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Ising antiferromagnet: Rb2Cop s5Mgp isF4

I. B. Ferreira, A. R. King, V. Jaccarino, and J. L. Cardy
Department ofPhysics, University of California, Santa Barbara, California 93106

H. J. Guggenheim
Bell Laboratories, Murray Hill, New Jersey 07974

(Received 20 June 1983)

Optical birefringence has been used to study the effects of a uniform field H on the magnetic
specific heat C near the phase transition of a randomly diluted, two-dimensional (2D) Ising anti-

ferromagnet, Rb2Coo ~~Mgo i~F4. For H =0, a well-defined transition is observed with a symmetric
logarithmic divergence in C, corresponding to the critical exponent +=0, as is predicted for the

2D Ising random-exchange case. With H applied parallel to the c axis, a systematic rounding of the
peak in C occurs which increases with increasing H. This demonstrates that induced random
fields destroy the phase transition and that the lower critical dimensionality for the random-field

problem dt &2. No rounding is found with Hlc, as expected. The peak in C with H~ ~c exhibits a
decrease in amplitude, which varies as lnH. This behavior, together with the ln t

~

dependence of
C at H =0, was used to determine the crossover exponent P= l. 58+0.22. This value is in essential

agreement with the exactly known critical exponent of the staggered susceptibility y for the 2D Is-

ing problem, namely y= 4, as predicted theoretically. By suitable rescaling, the rounded peaks

found for different values of H may all be collapsed to a single curve in the critical region, in accord
with renormalization-group scaling relations. The shift and rounding (and hence the peak ampli-
tude) are in quantitative agreement with the site-diluted, random-field predictions.

I. INTRODUCTION

Although there has been considerable theoretical and
experimental interest in various aspects of the random-
field problem, the one issue about which the most contro-
versy exists is that of the lower critical dimensionality dI.
In the initial work on the subject, Imry and Ma' showed
that the Ising model in a random field is unstable with
respect to formation of domains with smooth walls for
d (dI ——2. Subsequently roughening of the walls was
shown to result in d~ ——3 with a domain-wall width com-
parable with the domain size. More recent calculations
showed that the effect of roughening was probably overes-
timated, and that dI appears to be 2.

Although the ultimate experimental determination of dI
for Ising systems in a random field is of great importance,
there appears to be no doubt that dh )2. Hence, experi-
ments on two-dimensional (2D) Ising systems are not ex-
pected to resolve this question. However, a systematic
study of a phase transition, which is unquestionably de-
stroyed by a random field, would be a valuable compar-
ison for deciding whether this does or does not occur in
the three-dimensional (3D) case. Such a study would, of
course, be extremely interesting in its own right.

Some of the most dramatic effects of random fields are
those predicted by Fishman and Aharony (FA) (Ref. 7) on
the critical behavior. These include a rapid lowering of T,
with H and, within a crossover region, a new critical
behavior characteristic of a lower effective dimensionality.
A physically realizable example of a random-field system

was shown to be a randomly diluted antiferromagnet in a
uniform applied field. Although no sharp phase transi-
tion is expected in the 2D case, the scaling relations
should describe the systematics of the field-induced
rounding of the transition. Previous experimental work
on 2D random-field systems include neutron scattering '

and susceptibility' studies of Rb2Co Mg & „F4. Both
gave indications of the destruction of long-range order by
a random field. We will discuss these works in the sum-
mary section. However, no measurements, nor quantita-
tive analysis in the critical region have been made on these
systems.

In the present work, we present the first detailed experi-
ments in the critical region of a 2D random-field Ising
system, and show quantitatively the systematics of the
destruction of the phase transition. The results are com-
pared to, and are shown to be in agreement with, the
theoretical predictions.

II. EXPERIMENTAL TECHNIQUES

The experiments utilized the optical linear magnetic
birefringence (hn) technique. The temperature derivative
d(hn)/dT has been shown" to be proportional to the
magnetic specific heat C . Experiments have been per-
formed on a variety of materials' ' which confirm this
proportionality. Also, a recent study of the pure Rb2CoF4
(Ref. 15) has revealed an excellent agreement with the ex-
act Onsager solution of the 2D Ising antiferromagnet.
The Senarmont method was employed with a He-Ne laser
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and 50 kHz modulation, with a resolution in b,n of about
10 . The temperature was measured with a calibrated
carbon-glass resistance thermometer using an ac resistance
bridge operating at 17 Hz. The field dependence of the
thermometer (about 20 mK at Tz at H =20 kOe) was
measured and corrected for. Measurements of An were
made by first stabilizing the temperature to within —100
pK, until thermal equilibrium was reached (approximately
3 min). Then d(b.n)/dT, which is proportional to C
was determined by dividing the difference in An between
successive points by the temperature difference AT. That
value of An/AT was then plotted at the mean T. In some
cases the data were smoothed by taking a numerical
derivative involving several measured data points.

The sample was an optically excellent single-crystal
piece of Rb2Coo 85Mgo ~5F4, approximately 5 mm thick,
cut from a large boule grown by the zone-melting method.
As in all experiments on these mixed crystals, the primary
intrinsic mechanism limiting the sharpness of the ob-
served transition was found to be the gradient of concen-
tration along the growth direction of the crystal (perpen-
dicular to the c axis). This effect was minimized by care-
fully aligning the narrow laser beam, defined by a pinhole
of approximately 100 pm, perpendicular to this direction.
This necessitated cutting and polishing the crystal perpen-
dicular to the layers, which fortunately presented no par-
ticular problems. In an initial attempt, the laser beam was
aligned parallel to the growth direction, with the result
that the phase transition was almost completely obliterat-
ed. From this observed broadening we estimate the con-
centration gradient to be l mol%%uo/cm.

Although this crystal is of excellent quality, the single
most important limitation in this and all other experi-
ments on phase transitions in random materials has been
the quality of the crystal used. Experiments which sample
a minimum volume (e.g. , by aligning a narrow laser beam,
or by using a thin slice of material perpendicular to the
concentration gradient) are able to produce better data
from a given sample than possible otherwise, but any ma-
jor improvement in the sharpness of the transitions seen
will depend upon the availability of still more homogene-
ous samples.
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FIG. 1. d(An)/dT vs T of Rb2CopsqMgp I5F4 in applied
fields 0 =0, 5, 15, 20 kOe, with Hi ic axis. Points represent the
differences between successive data points An, divided by the
temperature interval AT, and are plotted at the average tempera-
ture.
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dicular to c. No change in the shape of the transition
peak from that at H =0 was observed, and AT, is only
0.02 K, consistent with value expected from mean-field
theory. ' That there are no effects attributable to random
fields with Hlc agrees with both theory and other mea-
surements since transverse fields, either uniform or ran-
dom, do not couple to the antiferromagnetic (AF) order
parameter.

I.8—
Rbg COO.85 MgO I5 F~III. EXPERIMENTAL RESULTS
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In Fig. l we present the results for d (hn)/dT for vari-

ous fields, H~ ~c, and 0(H (20 kOe. The H =0 data ex-
hibit a sharp, symmetric divergence, as is the case in the
pure Rb2CoF&. ' Far above T~, a broad shoulder appears,
which we attribute to increased short-range order not
present in the pure material. With increasing H, the peak
is seen to dramatically round and decrease in amplitude;
only a small shift of the peak temperature is apparent,
which is less than the rounding. All of these effects differ
markedly from those seen in the 3D random-field
case. ' ' Outside the crossover region, which increases
with H as does the rounding, the data for all fields are in-
distinguishable from those at H =0. This is illustrated in
Fig. 2, where the H =0 and 20 kOe data are superim-
posed.

Measurements were also made with H =20 kOe perpen-
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FIG. 2. d(An)/dT vs T of R12Cop85Mgp»F4 in applied
fields H =0 and 20 kOe. Peak value of d(hn)/dT shifts from
T~ ——76.35 K at H =0 to T, =75.97 at H =20 koe. Points
were determined as indicated in caption of Fig. 1.
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IV. THEORETICAL BACKGROUND
A. Random exchange

The effects of randomness in the exchange interaction
on the critical exponents of 3D and 2D Ising systems have
been extensively studied. ' In the 3D case a crossover
from "pure" Ising exponents (a=+0.11) to "random" Is-
ing ones (a= —0.09) (Ref. 24) is predicted at a reduced
temperature t, —(bJ/J)', where hJ/J is a measure of
the randomness in the exchange b J/J=x(1 —x). This
random behavior is expected to be observable only for
highly diluted materials, and then only for very small

~

t ~. Similar, though less pronounced, changes occur in
the other exponents (e.g., y, v, . . . ). Recent experiments
have generaHy confirmed the theoretical predictions in
this case.

In the 2D Ising case, where Onsager's exact results exist
for the pure system, the effects of randomness in the ex-
change are much less drastic. Pure Ising behavior,
C ~ ln

~

t ~, is expected for t, &&
~

t
~

&& 1, and a new ran-
dom behavior C cclnln

~

t
~

for
~

t
~

&&t, &&1, where
t, -exp[ —const/(1 —x)]. Thus for the modest dilution
(1 —x =0.15) in the present experiment, t, is expected to
be extremely small, and only pure 2D Ising behavior
should be observed. In a neutron scattering experiment,
in RbqCo„Mg~ „F4, the exponents P, v, y, and rI were
found to be unchanged from those in the pure Rb2CoF4,
within experimental error.

B. Random fields

F, (tH, hRF ) = ——,A*tHlnh Rp+h RF" 'p(tHh Rp ), (4)

where 4'(x) is a scaling function. Differentiating twice
with respect to tH gives

C =g (tHh Rp ) —A "lnhap +D(tH, H),
where g(x) is a scaling function, and D(tH, H) represents
some nonsingular, but possibly H- and tH-dependent back-
ground.

Since it is expected that C ~ln
~

t
~

when H =0, we
must have g(x)- —A ln ~x

~

for ~x
~

&&1. It follows
that as h RF ~0,2

Cm = —A ln
~

t
~
+—A lnh Rp —A "lnh Rp +D(t, 0) .

The lnh Rp terms in Eq. (6}diverge as h Rp ~0, unless

T, =T~ b—H T—~(ch Rp )

where c is a constant of order unity.
In the case where the thermal eigenvalue (in this case,

v =1) divides the dimensionality (in this case, d =2),
the crossover behavior in the presence of an additional
relevant field (h R„) is more complicated and contains ad-
ditional logarithmic terms which cannot simply be ob-
tained from Eq. (1). This case has been treated by
Niemeijer and van Leeuwen ' with the result that the
singular part of the free-energy scales according to

The effects of a random field are predicted to alter both
the lower critical dimensionality and critical exponents of
Ising systems. Site-random magnetic fields H; may be de-
fined by their configurational averages, t, H; ) =0,
(H; ) =HRF&0. However, not until FA (Ref. 7) showed
that an antiferromagnet with random exchange, when
placed in a uniform field, was a physical realization of the
random-field (RF) problem, was there much experimental
interest evidenced. Amongst the results FA obtained was
a scaling relation for the specific heat

C= ItH I f(hap 1tH I

In the above equation, tH
——(T —Tv +bH )/Tz is the re-

duced temperature relative to the mean-field phase boun-
dary Tz"——T& —bH, and

so that

C = —A ln~ t ~+D(t 0),
when H =0. Despite the fact that no sharp transition
occurs when H &0, Eq. (5) still holds, but now g(x) de-
scribes the rounding of the transition in the applied field.

It has recently been shown' ' that the mean-field (MF)
shift is

bH = T~ (gIJsSH/xJ) l(1 xJ/kT~ )—
and the effective random field for the site-dilution prob-
lem is

h Rp = (gPgS/kT) H „„ h RF =(JlkT) x (1 —x)h /(1 xJ/kT)— (10)

tH & hRF (2)

When a sharp transition does occur, f (x) will exhibit a
singularity at a new transition temperature given by

is the reduced mean-square random field. For conve-
nience, we define h Rp

—= (h Rp )' . The crossover exponent
P is predicted to be equal to the susceptibility expo-
nent y =

4 for both the pure and random-exchange 2D Is-
ing model. Equation (1) exhibits the leading random-
exchange singularity

I
t

I
when h RF =0 dadn«e'bses

the crossover, characterized by the exponent P, to
random-field behavior when hRF&0. Crossover to new
critical behavior is expected to occur for temperatures

where J=g„(—1)"J(r),J=Q„J(r},and h =gp&SH/kT.
(In the molecular-field approximation kT& xJ and——
kO "=x

~

J
~

.) In the first sum, ( —1)"alternates on op-
posite sublattices.

V. ANALYSIS QF THE DATA

A. Random exchange

In Fig. 3 we show a semilogarithmic plot of the H =0
data versus

~

t
~

. The data for both T & Tz and T & T~
are seen to fall on a single straight line for
10 &

~

t
~

&10, indicating a symmetric, logarithmic
divergence, as was seen in the pure 2D Ising case. ' For
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and to the same expression with amplitude A' for t &0.
The results are shown in Table I. Since the ratio of A /A'
is close to the theoretical value of 1.0, it was fixed at- this
value, and the fitting repeated. The quality of the fit was
substantially unchanged. The data were also fitted with
E=0 for the same range of reduced temperature t, both
with A/A' fixed to be 1.00 and A/A' variable. For both
cases the values obtained for A' and 8 are within 5% of
those shown above. A value of A /A'= 1.02+0.01 was ob-
tained when it was treated as an adjustable parameter.
The quality of the fits was slightly worse (o.=3.10 and
2.64, respectively) than those found when E&0. For all
of the fits, T& was fixed at the value 76.35 K determined
from the peak in the d(An)/dT plot. This could be
accomplished with an accuracy of —+20 mK
(t-2.6X10 ) since the peak is sharp and symmetric.
When fits were attempted with T& variable, the program
would not converge, presumably since ln

~

t
I

is such a
slowly-varying function.

B. Random fields

FIG. 3. d(bn)/dT of RbqCoo s5Mg015F4 vs log, oH of the re-
duced temperature in H =0. Points were determined as indicat-
ed in caption of Fig. 1. Data for both T~ T~ and T & T& are
seen to fall on a single straight line for 10 &

~

t
~

& 10, indi-
cating a symmetric, logarithmic divergence, as was seen in the
pure 2D Ising case.

Cmax ~ d(hn)
dT max

=g,„—A *Inh RF +D(tH, H),

As can be seen from Eq. (5), the amplitude of the peak
in C (C,„) is expected to decrease with H as

~

t ~ 10 the data deviate from this behavior, with
those for t &0 having a steeper slope than those for t ~ 0.
It is expected that C~ for the 2D Ising random-
exchange system has a logarithmic behavior in the experi-
mentally accessible critical region. Therefore, the data
within the range 5X 10 &

~

t
~

& 10 were fitted to the
temperature integral of the expression Eq. (8) with
D(r, O) =B +Et,

d(b, n)C cc = —Ain't I+B+Et, t&0dT

where g,„ is the value of g(x) at its peak. Since the data
for all values of H are indistinguishable outside the cross-
over region, we will assume D(tH, H) to be H independent
and D(tH, H) =D(t, O) =B +Et as in Eq. (11).

Thus Eq. (12) can be written as

1.8—

TABLE I. Parameters obtained from fitting An data for
RbpCop 85Mgp»F& with H =0 to the temperature integral of the
equation

C ~ = —A In~ t ~+B+Et, t&0d(An)
dT

and the same expression with amplitude A' for t ~0. o. is the
standard deviation of the fit. A /A is treated as a variable in
the first column and is fixed in the second column.

OC

& 1.6-

Cl
a

I 4—

'Fixed.

2.01
76 35'
0.95+0.10
{1.24+0.14)& 10
(7.83+0.13)~ 10
(5.4+1.1)X 10-'

2.30
76.35'
1.00'
{1.23+0.14) && 10
(7.68+0.14)X 10
(1.91+0.36)X 10-'

IO

H (kOe)
FIG. 4. [d (b n)/dT], „vs log &o H of RbqCoo sqMgo &5F4 in ap-

plied fields H =0, 1, 2, 5, 10, 15, and 20 kOe. Points represent
the amplitude of the peak in d(hn)/dT vs T. Data for H ~2
kQe are seen to fall on a straight line with slope —A */log~pe
[Eq. (13)]. Long dashes represent the effective rounding field
H+ —(H + 1 9 )]/ kQe
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Cmax ~ d (b,n)
dT max

= —2 'lnh RF+ (13)
Similarly, a coefficient c* of the random-field rounding

can be defined in the following way. Using Eq. (7), we
can rewrite Eq. (13) as

where 8 *=g „+8. In Fig. 4 the peak amplitude
[d(b,n)/dT)], „ for all H is plotted versus logioH. For
H )2 kOe the points fall on a straight line; its slope 3'
was found by fitting the data for H )2 kOe to Eq. (13),
with the result A*=(1.56+0.13)X10, 8*=(6.37
+0.49)10, or g,„=(—1.31+0.51)X10 . The use of
this value of A * and 3 =(1.23+0.14) && 10 from Table I
allows us to check Eq. (7). We find 3/3 "=0.79+0.11,
which is to be compared with P/2=0. 875 from Eq. (7)
with P=y. This agreement is quite satisfactory, and en-
courages us to further study Eq. (5).

For H & 2 kOe, [d (b, n) IdT],„approaches a maximum
value corresponding to the H =0 peak height. Projecting
this value on to the high-field logioH behavior we find the
H =0 peak height is limited by some other mechanism
(almost certainly the concentration gradient) to a value
equivalent to that which would be produced by a field
H -1.9 kOe. The peak height at any H can be described
by an effective rounding field H* through the empirical
relation H*=(H +1.9 )'i kOe, as is shown by the
dashed line in Fig. 4.

The coefficient c of the random-field shift in T, that is
contained in Eq. (3) is predicted to be of order unity. It
was determined using the experimental results, Eqs. (3),
(9), and (10) as follows: From Fig. 2 it was found that the
peak value of d(b, n)/dT shifts from Tz ——76.35 K at
H =0 to T, =75.97 at H =20 kOe; corrections were made
for the mean-field shift bH [Eq. (9)], which is 38 mK at
H =20 kOe. The reduced field h at H =20 kOe and
T = T& is found to be h =0.0618 using pic

=7.02
and 5 = —,. The mean-square random field h RF, using

Eq. (10), kT~/J=1. 11, and T~/0=0. 56 for RbzcoFq,
is hRF ——0.0233h at T =T~. From Eq. (3) we obtain

d(An)
dT max

= —A ln(c*h RF )' ~+ (3 */P)inc*+8 *,

(15)

and define c* by (A */2)inc*+8* =8, or

—(3*/2)inc* =—g,„. (16)

Noting that the right-hand sides of Eqs. (11) and (15) are
of the same form, we can describe the field dependence of
the peak height by an effective "rounding temperature"
t*, defined to be

(17)

Using the values of g,„=( —1.31+0.51)X 10 and
A * =(1.56+0.13) && 10 in Eq. (16), we obtain
c' =5.4+

& 8. In order to check this result, the temperature
t*, for which rounding is expected, was calculated from
Eq. (17) for several magnetic field strengths. The results
t =0.013 at 20 kOe and t =0.0009 at 2 kOe agree quite
well with the onset of rounding in the two cases. Like-
wise, the rounding t* due to H*=1.9 kOe is found to be
t*=0.0009, in good agreement with the rounding in H =0
(Fig. 3).

With the use of the renormalization-group scaling rela-
tion it is evident that it should be possible to collapse the
peaks for all H&0 on to a single curve, the scaling func-
tion g(x) in Eq. (5). This prediction was tested in Fig. 5

by plotting 6 vs tH h for all H & 0 where, in analogy
with g(x) in Eq. (5),

c =[(T„TC bH')IT—~] I—hRF, (14)

and using P=y= 1.75, a value of c =0.9 o'g is found (see
Table II).

TABLE II. (a) Parameters (h, hRF, and hT ") from Eqs. (9)
and (10) and the "rounding" temperature t*, from Eq. (17), at
H =2 and 20 kOe. (b) Parameters (3 *, 8*, and g „) deter-
mined by fitting [d(hn)IdT], „ to Eq. (13), P from Eq. (7), c
from Eq. (14), and c* from Eq. (16).
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FIG. 5. d (5n)/dT+A *lnh vs t~h & of Rb2Cop 85Mgp i5F4
in applied fields H = 1, 2, 5, 10, 15, and 20 kOe, and
10 & i&

i
( 10 . A *= 1.64X 10 , P= 1.75, and

h =gp~SII/kT. Data for all H collapse on a single curve: the
scaling function g (x) from Eq. (5). A few points near the peaks
of the An data for II (2 kOe do not collapse on the others be-
cause the rounding at low fields probably results from concen-
tration gradients.
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(18)

Only data within the range 10 &
~

t
~

& 10 were plot-
ted, which is the range for which the H =0 data behave
logarithmically. The value of 3*=1.56)&10 was ini-
tially tried, which is the one obtained from the fit of C,„
to Eq. (13). The data collapsed better, however, with the
choice of 3*=1.64)&10, which is within the error in
the above determination of 3 *, and is the value used in
Fig. 5.

Plots of G~ vs t~h ~ were then made with different
values of P (1.5 & P & 2.0) and the data were found to col-
lapse best for /=1.75+0.2, confirming the prediction
that P=y. Examining Fig. 5 we see that a few points
near the peaks of the H (2 kOe data do not collapse on to
the others. This is not a surprising result, since
[d(hn)/dTj, „ for these fields did not fit the log&pH
behavior in Fig. 4, for reasons already explained.

VI. SUMMARY AND DISCUSSION

The results obtained in this birefringence study of ran-
dom exchange (H =0) and random-field (H&0) 2D Ising
critical behavior are to be compared with those previously
found' ' for 3D Ising systems. In the latter, a change in
sign of the specific-heat exponent a was found in going
from the pure (a = +0.11) to random-exchange
(a= —0.09) 3D Ising case. In the present 2D Ising
study both pure and random-exchange exponents are the
same (a=0). For both the 2D and 3D cases random ex-
change muses no rounding of the transition.

The difference between 2D and 3D Ising systems is
more pronounced when the effects of random fields on the
critical behavior are considered. In the 3D case a cross-
over was observed from random exchange to new
random-field critical behavior, with a value for a=0,
characteristic of a lower effective dimensionality; namely,
d=2. Of particular significance is that the transition
remains sharp to the extent that no rounding is observed
for values of h &0.13 (H &20 kOe) for

~

t
~

&10 . T,
was observed to shift with field as h RP', in agreement with
the predicted scaling relation with P =y, within experi-
mental error, as predicted. The amplitude of the shift was
found to be in good quantitative agreement with that
predicted for the site-dilution case. By way of contrast,
the present experiments reveal an almost immediate
rounding of the transition which occurs for h (0.003
(H &1 kOe). Despite the absence of a sharp transition,
our study reveals that crossover from 2D random ex-
change to a rounded transition does occur with a cross-
over exponent P approximately equal to the predicted
value; namely, that of the 2D susceptibility exponent

4 '

It is found that the broadening, peak height, and shift
can be described by the scaling prediction, and that, as in
the 3D case, the amplitudes of these quantities are in good
quantitative agreement with predictions for the site-
dilution case. Indeed, the data for all H ~0 has been suc-
cessfully collapsed on a single curve, the scaling function.

Thus it is clear that small random fields (hR@ « 1) do
not destroy the sharp transition in 3D Ising systems for
x &&x&, the percolation concentration, and the predicted
crossover to new critical behavior characteristic of a lower
effective dimensionality occurs, whereas in the 2D Ising
case the transition immediately rounds in the presence of
very small random fields.

In another study of the transition region in a random
2D Ising antiferromagnet in an applied field, ' the uni-
form parallel susceptibility 7 was measured for different
concentrations (x = 1.0, 0.8, 0.7, and 0.6) on the same sys-
tern as was investigated in the present experiments,
Rb2Co Mg~ F2. No attempt was made to determine
critical behavior, but rather qualitative judgments were
made about the rounding of the transition from the slope
of the 7-vs-T plots. In low fields and x (0.7, a peak in
X(T) was observed, which is seen to decrease in amplitude
and broaden with increasing H, possibly accompanied by a
small shift. This is in contrast with the pure antifer-
romagnet (x = 1) where d (7T) /d T diverges with the
specific heat exponent. FA have predicted a peak in gT
in h =0, expected to be smeared away when h&0, which
might explain what is seen, in part. However, to properly
judge whether the transition is rounded and the manner in
which crossover affects the changes that are observed in g
with increasing H, one should compare the measured re-
sults with the appropriate scaling function, namely,
d F/dH Since this. has not been done, it is difficult to
compare the X results with those we have obtained.

Neutron studies ' of the shape and width of the mag™
netic Bragg peaks have been made on Rb2Co07Mg03F4.
From these measurements the field and temperature
dependence of the inverse correlation length ~ have been
obtained. The results indicate that the random fields de-
stroy long-range order (~ increases with increasing Hp).
On the face of it, this would seemingly indicate complete
agreement with our study and the measurement of 7 as to
what transpires in a 2D Ising system in random fields.
However, a field dependence to ~ was also found in the
neutron studies of some 3D Ising systems (Fep 35Znp65F2
and Cop 35Znp 65Fz) but not others (Mnp 65Znp 35F2),
whereas our previous birefringence studies' ' of the
Mn Zn~ F2 and Fe Zn& F2 indicate no destruction of
the sharp phase transition occurs in random fields. The
resolution of this dilemma is not yet at hand.

Although our experiments are in accord with some of
the theoretiml predictions, it is clear that further study of
the random-field problem is needed. To that end we in-
tend to explore the H and x dependence of the
birefringence in Rb2Co Mg~ F4 values of xz (x (1.0.
It would also be extremely valuable to make detailed com-
parison of the correlation length with the birefringence in
the critical region, to understand the role domains play in
the destruction (rounding) of the phase transition.
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