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Orientational ordering: Computer studies of the quadrupolar "glass"
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The electric quadrupole-quadrupole model for orientational ordering on the rigid hcp lattice is
studied with the use of standard computer-simulation techniques. Appropriate order parameters,
which isolate various symmetries, are used to describe this system. It is found that several distinct
admixtures of the long-range-ordered states are degenerate at and below the phase transition. The
zero-temperature state appears to consist of randomly stacked ordered planes, and the ordering ap-
pears to be mediated by the presence of excitations of the "wrong" symmetry. Although the form of
the zero-temperature order parameter appears to depend on the annealing schedule used, the ob-
served susceptibilities do not.

I. INTRODUCTION

This paper presents a detailed account of Monte Carlo
studies of a model system relevant to the orientational
glasses. These include molecular solids in which either
quadrupolar or dipolar intermolecular interactions may
dominate. They are characterized experimentally by a
quenching of the orientational degrees of freedom which
occurs without an observable onset of long-range or-
der. ' " The model is applicable to the quadrupolar sys-
tems (orthohydrogen-parahydrogen, orthodeuterium-
paradeuterium, and Nq-Ar alloys) and has been developed
to distinguish between two different aspects of the
problem —namely, the respective roles of dilution-induced
local symmetry breaking and intrinsic frustration effects
associated with the lattice structure of the experimental
systems in their "glassy" regimes.

A very brief review of the experimental data is given in
Sec. II, together with a description of the model, previous
theoretical and Monte Carlo (MC) work, and the relation-
ship between experimental and theoretical results. It
should be noted that most recent work on the subject has
emphasized an analogy with the spin-glass problem,
which also contains both frustration and dilution-induced
disorder, but without examining the role of these various
ingredients separately. In real materials there is an addi-
tional complication. The quadrupolar glass regime ap-
pears to coincide in all cases with a cubic-hexagonal
structural phase transition, rather than with a well-defined
quadrupole concentration. It now appears that the inter-
Inolecular interaction is strongly renormalized near the
phase transition because of the translational fluctuations
associated with this instability. ' ' Although the renor-
malization is undoubtedly important, it is neglected in this
study. All data are obtained for an EQQ (electric
quadrupole-quadrupole) interaction on a rigid lattice. The
simple observation that the orientational glass phase coin-
cides with the existence of the hcp structure' ' does,
however, lend credence to the claim that that role of in-
trinsic frustration deserves to be studied in its own right.

In this computation the quadrupolar molecules are

treated as rigid classical rotators; i.e., quantum effects are
also neglected. These effects may be expected to modify
the results obtained in several ways, particularly as ap-
plied to hydrogen: (I) In the presence of large zero-point
motion the translation-rotation coupling already men-
tioned may be large; its treatment is properly a quantum-
mechanical problem. (2) In principle, the "multiplet" as-
sociated with the J= 1 molecular functions must be split
in the presence of crystal field. This splitting is in fact
known to be small' and should produce little effect.
Quantum phenomena in the case of N2 are almost certain-
ly negligible, the major modifications in this case being as-
sociated with the Lennard-Jones parameters and devia-
tions from a simple EQQ interaction. '

There is one major difference between the present sys-
tem and systems exhibiting spin-glass behavior. In both
of the pure rigid crystalline forms the quadrupolar glasses
possess a long-range-ordered configuration which lies at
an energy minimum. One of the major results presented
here is that in the hcp phase, the lowest-lying long-range-
ordered state is at least degenerate with (and possibly at
slightly higher energy than) a state which displays only
two-dimensional long-range order (LRO), and which has a

~ 1/3
degeneracy of 2 . This fact appears to result from the
form of the two lowest-lying configurations, from their
relatively small energy separation and from the fact that a
transition between them may be achieved locally through
the fluctuations associated with yet another order parame-
ter. A description of this phenomenon requires careful
order-parameter definition. The analysis techniques are
described in Sec. II, and in particular, a distinction is
made between the order parameters useful in describing
global symmetry and those associated with the remanence
and accessibility phenomena appearing in glasslike sys-
tems.

The organization of the paper is as follows: In Sec. II,
a review of the experimental and theoretical aspects of the
problem is given. In Sec. III, the various possible order-
parameter definitions are discussed, and a contrast is
made between LRO problems, and problems where the
predominant question concerns the accessibility of various
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portions of configuration space. (Both sorts of questions
are important here. ) In Sec. IV, the details of the MC
procedure at finite temperature and of the ground-state
search technique are given, and results are discussed.

80

60

II. REVIEW OF THE PROBI.EM

The general designation "orientational glass" has been
used in the literature to describe crystalline diatomic
solids, usually with the introduction of inert impurities.
In general, the diatomic species interacts via a Lennard-
Jones potential and an electric multipole interaction. The
precise form of the interaction depends upon atomic pa-
rameters, but for identical atoms, the dipolar contribution
both from the Lennard-Jones part and from the electric
multipole part must vanish by symmetry. In the so-called
"quadrupolar glasses" this leaves terms which arise from
the quadrupolar term in an expansion of the Lennard-
Jones potential and from the electric quadrupole-
quadrupole interaction. The paradigm systems for this
case are the solid hydrogens and the N2-Ar alloys, which
are believed to form regular crystal lattices. Excellent re-
views exist which give interaction details for both nitro-
gen' and hydrogen. ' In this paper we are concerned
with the quadrupole interaction alone. This appears to be
the dominant potential in both systems. In all cases the
quadrupolar species occupies the sites of a regular lattice,
but shares this lattice with a spherically symmetric (i.e.,
nonquadrupolar) dilutant —argon in the case of interacting
N2, parahydrogen in the case of interaction orthohydro-
gen, and orthodeuterium in the case of interacting para-
deuterium. The lattice structure depends upon the con-
centration of the quadrupolar species; schematic phase di-
agrams are shown in Fig. 1. The high-temperature solid
phase is in all cases hexagonal close packed, and at high
concentration the low-temperature phase is face-centered
cubic. The transition at fixed concentration from hcp to
fcc is accompanied by a long-range orientational order,
with the molecular axes aligning in the fcc phase to form
a I'a3 structure. A sharp specific-heat anomaly appears at
the expected temperature, and measurements probing
structural order (x-ray experiments) are consistent with
measurements primarily sensitive to local orientational
field (various NMR experiments). These bulk thermo-
dynamic properties are consistent with local structural
and orientational information. This consistency obtains
all along the phase boundary as long as the slope of the
boundary curve dT/dx does not become too sharp. At
lower values of x, well away from the x-T intercept, the
structural data indicate clearly the persistence of the hcp
structure to very low temperatures. It is in the low-
temperature region of this concentration regime that the
"glass" phase has been observed, both in N2-Ar and in the
solid hydrogens.

The most persuasive evidence for freezing of the local
moments in hydrogen comes from NMR measurements,
particularly from the analysis of the Pake doublet line
shape given by Sullivan and co-workers. Some of the
NMR experiments on a single-crystal sample, however,
indicate that symmetry properties when observed on a
macroscopic scale remain characteristic of the full crystal
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FIG. 1. Schematic phase diagrams for orthoparahydrogen
and N2-Ar mixtures. The figure is a summary of information
contained in Refs. 14, 15, 1, and 11.

group, even below the "freezing" temperature. Similarly,
specific-heat measurements indicate a rounded peak at a
temperature above the freezing temperature, and a nearly
linear temperature dependence below this peak. This is
reminiscent of specific-heat data obtained for glasses and
spin-glasses under certain cooling conditions. More recent
specific-heat, " NMR, ' and neutron scattering' data on
the N2-Ar alloys in the hcp regime also are consistent with
a slowing of the N2 molecular rotation. This occurs over
a broad temperature range below about 20 K.

Because of the complicating factors mentioned above, it
is difficult to distinguish unambiguously among several
proposed descriptions of the experimental behavior.
There is considerable controversy over whether the term
"glass" is in fact appropriate. Without addressing the
problem of semantics, it seems fair to say that the picture
which emerges from the experimental data indicates a
freezing which occurs on a local scale at a fairly sharp
temperature, while bulk measurements indicate a broad
temperature range for any anomalous behavior and an ab-
sence of global symmetry breaking. More recent experi-
ments indicate some remanence effects as well. '

The most apparent similarity among the various experi-
mental systems is the presence of a clearly LRO orienta-
tional configuration in the fcc phase, and the occurrence
of this less clearly characterized behavior when the system
retains its hcp structure at low temperatures. It has been
recognized for some time that the energetics of the inter-
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molecular interaction will be different in the two structur-
al regimes, and both mean-field' and Monte Carlo calcu-
lations' were earlier carried out to study this problem.
Although the analyses were based on the assumption that
some sort of LRO occurs at low temperatures, both the
multiple phase transitions predicted by mean-field theory
and the indications of inaccessibility of the ordered state
in the MC samples suggest that a number of nearly degen-
erate (and possibly metastable) configurations occur on the
hcp lattice, even without dilution.

It has been suggested that the dominant feature of the
problem is local symmetry breaking by dilution, and a de-
tailed analysis applicable to the NMR data has been car-
ried out. This paper concentrates on lattice-induced frus-
tration as the main feature, and on attempts to character-
ize the ordering and fluctuation phenomena. In particular
the results of the group-theoretical classification of LRO
configurations and mean-field analysis of the energetics
are used in describing the system's behavior and in mak-
ing quantitative statements about what appears to be a re-
gime of coexisting phases.

In order to facilitate the discussion of Sec. II, the possi-
ble four- and eight-sublattice configurations ' for rotors
on the hep lattice are shown in Fig. 2. The four-sublattice
structures are obtained from the two possible formulas for
stacking the two inequivalent triangular planes with rotors
arranged in an H-type structure. The eight-sublattice
structure consists of stacked "pinwheel" planes. The con-
figuration labeled H 1 represents the lowest in energy,
with the molecular angles taking on values such that the
three direction cosines are equal (the diagonal elements of

the quadrupole tensor are thus zero). The mean-field re-
sults' indicate that a temperature-dependent shift occurs
in the angles defining the position of the free-energy
minimum within a given structure, that a crossover be-
tween structures occurs, and that the entropy contribution
to the free energy appears to drive the predicted transi-
tions. Furthermore, the free-energy minima for the three
structures differ over a large temperature range by only
several parts per thousand —probably the limits of accura-
cy of the calculation.

It is interesting to note in this connection that the MC
calculations of Ref. 19 apparently do not reach the H 1

structure at all; the conjecture is made in that paper that
the system ground state consists of randomly stacked
pinwheel planes. Because the samples studied in that case
were small, and because comparison of the temperature
derivative of the internal energy with the fluctuation-
determined specific heat indicates a nonequilibriurn re-
gime, a more systematic MC study seemed warranted us-

ing samples large enough to permit observations of defect
formation and run times long enough to permit monitor-
ing the relaxation process itself.

The role of dilution in changing the balance between
symmetric structures, and perhaps in destroying long-
range order altogether, has apparently not been studied.
The present work has been extended to include this prob-
lem. Discussion will be carried out in a planned subse-
quent paper.

We turn now to the definition of the model. The in-
teraction energy for a system of classical quadrupoles in-
teracting via a Coulomb force may be written

gcxf~Qpcf r gtt r
( la)

X (2,2, m, m'
~
2, 2, 4,m+m') . (lb)

Equation (la) gives the Hamiltonian in Cartesian coordi-
nates. The Q; are the second-ranked tensors associated
with the molecular orientation at site i; u, y label Carte-
sian components. The fourth-ranked coupling tensor is
given by

FIG. 2. Possible four- and eight-sublattice arrangements for
classical quadrupoles on the hcp lattice (after Ref. 18). H 1 and
H2 are nearly degenerate and are associated with a lower inter-
nal energy than the I' structure. These structures form the basis
for the order-parameter definitions of Sec. III. Solid circles
represent the ends of the rnolecules pointing upward from the
paper.

and only nearest-neighbor couplings are considered. This
expansion forms the basis of the MC calculations, with all
temperature and energies normalized to the parameter I
in the curves displayed.

The second form [Eq. (Ib)] is more convenient for ana-
lytic treatment of the problem, and in particular for the
discussion of order parameters which appears in Sec. III.
The qm are proportional to the spherical harmonics
Y2 (co;) with co; =(e,p) the solid angle describing molecu-
lar orientation at site i. Normalization has been chosen
such that



5202 M. A. KI.EMN

2

iq (co;)
i

'=1.
m =—2

tM(Q,
&

) is similarly proportional to F4M(O,J ) with Q,J the
solid angle associated with the vector r; —rJ.
(j),j2,m), m2

~ j),j2,j,m ) is a Clebsch-Csordan coeffi-
cient. There appear to be a number of "standard" nota-
tions in the literature. These for the most part take the
form (lb) with a variety of normalizations of y.

There are some similarities between the Q; r and classi-
cal Heisenberg spins. The analogy becomes more useful if
it is recalled that the two-particle interaction of Eq. (1)
has as its low-energy configuration a "T" in which the
molecular axes are oriented at right angles to each other.
Thus, the simple problem of packing low-energy pairs on
a lattice is much like the similar problem for the antifer-
romagnet. In particular, the considerations leading to
"frustration" effects for the Heisenberg antiferromagnet
on the triangular plane (and on both fcc and hcp lattices)
apply in the present case. The MC results displayed below
indicate the existence of a near degeneracy associated with
the (discrete) degree of freedom determining the stacking
of hexagonal planes. In this respect the model is similar
to the Ising antiferromagnet; the X'~ entropy which also
occurs in the fcc Heisenberg antiferromagnet occurs with
a continuous degree of freedom.

Any order parameter given as a function of the q (or
Q r) only is not conserved. The anisotropy introduced by
the interparticle coupling causes a gap in the excitation
spectrum. This gap is removed when the rigid-lattice re-
striction is relaxed, since in this case the system is invari-
ant under an operation which combines both translational
and orientational molecular coordinates. The major
shortcoming of the model probably lies in the fact that
this coupling must be put in by hand as an interaction be-
tween phonon and libron excitations; in the regime of in-
terest this is unlikely to be a simple perturbative effect.

III. ORDER-PARAMETER DEFINITIONS

The choice of order parameter is nonunique, since there
are several low-energy configurations possessing long-
range order and entailing loss of the full point-group sym-
metry of the crystal. In addition, both the experimental
data and the present MC work suggest that the interesting
problems concern a competition among these possible con-
figurations and the role played by local symmetry break-
ing. There are three standard and complimentary
methods for dealing with ordering phenomena, and it is
useful here to compare the kinds of information available
from each. They are, respectively, (1) standard Fourier
analysis, (2) group-theoretic analysis, and (3) an inner-
product analysis related to distances between configura-
tions in phase space.

The techniques for dealing with global symmetry break-
ing are well developed and have been applied successfully
to the long-range transition on the fcc lattice. On the oth-
er hand, a quantitative characterization of local order is
much more difficult to achieve. Little can be done
without explicit order-parameter definition; while it is
simple to remark that some sort of freezing occurs and to

find evidence for anomalies in a variety of characteristic
time scales, it is less simple to isolate the mechanisms
driving such a transition and to explain why both ap-
parent temperature of' onset and sharpness of onset vary
widely from one experiment to another.

If the primary aim of analysis is determination of the
orientational-excitation spectrum, the Fourier transform
of the local quadrupole moment may be conveniently used
to describe system behavior. The configurations of Fig. 2
are completely specified by the wave vectors k =0, and k
representing each of the faces of the Brillouin zone. Since
this represents a five-component order parameter at each
of four wave vectors, these quantities taken together pro-
duce a twenty-parameter space. The advantage is that one
may use standard many-body techniques —mean-field
theory, random-phase approximation, and controlled ap-
proximations within perturbation theory —to calculate
correlation functions in a straightforward, if somewhat
cumbersome, manner. In addition, the results are simply
related to other solid-state phenomena such as phonon or
roton modes. One obtains immediately the energetics as
well as the topology of the problem, and the framework
provides a starting point for construction of the
phenomenological Hamiltonians useful in developing a re-
normalization group.

If one depends only on the group structure of the sys-
tem, the number of order parameters is reduced to the
number of functions required to span the irreducible rep-
resentations of the crystal point symmetry. For the hcp
lattice, this number is eight. For the octahedral group ap-
propriate to the fcc lattice, it is ten. The price one pays
for this relative simplification is that the details necessary
for a discussion of energetics is lost in particular, and in
general, the specific functional forms are not derivable
without additional information. For the case at hand,
however, the following remarks should be made. If one
can provide a set of explicit irreducible representations for
the point group of the lattice, together with the basis func-
tions N,'~'(r ) belonging to the sth row of the jth irreduci-
ble representation, then any function f (r) will be defined
on the lattice, at least as far as its transformation proper-
ties are concerned, as follows:

f (~r) QC(J)q)(J)( )
S,J

This is true also for the order-parameter density functions
describing a complicated phase transition. Standard Lan-
dau theory deals with the temperature dependence of the
coefficients C,'~' which are taken to be the order parame-
ters. The classic argument states that a second-order tran-
sition (or one that is nearly second order in that it is
driven by fluctuations) is unlikely to be associated with
more than one such symmetry-breaking parameter, and
simultaneous appearance of multiple symmetry-breaking
functions is considered to be fortuitous.

Consider now the possible four-sublattice and eight-
sublattice structures on the hcp lattice (Fig. 2). In Fig. 3
the classes of symmetry operations appropriate to the hcp
lattice are described, and in Table I the character table is
given. In order to determine the number of basis func-
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FICx. 3. Symmetry axes and planes defining the group opera-
tions of D3q, the full group of the hcp lattice.

TABLE I. Character table for D3I„ the point group appropri-
ate to the hcp lattice (Ref. 23). Character rows for the struc-
tures of Fig. 2 are also shown. These may be decomposed to
give H 1=H2=A

~ +A 2+A &'+A & +2(E'+E"),P =A
& +A 2.

D

A)
A2

II

II

EI
Ell

1

1

—1
—1

2
—2

2C3

1

1

1

1

—1

—1

3C2

1

—1

1

—1

0
0

3ov

1
—1

—1

1

0
0

tions necessary to represent structures of the form shown,
as well as the character row of the representation, consider
the results of operation with the lattice-group elements.
Each of the stacked H-type structure configurations (H 1

and H2 of the figure) generates eleven similar structures
under the full group.

None of these structures remains invariant under any of
the operations. Thus a set of twelve distinct functions is
needed to generate a representation for either order pa-
rameter. Since these must transform in a manner which
describes the configuration transformations, one may con-
struct the character row as shown in the table. From this
it may be seen that order parameters describing both of
these structures contain components of all six of the ir-
reducible representations of the lattice symmetry. In con-
trast the "stacked pinwheel" configuration (P) generates
only one other structure under the full crystal group. The
two-dimensional representation contains only one basis
function in addition to the identity.

Thus on the basis of symmetry considerations alone,
one might expect the P configuration to form more easily
than the H configuration. All of this neglects energies in-
volved in formation of these configurations, and energy
considerations depend not merely on system symmetry,
but on the continuous parameters indicated in the
figure —two specifying a solid angle in defining H 1 and
H2, and the single angle P for P Distinct va.lues of these
variables correspond to distinct order parameters. There

are thus questions which cannot be answered by argu-
ments such as the above: (1) What values do the continu-
ous variables assume for minimum energy in each of the
three configurations? (2) Is there an overlap in the sense
that some of the configurations of a particular symmetry
may be accessible from configurations of another symme-
try; e.g., can H 1 or H2 be obtained from P through a lo-
cal distortion'? The answer to (2) depends upon (1), for the
energy minima must correspond to angular variables
which are "close" by some measure. Clearly, the question
is important. In the fcc lattice, for example, the Pa3 qua-
drupolar order is described by an order parameter contain-
ing components of several of the irreducible representa-
tions of the octagonal group O. There are, however, no
simpler order parameters having similar energies and
similar angular variables throughout the unit cell. 'I'he

orientational ordering in this case is known (from Monte
Carlo studies in particular) to be long range in nature, and
the transition is sharp, and is accompanied by a clear
specific-heat anomaly.

A different approach is more useful when the available
evidence indicates that ordering entails broken ergodicity
rather than global breaking of spatial symmetry. This
procedure works only when one has some notion of the
structure of the phase space available to the system and
can enumerate explicitly those configurations which act as
traps in that space. It is interesting in this case to ask
how close the system is to a given reference state, and an
effective order parameter may be defined in terms of some
suitable "overlap" between the actual state of the system
and the chosen reference configurations. The concept of
overlap arises naturally in any problem where freezing
occurs without a clearly broken spatial symmetry. It
enters into discussions of metastability and time scales,
and has been introduced into the spin-glass problem
through the Edwards-Anderson order parameter and its
subsequent refinements. It becomes a useful concept not
only in the absence of a unique thermodynamic long-
range-ordered state, but also when such a state becomes
inaccessible on experimental time scales. The emphasis in
the quadrupolar glass problem has been on the evidence
for abrupt freezing phenomena in the absence of a ther-
modynamically sharp phase transition. On the basis of
the above discussion it is clear that a symmetry-breaking
transition can occur on the hcp lattice, although both ear-
lier and the present Monte Carlo work indicate that it
occurs only on very long time scales. In order to discuss
this accessibility problem, it becomes convenient to bor-
row the overlap concept from the spin-glass problem and
to define an order parameter based on reference states
which are closely related to the long-range states H 1, H2,
and P.

It is useful to consider a particularly simple analog be-
fore introducing the less transparent definitions needed for
the quadrupolar problem. Consider the usual order pa-
rameter for the Heisenberg ferromagnet. This is the
three-component magnetization,

H1,H2 12 1M= —gs;,
P

with s;, the classical or quantum-mechanical spin associ-
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ated with site i, and X the system size.
One could, however, describe the state of the system

through its projection on a particular reference state n-
e.g., the state having all spins aligned upward along the z
axis,

{a) ]
M, —=—gs; s; =—gs;, . (4)

Here the dot product is computed at each site between s;,
the actual spin in the state of' interest, and s,' ' the spin
which would be present on that site if the system were in

the reference state a. To recover M, the addition of two
other uniform reference states will suffice. The norm of
an arbitrary state y is

and the "distance" between states is

=1(~ y) y(q~(~))e ~(~y)

&;m
(8)

with q; the classical quadrupole moments described in
Sec. II. (In the quantum case P becomes an operator and
the order parameter is its expectation value. ) The label a
again specifies a reference configuration. With the nor-
malization used here,

(a,a)~=1 .

Given a set of reference configurations, this site-by-site
overlap is particularly convenient for computer simula-
tion, since microscopic arrays are available at each step.
By direct transformation it may be related to the usual
Fourier-eoznponent description,

f~= g [q' '(k)]*q (k),
k, m

with k extending over the Brillouin zone. In addition, by
providing the explicit functional form for the q' '(k) or

The notation (a, y ), has been introduced to emphasize
that the given definitions do indeed specify a valid inner
product, and

I
Ia —y I I

is an acceptable metric. It provides
a measure of the accessibility of the state a from the state
r.

Spacial structures may also be incorporated in a
straightforward way, so that, for example, the antifer-
romagnetic order parameter is generated from a staggered
array of spins:

{a) ]. ik ~ r,.X, —:—gs; s; —=—gs;, eZ,.
' ' N

The order-parameter definition for a quadrupolar array y
proceeds analogously,

q
' for any symmetric and periodic structures which are

of interest, one may make contact with the group-
theoretic analysis. The inner-product definition is both
more general and more cumbersome, however, since there
are 2X molecular degrees of freedom. The usefulness of
either the group-representation basis or of Fourier com-
ponents at special k values to describe the order parame-
ter depends on the fact that nearly a11 degrees of freedom
of the system may be discarded as uninteresting for dis-
cussion of thermodynamic conditions. In cases, however,
where metastable conditions obtain or where coexisting
phases occur, the value of the inner-product order param-
eters permit a rational measure of the distance traveled by
the system in its available phase space. It is the suscepti-
bilities associated with these which display the well-
known time-dependent cusp in simulations of spin-glasses.

In order for the notion of overlap to be useful, analysis
of the energetics, or some other criterion should reduce
the number of reference states to a manageable number.
In addition, it is important to describe accessibility of one
reference state from another. Since the Hamiltonian (1)
on the hcp lattice is known to result in energy minima for
the H 1, H2, and P structures, it seems reasonable to use
these as the basis states for analysis. There is a difficu1ty,
however; the configurations corresponding to the energy
minima are nonorthogonal, either by the usual definition
obtained through the expansion of Eq. (2) or by the defini-
tion of Eq. (8).

Orthogonal reference states are useful for several
reasons. Since ordering may occur in several distinct
ways, an objective measure of the ordering magnitude is
highly desirable. This is taken to be just the sum of the
square of the various parameters defined below. In the
case at hand, decomposition of MC configurations into
the particular components chosen permits identification of
the fluctuations driving the system toward order, even
though the order parameter associated with these fluctua-
tions may vanish in the fully ordered state.

Thus, one is led to use, instead of the configurations
H1, H2, and J' themselves, linear combinations of them
which are orthogonal under the inner product de'finition
of Eq. (8), and which, therefore, provide an unambiguous
characterization of the state of the system.

That this initial basis is nonorthogona1 simply reflects
the fact that the configurations are accessible from one
another, not for energetic reasons, but because of topologi-
cal considerations alone. The fact that they are energeti-
cally sim. ilar 1eads to the requirement that a basis be used
which permits identification of all of them. In view of the
results which follow, it is particularly interesting to note
that the overlap between the pinwheel structure and either
of the H-type structures is associated with their mutual
accessibility via a local distortion, this is clearly seen on
examination of the constituent planar structures of Fig. 2.
The two unit cells may be obtained from each other by
significant reorientation of a single spin accompanied by
minor readjustments of its neighbors. The MC data
shown below indicate that such distortions represent the
most important excitations of the system.

In principle, given an inner-product definition and a
basis which spans the space of interest, some procedure
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such as the Gram-Schmidt process will automatically pro-
duce the required orthonormal basis. In the present case,
however, it seems preferable to retain as much as possible
of the crystal symmetry in the basis states. In particular,
it seems sensible to isolate the I' structure since it is
characterized by only a single irreducible representation of
the full crystal group. Since this configuration is invari-
ant under a threefold rotation, an important crystal sym-
metry is retained. A second feature which is easily identi-
fied is the H-type structure axis (defined by k, in Fig. 2)
in the H1 and H2 structures. Consider the symmetric
and antisymmetric combinations of these two states (refer-
ring to Fig. 2):

parameter fluctuations in the usual way,

x.= ([~(xy.)]'), (13)

y (gay@a'y')~aya'y'
+)f)

(14)

and the specific heat,

where ((hx)~) = (x~) —(x ), angular brackets indicate
averages over MC samples, and T is the temperature.

Internal energy per quadrupolar "spin" and specific
heat are independent of order-parameter definition [see
Eq. (1)],

is+)= iHl, k, )+ iH2, k, ),
is )= iHl, k, ) —iH2, k, ), s=1,2, 3

C=
2 ([b,(XE)] ) . (15)

s.e.,

(S+) (H1 ks) (H2 ks)
%m =qim —qim

S

obviously (s+,s )q =0 [by definition of Eq. (8)] and both

i

s+) and
i
s ) retain the H-type structure axis k, . Now

one may complete the order-parameter definitions for an
arbitrary state

i
y) as follows:

40=(~ y)q

1 +(s+,y) —(s+,P) (P,y)

—g (s+,s'+)q(s'+ y)q
S +S

(12)

(s 'y)q —(s,&)q(&,y)q

—g (s,s' )q(s, y)»
S +S

where N and X are chosen so that
i f, i

= 1 and
i
l(|,

i

= 1.
Note that g, and g, represent correlations of equivalent
planes.

One may thus identify the original configurations as
follows:

(1) go&0, g, =P, =0 for all s &0. The system is in the
I' configuration.

(2) g, &0, p, &0 or g, &0, l(t, &0, and gp=0. H 1

structure obtains with axis k, .
(3) g&0, /&0 or /&0 f&0, and go

——0. H2
structure obtains with axis k, .

(4) i@, i
&0, @,=0 or i@, i

&0, @,=0, and $0——0.
Long-range H-type structure order occurs in each plane
with axes of successive planes aligned. The stacking rule
determining H 1 or 02 structures is broken, and stacking
occurs randomly.

Other sets of order-parameter values correspond to
coexistence of the various structures or to some unidenti-
fied long-range-ordered structure.

The functions of Eq. (12) are simply obtained from the
arrays generated in the Monte Carlo process. The associ-
ated susceptibilities may be obtained from order-

IV. NUMERICAL PROCEDURES AND RESULTS

The simulations made use of the energy expression ( la)
and the standard finite-temperature single-site rejection
procedure. Because the glassy properties of the system are
of interest and because earlier computer experiments indi-
cate characteristics of slow relaxation, particular attention
was paid to size effects (which are directly related to de-
fect formation) and to run-time effects. In addition, a
number of initial configurations were used at various tern-
peratures, and comparisons were made for slow-warming,
slow-cooling, and quenching runs. These comparisons in-
cluded calculations both of various order parameters and
their susceptibilities, and of internal energies and specific
heat. Sample size varied between 128 and 2520 lattice
sites; beyond about 500 sites final configurations appeared
to be independent of sample size. Because of practical
limitations most of the data shown were taken for 576 and
720 sites. Nonperiodic boundary conditions were used to
avoid prejudicing the sublattice structure, and all bulk pa-
rameters were computed using only sites interior to the
sample. In all cases both fluctuation-determined specific
heats [Eq. (15)] and BE/BT were calculated. Agreement
of the two values, within statistical uncertainty, is general-
ly accepted as a criterion for achievement of thermo-
dynamic equilibrium. This agreement was not attained in
each of the runs discussed. However, when all runs at a
given temperature were averaged, statistical agreement
was found to occur. This indicates that the initial condi-
tions chosen were sufficiently diverse to permit sampling
of the full configuration space of the system. (Relation-
ships between thermodynamic and quasistable parameters
are given in Ref. 24.) Run times ranged up to 2X10"
Monte Carlo steps/spin (MCS/S) for temperatures in the
transition region, and it was found that variation of this
run time caused significant variation in the computed
quantities. The results suggest that intermediate-length
runs correspond more nearly to real experimental condi-
tions.

In addition to "annealing" the samples in the usual
way, the accessibility of the long-range-order configura-
tions was investigated by means of a "ground-state"
search from equilibrium states at temperatures in the tran-
sition region. This "quenching" process invariably pro-
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duced a configuration different from that of the LRO
ground state. The ground-state search was conducted in a
manner analogous to the local-field technique used for
classical Heisenberg spins. In the present case one may
compute a quadrupolar field tensor,

0.0

- 8.0

I.O
I

2.0 5 3.0
l ' I

I

(~ )
1 F g ~cruz r gtz j'

J

find the principle axes, and rotate the quadrupole moment
at site i so that it is aligned along the direction for largest
negative eigenvalue of h ~.(r;), thus minimizing the ener-

gy. It should be noted that the present model yields a
nondegenerate local field tensor.

The calculated values of energy and specific beat are
summarized in Fig. 4. Data are displayed for three sorts
of runs. The warming curve (closed circles) was prepared
at T=0 in the lowest-lying LRO configuration. Each run
consisted of between 4000 and 5000 MCS/S, and the final
configuration of each run was used as the initial configu-
ration at the next higher temperature. The temperature
intervals varied over the transition region as shown, and
increase in run times produced no discernible effect on the
data. The open squares represent several cooling runs be-
ginning from a random initial array at T/I"=5.0, and
reducing the temperature in steps of 0.5I to the transition
region. The energy curves are virtually identical except
very near T/I =2.4. At these relatively short run times,
the transition appears to be first order, and the specific-
heat peak, clearly observable in the warming runs, is trun-
cated. Below this temperature the statistical noise in the
specific heat persists to the lowest temperatures measured.
(Although the MC run time is here called "short" or "in-
termediate, " it is comparable to run times necessary f'or
attainment of equilibrium in some of the well-studied non-
pathological systems, such as Ising or Heisenberg magnet. )

To study the time scale on which equilibrium is
achieved —if in fact it can occur, the same initial confj.gu-
ration was "annealed" at T/I =2.4 for 2&(10 MCS/S.
A preliminary analysis of the autocorrelation function in-
dicates that the system is in a nonexponential relaxation
regime near this temperature; this is indicative of severe
fluctuation effects, and suggests that the system may be
characterized by several distinct time scales. The primary
effect of annealing on the bulk properties is restoration of
the second-order nature of the transition [see Fig. 4(a)]
and in reintroducing a sharp specific-heat peak. Anneal-
ing experiments below about T=2, 0I" appear to give re-
sults identical to those of the warming runs. Further-
more, below this temperature, times greater than about
3000—4000 MCS/S appear to be adequate to simulate
cooling from the nonannealed array. That is, the system, if
annealed in the vicinity of T=2.4I, undergoes an ap-
parently ordinary phase transition over a narrow tempera-
ture range. On the other hand, increasing run times below
this region appears to have little effect on the nonannealed
arrays; while their energy is virtually indistinguishable
from that of the annealed samples, large uncertainties per-
sist in the specific heat (although not in the energy itself).

A more detailed description of the transition comes
from examination of the order parameters as defined in

-14.0
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FICz. 4. Internal energy per quadrupole vs temperature (upper
curve) and fluctuation-determined specific heats. Solid circles
represent the warming curve, open squares, an intermediate
time-scale cooling curve. Open triangles represent a cooling
curve annealed at T—2.4I (see text). Both temperatures and
energies are normalized to I, the EQQ interaction constant.
The arrows indicate the transition temperature, where annealing
was carried out.

I

5.0

Eq. (l2). Data from the equilibrium runs of Fig. . i.e.,
from both the warming run and annealed cooling runs-
are displayed in Fig. 5. The large positive values of g and

f are consistent with a well-defined transition into the
LRO ground state. The apparent transition temperature
is consistent with the specific-heat peak and annealing
point indicated in the previous figure. There is no evi-
dence for the multiple LRO transition predicted by
mean-field theory, but in the transition region a signifi-
cant magnitude is observed for the order parameter Po
which describes the P structure, and which has no overlap
with either P or P. As one would expect, given the form
of the LRO ground state, go vanishes as T goes to zero.
The values plotted are averages over several thousand
MCS/S. Thus although one should describe the behavior

I,O—

0.5'=-

0,0

FIG. 5. Various nonzero order parameters specifying symme-
try (computed per quadrupole) for "equilibrium" runs —i.e., for
the runs showing a clear specific-heat peak in Fig. 1; g& and ttj~

are related to the 0-type structures and describe correlations be-
tween equivalent planes. $0 describes an ordering into the P
structure.
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of fo as dominated by fluctuation effects in this regime,
these fluctuations occur over a relatively long time scale.
The temperature range of the effect is of the order of the
transition temperature itself.

The behavior of the nonequilibrium arrays may be con-
trasted with the above (see Fig. 6). Under intermediate
time-scale cooling conditions, the system finally orders in
planar arrays (/~&0; the absolute sign is unimportant,
since only relative signs of g& and f& enter into a descrip-
tion of the symmetry), and the transition occurs at the
same temperature as the LRO transition. However, there
are two major differences in the order-parameter descrip-
tions of the two cases. Here go&0 persists to T=0. The
dotted lines on the figure indicate the result of a ground-
state search from the point shown, and the data points in-
dicate the results of several runs. It should be recalled
that the parameters f& and f& as displayed indicate the
presence of the in-plane ordering into either H 1 or H2
structures, but that the stacking arrangement is not well
defined between inequivalent planes. Again the go(T)
curve indicates the occurrence of large but long-lived fluc-
tuations. However, the persistence of a large value for
this parameter after a ground-state search indicates that
the P configuration is at least locally stable.

In order to clarify the phenomena it is useful to exam-
ine the generated arrays themselves and to compare them
to the LRO structures. A temperature sequence for cool-
ing on intermediate time scales is given for a small num-
ber of interior spins in Fig. 7. The topmost array
represents a typical configuration at T=2.0I and t=6000
MCS/S. Visual inspection of arrays produced at longer
run times produce no obvious qualitative changes; howev-
er, the data of Figs. 4 and 5 indicate that the bulk parame-
ters may be distinguished. The sample has clearly begun
to order, and the relative orientation of inequivalent mole-
cules suggests that the incipient order is predominantly
that of the H 1 structure. However, even within the small
samples there are clusters of spins which are correlated as
in the P structure, and these apparently represent the easi-
ly formed local excitations in the system. The same por-
tion of the sample is shown as the temperature is lowered.
The changes which take place appear to affect the small P
clusters, and the defects are annealed out. A ground-state
search conducted from this array produces the result in
the upper T =0 configuration. This particular portion of
the sample condenses into a pure H 1 structure (the order-

0.5—

0.0— I

I.O

-o.s'=

FIG. 6. Order parameters occurring in intermediate time-
scale runs. The zero-temperature points were obtained by means
of a local ground-state search from the points indicated by the
dotted lines. g~ is essentially zero in this case.

FIG. 7. Portions of the MC arrays at temperatures in the
transition region and at T=0. Near T, the sample contains
clusters of quadrupoles arranged in the P configuration. At
T=0 both H-type structure stacking arrangements appear in a
single sample. (See text. )
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ing is complete within the two planes shown). However,
the two neighboring planes of the bottom figure have a
pure H2 order. This variation in stacking appears to be
random, with individual planes completely ordered. The
shape of the sample was varied, but this appeared to have
little effect on the results. The H-type structure axis of all
planes appears to be aligned.

There is further evidence that the P-structure order pa-
rameter is associated with the driving fluctuations of the
system; this is despite the fact that it appears never to
represent the equilibrium configuration. In Fig. 8, its as-
sociated susceptibility [Eq. (13)] is shown. A sharp peak
occurs in the transition region for both quenched and an-
nealed runs; thus these excitations appear to dominate the
ordering mechanism whether or not the long-range transi-
tion is permitted to occur. This is consistent with the
visual appearance of arrays and with the local character of
the excitations. It seems reasonable to conclude that the
glasslike behavior of quadrupolar molecules on this lattice
is at least partially a result of the local symmetry breaking
which occurs. It is also worth noting that the correct or-
der parameters have significantly sma11er susceptibilities
throughout the entire temperature range; there is no indi-
cation of an anomaly in either quenched or annealed runs.
The apparent divergence of this order-parameter suscepti-
bility near the phase transition is also consistent with the
expectation that only one of the symmetry-breaking pa-
rameters of Eq. (2) should drive the transition.

One final piece of data concerns the entropy available to
the system as it condenses below the transition tempera-
ture. The usual technique for evaluating this is to in-
tegrate C/T from T=O, with C evaluated either from Eq.
(15) or from numerical values of BE/BT. In the present
classical system, the expected T=O limit of the specific
heat is —, in the units used here, so that such an integra-
tion procedure is impossible. An additional consideration
is that it is not clear, on the basis of the above discussion,
whether the system samples a truly thermodynamic
ensemble —the most likely candidate for equilibrium is the

LRO state, but this appears not to be relevant to the glass
regime.

An alternative procedure is to evaluate the entropy per
spin,

E~ T, ~)~&

S=S +—f dE
N

E(T;)/X
dE

T(E) (17)

with S =in(4m) for this classical model. This has the
advantage that E ( T) —1/T at high temperatures, and the
uncertainty in estimating the integral of (17) is small. At
the transition temperature order-parameter derivatives
must be included in the entropy estimate, and since these
may diverge, the estimate becomes impractical below this
point.

With respect to the T=O value of the specific heat,
several comments should be made: (1) The derivative of
the energy curve which represents warming from the LRO
state is consistent with this value, and thus one has a
check on the MC data. (2) At very low temperatures, the
results given here cannot be compared directly to experi-
ment, since in this regime quantum effects may be expect-
ed to modify the dynamics of the system. However, the
qualitative variations which occur near the transition
among the various processes considered should occur in
the experimental systems as well. The conclusion to be
drawn from Figs. 9 and 4(b) is that a significant amount
of entropy is available to the system at the transition tem-
perature and the form of the apparent entropy change at
T, may vary with cooling rate and sample preparation.

V. CONCLUSION

The conclusions to be drawn from the data displayed in
Sec. IV may be summarized briefiy. The undiluted qua-
drupolar system on an hcp lattice possesses a number of
partially ordered states whose energies are nearly degen-
erate with the lowest-lying LRO state. These states ap-
pear to consist of configurations having long-range order
in two dimensions, and an alignment of symmetry axes
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FICx. 8. Susceptibility associated with the order parameter go
vs temperature. Symbols are as in Fig. 1. The bars lying below
+=0.5 indicate the range of magnitude of the susceptibilities as-
sociated with the "correct" symmetry of the system.

FIG. 9. Determination of entropy available to the system at
the transition temperature. The data of Fig. 4(a) have been re-
plotted to permit extrapolation of BS/BE to T= oo (E=0). The
arrow indicates the apparent transition, as determined from
Figs. 4, 5, and 8.
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among planes. The degree of freedom determining the de-
generacy of these configurations thus appears to be a
stacking parameter which may take on one of two values
(giving locally one of the two H-type structures of Fig. 2).
This leads to an entropy which is proportional to N'

On the basis of run-time studies, it appears that the ex-
perimentally observed specific heats correspond, not to
adiabatic cooling through the transition, which permits
achievement of the LRO state, but to the nonequilibrium
cooling which leads to stacking faults. The MC run times
necessary to achieve the LRO state are comparable to run
times necessary for glassy systems, and are longer than
normally used in the annealing curves of well-behaved sys-
tems.

The order parameters specifying symmetry —i.e., those
used in classical Landau theory —are significant in
describing the behavior of the system, even when global
ordering does not occur. In particular, the only suscepti-
bility divergence observed corresponds to an order param-
eter containing only one basis function of the irreducible
representations of the full crystal group. This is to be ex-
pected on the basis of the standard arguments. The sus-
ceptibility anomaly appears to be associated with localized
fluctuations and these appear to mediate the transition to
two-dimensional order. These results are consistent with a

reinterpretation both of earlier MC work and mean-field
results, and appear to resolve a conflict between the two.
One does not expect multiple phase transitions, as the usu-
al mean-field analysis would suggest, but one finds instead
a locally-driven ordering which includes all of the coupled
mean-field order parameters.

In a planned second paper, the role of dilution effects
will be discussed in detail. A preliminary analysis sug-
gests that a general broadening occurs with a decrease in
concentration of the interacting species, but it is not yet
clear whether the character of the transition is changed.
The present data indicate strongly that the intrinsic topo-
logical properties of the hcp lattice determine the nature
of the ordering to a significant extent, and must be con-
sidered together with dilution-induced phenomena.
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