0]. This is qualitatively and quantitatively in
agreement with the transfer-matrix results. The relaxa-
tion function also scales and we find that the equilibration
time obeys an Arrhenius law at low temperatures. For a
fixed measurement time there is therefore a "glass transi-
tion" at finite temperature Tg such that ~ =~~. For
T & T the system equilibrates and behaves as a paramag-
net; for T & Tg the system does not equilibrate within the
measurement time and appears frozen and irreversible.
For fixed T there is a paramagnetic regime of time scales,
t »~z, and a spin-glass regime of time scales

~@«t «~z-. In the spin-glass regime the noise spectrum
is proportional to 1/f '+ .

The simple cluster picture enables one to understand the
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behavior of the model at length scale g'r. The scaling
model' encompasses a range of length and time scales; it
predicts algebraic behavior of gr, linear behavior of E (T),
and approximately 1/f noise. The scaling model is in
qualitative agreement with the present Monte Carlo simu-
lation.
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