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The existence of two-dimensional collective pinning has been experimentally confirmed by
measuring the pinning force F~ in superconducting amorphous films of transition-metal —metalloid
alloys (Nb3Cxe, Nb3Si, Mo3Si) as a function of perpendicular field, temperature, and thickness of the
specimens. The field and temperature dependence of F~ can be well explained if it is assumed that
the pinning defects in these amorphous superconductors are quasidislocation loops of sizes compar-
able to the superconducting coherence length. Structural relaxation studies in Nb3Ge show that
these defects are stable against annealing at temperatures up to at least 0.8 of the recrystallization
temperature. The possible effect of randomly distributed pinning centers (random field) on the
phase transitions of a two-dimensional flux-line lattice is briefly discussed.

I. INTRODUCTION

Recently we reported on some experimental evidence
for two-dimensional (2D) collective pinning in amorphous
superconductors' (henceforth referred to as I). The con-
cept of collective pinning, introduced by Larkin and
Qvchinnikov (LQ), explains flux pinning in terms of the
break down of the long-range positional order of the flux-
line lattice (FLL) due to the interaction with a dense sys-
tem of randomly distributed pinning centers. The FLL
spontaneously breaks up into domains or correlated re-
gions in which short-range order persists. The correlation
lengths perpendicular to and parallel with the field direc-
tions are, respectively, denoted by R, and I,. The net
pinning force on a domain is proportional to X', where
N is the number of pinning centers per domain. In this
sense the LO theory is a special case of a more general
theory, the random-field model that describes various
systems in condensed-rnatter physics.

Owing to its statistical character, collective pinning
does not require a threshold criterion, which is typical for
single-particle pinning in dilute pinning systems. ' As
clearly demonstrated by Kramer, most strong pinning
systems do not fulfill this threshold criterion. The only
experimental evidence for the existence of a threshold was
obtained by Kerchner et al. very close to the upper criti-
cal field in a carefully prepared Nb sample with extremely
small critical currents at lower fields. In other model pin-
ning systems (Nb with either dislocation loops or voids as
the major pinning centers ) the 3D LQ collective pinning
theory predicts volume pinning forces several orders of
magnitude smaller than observed experimentally. This
discrepancy originates most likely from the rale defects of
the FLL (FLD) play in the pinning phenomena, leading to
a decrease of the correlation lengths and of the effective
elastic moduli of the FLL. ' To understand flux pinning
it is of great importance to confirm experimentally that
collective pinning does exist in systems where FLD are
not likely to occur, namely, in materials that exhibit an a
priori small critical current. We chose therefore amor-
phous transition-metal-based (TM) superconductors, such
as amorphous Nb3Ge, Nb3Si, and Mo3Si in the form of

sputtered thin films with thickness ranging from 0.2 to 3
pm. In I we briefly pointed out the advantageous proper-
ties of these materials which make them very good candi-
dates for observing collective pinning. Some of the re-
quirements and corresponding characteristics are dealt
with in more detail in Sec. II.

Because of the geometry of the experiment in which the
magnetic field is applied perpendicular to the film surface,
the weak pinning, and the relatively large tilt modulus of
the FLL," c44, no serious distortions can develop along
the field direction. As a result, I., »d, the thickness of
the sample, so that the flux-pinning problem becomes two
dimensional and the only relevant elastic modulus of the
FLL that remains is the shear modulus c66. The formulas
for 2D collective pinning are relatively simple. The only
parameter of the theory is the quantity W(0):n„(f ),—
where n.„ is the volume density of pinning centers with ele-
mentary interaction f. The average is taken over a lattice
cell of the FLL. A derivation is given in Appendix B.
The experimental results and their qualitative analysis in
terms of the 2D LO theory are presented in Sec. IIIA.
An enhancement of the observed pinning force above the
2D LO prediction on approaching the upper critical field
@OH, 2 is explained by a reduction of the shear modulus
due to the increasing disorder in the FLL. ' This softening
of the shear modulus is discussed in Sec. III B. The prop-
erties of the FLL very close to p~, 2 and at very small
fields are treated, respectively, in Secs. IIIC and IIID.
Straight flux lines in a thin film form a 2D lattice in
which topological phase transitions are theoretically
predicted. ' In Sec. IIIE we investigate the possibility of
explaining the peak close to poH, 2 in terms of the theory
for 2D melting. ' ' The condition for the occurrence of
2D collective pinning (L, »d) is expressed in Sec. IIIF
in experimentally accessible quantities.

Section IV is devoted to a discussion of the origin of the
elementary pinning interaction in the amorphous super-
conductors we studied in this work. It provides important
information about the defect structure of transition-metal
glasses which can be compared with computer simula-
tions' and models developed for ferromagnetic glasses. '

Additional information on the defect structure and the su-
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perconducting properties after structural relaxation is ob-
tained from an annealing sequence carried out on one of
the Nb36e samples at a temperature well below the glass
temperature. The results of this and some other structural
relaxation experiments are presented and discussed in Sec.
V.

II. SAMPLE PREPARATION
AND CHARACTERISTICS

The amorphous Nb„Ge, Nb„Si, and Mo„Si (nominally
denoted by x =3) samples were prepared by rf sputtering
in krypton on sapphire substrates cooled by liquid nitro-
gen' (typical rate -4 A/s). The composition of these al-
loys as determined by electron microprobe analysis was,
respectively, x =3.6, 2.8, and 3.5. No detectable amounts
of krypton or oxygen could be traced within the resolution
of, respectively, 0.1 and 0.5 wt. %. Metal masks provided
strips of 4)&22 mm. The amorphousness of the thicker
samples was checked by large-angle x-ray scattering exper-
iments. ' We also prepared some thin (up to 30 nm)
Nb3Ge layers on silicide windows (thickness of 50 nm) for
transmission electron microscopy (TEM). No traces of
any microcrystalline structure could be detected within
the experimental resolution of 1 nm and 1 vol. %.

The samples were mounted on a copper block with a
backing of thermal compound in between. The tempera-
ture in ambient field was determined with a calibrated Ge
sensor. In applied fields it was controlled by means of an
electronic feedback system consisting of a capacitor sen-
sor, a Lake Shore controller, and a heater on the copper
block. The sample surface was perpendicular to the axis
of a 9-T superconducting magnet. The resistivity and the
critical current measurements were carried out in a four-
point geometry with a spacing of 6 mm between the volt-
age probes (spring contacts). In some cases (NbiSi 27C
and 31B) indium pressure contacts were used. The thick-
ness was measured with a Tencor alpha-step thickness
monitor.

It is experimentally established that these Inaterials are
weak-coupling type-II superconductors in the extreme dir-
ty limit. ' This feature enables us to determine several
important superconductor parameters from theoretical ex-
pressions, such as the Ginsburg-Landau (GL) parameter s,

the coherence length g(0), the penetration depth A,(0), and
the thermodynamic critical field poH, (0) at T=0. A
summary of these expressions and their sources is given in
Appendix A. It shows that the only experimental quanti-
ties required are the critical temperature T„ the resistivity
po, and the slope of the upper critical field poH, z vs T at
T,: p+—H, z/dT

~
z. A survey of the properties of all

the as-received samples on which we report here is given
in Table I. The computed density of states (not listed in
Table I) for amorphous Nb3Ge, X'(0)=2.22X 10
states J ' m spin ', is consistent with the measured
Sommerfeld constant for this material. '

The transition temperature was defined as the midpoint
of the measured R ( T) curve and the transition width b, T,
as the temperature difference between 0.1R„and 0.9R„,
where R„ is the normal-state resistance. Apparently, from
ET„ the thicker samples are somewhat less uniform,
probably due to fluctuations in the chemical order sup-
posedly related to the less constant sputtering conditions
during longer deposition times (for instance, 100 min for
Nb3Ge 176A). The superconductor characteristics of
Nb3Ge and Nb3Si are almost equivalent, Mo3Si, however,
has a T, and B,(0) roughly twice as large.

The requirements to observe 2D collective pinning are,
in addition to the condition L, »d: (i) no single-particle
pinning, (ii) no FLD, (iii) no edge pinning, and (iv) no pin-
ning by surface roughness. The condition L,, »d can
only be checked retrospectively, but turns out to hold for
all our samples as will be shown in Sec. III F. It is very
likely from the relatively low critical currents J, encoun-
tered in these materials, that single-particle pinning and
FLD are not significant. Owing to the experimental
geometry the applied magnetic field poH, must be equal
to the flux density B in the sample. Under the condition
2@i,»ao ——1.07(+o/B)' (ao is the FLL parameter and
@o the flux quantum), it is found from the work of
Brandt ' (see also p. 341 of Ref. 7) that the contribution
due to edge pinning is negligibly small. Because in our
samples A, and p+H, 2/dT

~ z —are so large, the condi-

tion 2m'. »ao is not fulfilled only close to T, for small
reduced fields b =B/B,2(0. 1 (where B,2=@OH, 2). In
addition, the flux-hne —edge-surface interaction between
the edge surface and a flux line is essentially magnetic

TABLE I. Properties of the amorphous samples.

Material

Nb3Ge

Sample

176A
175A
1748
191B

2.92
1.24
0.62
0.46

+C

(K)

4.25
3.99
3.86
4.00

hT,
(rnK)

170
77
10
12

po

(pQ m)

1.65
1.57
1.64
1.66

podH„/dT ~, —
(T/K)

1.83
2.01
2.04
1.97

61
63
65
64

g(&)

(nrn)

6.5
6.4
6.5
6.4

A, (0)

(pm)

0.65
0.66
0.68
0.68

8,(0)
(m T)

52
52
SO

50

Mo3S& 20B 0.46 7.69 130 1.48 1.86 4.8 0.46

Nb3Si 27C
26A
318
29B

2.48
0.96
0.71
0.22

3.52
3.19
3.36
3.20

130
22
45
14

1.80'
1.80
1.80'
1.81

2.02
1.85
1.94
1.73

67
64
66
63

6.8
7.5
7.1

7.7

0.74
0.78
0.77
0.79

44
38
40
36

'Not measured; value for Nb3Si 26A is assumed.



P. H. KES AND C. C. TSUEI 28

with characteristic range A, =1 pm. Hence, the effect of
small edge irregularities (size «A, ) is averaged out over
distances of order k, whereas large irregularities do not
contribute essentially to the pinning force. Recent experi-
ments show that edge pinning due to cutting strips of
amorphous MoRu8 is considerably stronger than the pin-
ning we encounter in our samples.

Surface roughness may contribute largely when flux
pinning is measured in a perpendicular field. It may cause
FLD as well. Scanning electron microscopy did not reveal
any surface irregularities, but this technique has a limited
resolution of only 2 —4 nm. Recently, however, 8arbee
and Keith reported on thickness uniformity to tenths of
angstrom units in sputter-deposited amorphous layers.
The free-surface smoothness essentially replicates the
smoothness of the substrates. Hence, the quality of the
substrates is of essential importance. We used polished
single-crystalline or polycrystalline sapphire substrates,
the latter were selected for large, almost identically orient-
ed grains. They all were cleaned very carefully before film
deposition. From small-angle x-ray diffraction studies by
Pomerantz and Segmuller it is known that the surface
roughness of similar substrates such as silicon and quartz
is smaller than 1 A. It is thought that the roughness is
steplike and has a very low areal density, but no definite
experimental evidence is available at present. In con-
clusion, we believe that sputter-deposited amorphous
transition-metal superconductors on well polished and
cleaned substrates are the best obtainable samples for the
study of 2D collective pinning phenomena.

current behavior known as the flux-flow regime. There-
fore J, cannot be sharply defined. It turned out, however,
that the characteristic features we discuss in this section
are not influenced by this ambiguity. The pinning force
per unit volume is defined by Fz ——BJ,. Reduced pinning
forces F~(b)/Fz(0. 4) are plotted against the reduced mag-
netic induction in Figs. 2(a)—2(c), respectively, for Nb3Ge
1918, Mo3Si 208, and Nb3Si 298 at several temperatures.
All the samples studied in this work display the same
characteristics as those obtained for Nb3Ge 176A, 175A,
and 1748 reported in I. Again, three regimes can be dis-
tinguished: 0.1&b &bRN, bRN &b &bp, and b~ &b &1,
where bRN is the field that marks the onset of the peak in
F~(b) and b~ is defined by linear extrapolation as indicat-
ed by the dotted lines in Fig. 2(a).

A. The region below bRN

The solid and dashed lines in Figs. 2(a) and 2(b)
represent the evaluation of the data in terms of the 2D LO
theory using Eqs. (Bl 1) and (B12) together with Brandt's
expression for c« in the large ~ limit

c66 ——
~ b (1—0.29b)(1 b)— (1)

4pp

Since we do not know a priori what causes the pinning in
our samples we inserted for W(0) the two possible rela-
tions related to reasonably well-established forms for
f~(b), namely '

III. EXPERIMENTAL RESULTS AND DISCUSSION
W(0) =C„(r)b"(1 b)— (2)

An example of typical I-V curves is given for amor-
phous Nb3Ge 191Bat t = T/T, =0.5 in Fig. 1. The 1-pV
criterion defining the critical current and current density
I, and J, is denoted by the crosses. There clearly exists a
transition region from zero voltage to linear voltage-

with either n =1 or 3. For both cases W(0) was adapted
at b =0.4. It is clear from Figs. 2(a) and 2(b) that below
bRN the case n =1 gives excellent agreement with experi-
ment, whereas n =3 deviates for all fields. As follows
from Fig. 2(c), the agreement for Nb3Si is less satisfactory
which we were able to attribute to the contribution of
more than one predominant pinning mechanism. In this
case W(0) is given by

80- W(0) =(Cib+C2b )(1 b)— (3)

60
0

X

X~ eo

20-

00

0.97

0.84
0.56
0.39
b=0.O6(rnO)

0.4 0.8 I.2

FIG. 1. Representative examples of I-V curves (recorder
traces) for Nb3Ge 1918 at t =0.5. The curves are labeled by the
reduced field values b =B/B, 2 at which they were recorded.
Every curve is shifted by a vertical voltage offset. For b =0.06
the I is divided by 10. At b =0.56 FLL rearrangement at low
velocities is observed. The crosses denote the 1-pV criterion
for I, .

A detailed discussion of this and related phenomena (in-
fluence of H doping, for instance) is planned to be the sub-
ject of a forthcoming paper.

Confirmation of the 2D character independent of the
origin of the pinning is provided by a plot of Fz(b =0.4,
t =0.7)/8, (0.7) vs d ', as shown in Fig. 3. The results
for Nb3Ge agree very well with the expectation F~ ~d
[Eq. (B16)]. Again, the results for the Nb3Si samples de-
viate from this prediction, although the general trend is
observed. The larger fluctuations from sample to sample
suggest the Nb3Si samples were less consistently prepared
than the Nb3Ge specimens, which have very good compar-
able characteristics. We should note here that pinning by
surface roughness alone would also result in E~ ~d
but only if d »A, , which does not apply for our samples.
Besides, one must assume a very rough surface structure
to explain the magnitude of F~. Therefore it is ruled out
as a possible source of flux pinning in our specimens, but
it might be of importance for splat-cooled amorphous su-
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FIG. 2. Normalized volume pinning force vs b. (a) Nb3Qe 1918 at t =0.79 (circles), t =0.70 (triangles), t =0.50 (squares), and
t =0.40 (diamonds). The solid and dashed lines represent the 20 LG theory with 8 (0)=C„(t)b"(1—6) with n =1 and 3, respec-
tively. The other lines are guides for the eye. The dotted straight lines are extrapolations to define b~. The field at which the data
start to deviate from the solid line is defined as bRN. (b) Same for Mo3Si 208 at t =0.75 (circles), t =0.50 (triangles), and t =0.25
(squares). In the latter cases B,z could not be measured and therefore was obtained from podH, z/dT

~
r and the di—rtp-limit

Ginzburg-Landau- A'brokosov-Gor'kov (GLAG) theory. ' (c) Same for Nb3Si 298 at t =0.80 (circles) and t =0.60 (triangles). In
this case only the case n = 1 is depicted. It does not give a good fit due to the contribution of more than one pinning mechanism.
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FIG. 3. Plot of F&/B~ vs d ' at b =0.4 and t =0.7 for
Nb3Ge (circles) and t =0.65 for Nb3Si (triangles). The division

by B,(t) accounts for most of the small variations in the super-
conducting parameters of the samples, like T, and B,(0).

perconductors.
More insight into the experimental results can be ob-

tained by assuming the 2D LO theory describes the flux
pinning, so that W(0) and R, can be computed from the
data. The temperature and field dependences of W(0)
provide valuable information about the defect character of
our amorphous superconductors, which will be dealt with
in the next section. The relative size of the correlated re-
gions R, /ao as a function of b is depicted f'or b & bRN by
the open symbols in Fig. 4. We observe a strikingly uni-
forrn behavior irrespective of temperature or material.
According to Eq. (818) R, /ao is inversely proportional to
the relative displacement per flux line and therefore the
data in Fig. 4 roughly reflect the functional dependence of
the shear modulus on b [Eq. (1)] depicted by the dashed
line. It demonstrates the increase of positional disorder
with decreasing e66 for both small and large values of b.

B. The region of the peak

It is observed that for all samples and temperatures the
peak starts to come up at values of R, /ao-15 —20 at
b =bRN -0.7—0.8. Because it is well established that in
highly disordered solids and glasses the elastic moduli are
softened with respect to the ordered state, ' ' we sug-
gested in I that the peak is caused by softening of the
shear modulus due to the increasing disorder. Within the
framework of the 2D LO theory one other possible ex-
planation is that W(0) increases in the peak region, but in
the case of small defects ( (g) there is no reason to expect
changes in the long-wavelength behavior of the pinning
correlation function with increasing disorder. Therefore
we discard this possibility and assume that W(0) for

40- ~DO

30-
o

Nb&Ge

20- ~ 0

~l
l0~

I
I

O
—20

—lo

0 0.5 I.O

bRN &b &b~ is given by its extrapolation from the field
range below bRN In the cases .of Nb3Ge and Mo3Si this is
simply described by Eq. (2) with n =1. For Nb3Si we
used Eq. (3). From Eqs. (813) and (814) the renormalized
shear modulus c~6 as well as R, /ao can then be obtained
by substitution of the experimental E&'s. In Fig. 4 the
data determined in this way are depicted by the filled
symbols. We note that approaching b =bz the values of
R, reduce to 1 —2ao, which means that the FLL has be-
come amorphous at and beyond bz.

The reduction of the shear modulus with increasing dis-
order is displayed by a plot of c66/c66 vs (R, /ao) ' as
shown in Fig. 5 for the samples discussed in this paper.
In Fig. 6 the results at t =0.7 of the four Nb3Ge samples
with d =0.46, 0.62, 1.2, and 2.9 pm can be compared.

Bcz
FIG. 4. Correlation length R, relative to ao plotted vs b.

Data for Nb3Ge 1918 at t =0.79 (circles), t =0.70 (triangles),
t =0.50 (squares), t =0.40 (diamonds), for Mo3Si 208 (note the
shift in vertical scale) at T =0.75 (inverted triangles); for Nb3Si
29(8) at t =0.80 (canted triangles) and t =0.60 (hexagons).
Open symbols refer to the region below the peak in which the
2D LO theory holds with c« from Eq. (1); filled symbols refer
to the region of the peak in which c66 is reduced due to pinning
renormalization. The field dependence of c66 (in arbitrary units)
as given by Eq. (1), is depicted by the dashed line.
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FLL vs (R, /ao) ' displaying the amount of disorder in the
FLL. Same samples and symbols as in Fig. 4 except for Nb3Si:
t =0.80(A) and t =0.60 (Q). The lines are guides for the eye.
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Three features can be deduced from these figures. The
reduction sets in very sharply and levels off at values be-
tween 10% and SO%%uo. There is no clear correlation with
temperature, but there seems to be a relation between the
thickness and the ultimate values of c66/c66.

In the onset region of the peak, corresponding to the
field range where c66/c66 drops sharply, we often ob-
served instabilities in the I-V curves at low voltage level.
A typical example is shown in Fig. 1 for b =0.56. When
the current ramp is interrupted, the voltage decreases gra-
dually with time, approximately proportional to
exp( t/r) with —~-7.5 s, to a limiting value that repro-
duced on reversal of the current ramp. Possibly, the FLL,
when it is moving with small velocity, is able to adjust it-
self better to the random pinning field, thereby reducing
the average size of the correlated regions and hence the
average value of c66. This avalanching process emerges
until a dynamic equilibrium is attained. At higher values
of b this phenomenon disappears in agreement with the
leveling off of the decrease in c66/c66 for R, (Sao.

A crossover from a two-dimensional to a three-
dimensional collective pinning regime should be con-
sidered as a possible mechanism for the peak effect. We

(R, /a, )

Plot o«66K'66 vs (&, /ao) ' for the Nb3Cxe samples
at t =0.7: 176A (inverted triangles), 175A (triangles), 174B (cir-
cles), and 1918 (squares).

note that the three-dimensional collective-pinning theory
predicts an exponential decrease of R, and L„due to the
dispersion of the elastic modulus c44 near b =1. If the
2D-3D transition occurs when L,, =d, it should occur at
higher fields for thinner samples. However, as seen from
Table II, the opposite is observed. Namely, bRN increases
with thickness. Another argument against this mecha-
nism is provided by the fact that R, and L, as determined
from the 3D collective pinning expressions are, for all
fields, about 4 orders of magnitude larger than those ob-
tained from the 2D theory for R, and Eq. (10) for L, .

C. The region above the peak

For fields larger than b& the flux lines are optimally
adapted to the randomly distributed pinning centers.
Therefore R, /ao is a constant in the field range b~ & b & 1.

TABLE II. CoInparison of the 2D melting field computed from Eq. (6) for two values of the renor-
malization parameter A2 with the experimentally determined fields bRN and b~ of the Nb3Ge samples.

Sample
Nb3Ge

3.16
2.78
2.00
1.60

(1—b )

A2 ——0.5

0.177
0.147
0.109
0.095

(1—b )

A2 ——1.0

0.125
0.104
0.077
0.067

(1—bRN)

0.28
0.25
0.24
0.24

(1—bp)

0.10
0.08
0.07
0.07

3.48
2.71
1.93

0.223
0.129
0.094

0.158
0.091
0.066

0.25
0.18
0.18

0.07
0.05
0.04

175A 3.58
2.80
2.00

0.148
0.089
0.065

0.105
0.063
0.046

0.16
0.12
0.15

0.025
0.03
0.025

176A 2.99 0.058 0.041 0.10 0.015
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For this amorphous FL structure the 20 theory predicts

E~ = [ W(0)/dA, (bp )]'~

which agrees with the linear decrease ~(1 b—) we ob-
served in all cases. There is no correlation found between
the nonuniformity of the samples, of which hT, in Table
I is an appropriate measure, and the widths of the field re-
gion in which Ez drops to zero. However, with larger AT,
more rounding is observed at b =b~ and b = I, which can
be understood in terms of a larger nonuniformity. The
sharpness of the drop itself is not affected. This feature
provides us with a check on the prefactor C„(t) in Eq. (2).
As will be discussed in Sec. IV, satisfactory agreement is
found for n =1. Therefore, the conclusion so far is that
all phenomena observed in our samples self-consistently
demonstrate the 2D collective pinning behavior. In most
cases the pinning is governed by the parameter W(0) as
given in Eq. (2) with n =1, in some cases we obtain a
better agreement by assuming a second pinning mecha-
nism so that W(0) is given by Eq. (3).

D. The region b )0

Not much is known about the pinning behavior for very
small fields where the flux lines are well separated. Since
c66 goes to zero in this region, R, /ao tends to decrease
with decreasing fields as seen in Fig. 4. It is expected
that eventually the FLL becomes amorphous, so that pin-
ning is described by Eq. (4). Again R, =ao, but W(0) is
now essentially field independent. This results in a pin-
ning force Ez ~ao '

ccrc

b, which is experimentally ob-
served, although we did not study this field region in great
detail. Note that the critical current diverges as

E. Pinning enhancement M, 2.- Lattice softening, melting,
or thermal activation of disorder?

By assuming the softening of the shear modulus we
were able to explain the pinning enhancement above bRN.
Although the reduction we found for c66, agrees in magni-
tude with reductions of 30—60% obtained from computer
simulation' ' for glassy solids, this result may be rather
fortuitous because of the different dimensionality and the
quite different nature of the interaction between flux lines,
which is very long range, especially for thin films and for
b —+1. The effective range of the interaction ' ' can be
estimated by

where A, (T) is the weak-field penetration depth. At bRN,
for example, A,&,~~-2', =400ao. From Brandt's paper
on c66 one can conclude that the shear modulus, especially
for ~ &&1, is predominantly determined by the short-range
attractive part of the model potential. There is, however,
neither a quantitative agreement nor a correlation between
this range and R, at b =bRN. In a subsequent paper"
Brandt predicts that the shear modulus for shearing of
closest-packed planes decreases by more than 50% if the
wave vector k of the periodic displacement field ap-

proaches the Brillouin zone at 2' jaoM3 .For shearing
perpendicular to this direction on the other hand, a large
increase of the shear modulus is obtained. Very likely, the
short-range order correlation length R, is related to some
characteristic wavelength of the displacement field. In
addition, the FLL will conform itself to the distribution of
the pinning centers in such a way as to yield the smallest
increase in elastic energy. Hence, it will take as much ad-
vantage of the decrease of c66(k) as possible. Brandt's
theoretical results, therefore, might support our view that
the enhancement in the pinning is caused by a decrease of
c66 for short-wavelength distortions. It is not clear, how-
ever, how this relates to the abruptness with which the
reduction of C66 sets in, as is displayed in Figs. 5 and 6.
This might be an indication that some other mechanism,
related to a phase transition of the FLL is responsible.

The FLL in our samples form a 2D lattice in which, in
case there is no flux pinning, one may expect to observe
20 phase transitions predicted by Kosterlitz and Thou-
less, ' Our samples are too thick to satisfy the require-
ment '

A.J ff) w, the width of the sample, so that the
vortex-antivortex transition in zero field is experimentally
not accessible for us. But we should be able to see the 2D
melting transition that occurs when a fraction of the
thermally excited dislocation pairs dissociate. ' ' For a
measuring temperature T, one obtains from Eq. (2.17) of
Ref. 14 an expression for the reduced flux density b at
which the melting transition should occur

B,2(T)T
(1 b~) =0.5— (6)

A2B, (T)d
The quantities d, B„and B,z are measured in pm, mT,
and T, respectively. A2 is a parameter that accounts for
the renormalization of the shear modulus due to the
bound dislocation pairs. Its value is expected to lie be-
tween 0.4 and 1 and it is slightly dependent on the mag-
netic field. ' In Table II the computed values of (1 b~)—
for A2 ——0.5 and 1 are summarized and compared with the
values of (1 bRN) and (—1 b~) as meas—ured for the
Nb3Ge samples. Here, bz for Nb3Ge 19 18 was somewhat
differently defined as the field where the actually mea-
sured Fz is maximum. The only positive correlation is the
order of magnitude agreement and the thickness depen-
dence, although neither for (1—bRN) nor for (1 bz) the-
a '~ behavior is found; both rather follow a d ' depen-
dence. The most obvious disagreement is the temperature
dependence of the computed melting fields versus the
nearly constant bRN's and b~'s. Therefore, from the com-
parison of fields we cannot conclude in favor of a melting
transition neither at bRN nor at b~. Moreover, as follows
from Fig. 1, we could not detect any voltage rise well
below the critical current for fields below and beyond
bz

——0.93, even if the resolution was increased to 20 nV.
In case of melting, the shear modulus should drop to zero
leading to a flow of flux lines which we suppose to be
detectable with our conventional measuring technique.

The reason we fail to find any convincing indication for
melting must be the action of the pinning centers that give
rise to correlated regions. If one visualizes these regions
as differently oriented grains with a nearly perfect FLI
inside, separated by grain boundaries, one can imagine
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Using

pao

Pk~ T/a o+ ( W, )'

(W )'"
dRc

(8)

(9)

and the requirement W, =dW(0) o: b(1 b), one c—an
eliminate W, from Eq. (8) and obtain the proportionality
constant of W, as well as the parameter P in an iterative
procedure carried out at two values of b, one at =0.25 far
below bRN and one close to b =bz. In this way we got,
for instance, an excellent fit of the entire Fz(b) curve up to
bz for Nb3Cre 191B at t =0.7 with P=1.4. Within 10%
the same W(0) and R, /ao were retained for fields below
bRN. For ]M=dc66 the nonrenormalized values of Eq. (1)
were used. Applying the same routine with the same P of
1.4 at t =0.4 and for Nb3Ge 176A at t =0.7 did not yield
a very satisfactory result. We therefore do not want to
claim that the mechanism expressed by Eq. (7) can univer-
sally explain the pinning behavior in our samples. We
merely want to point out that no satisfactory theory exists '

today that combines the elements of collective pinning
(random field) and the thermal activation of disorder (en-
tropy term). An approach we attempted in this paragraph
may eventually be justified by theory. From an experi-
mental point of view it would be desirable to measure c66
as was done by Fiory for granular Al films. Also, com-
puter simulations will be of great use to check our as-
sumption for the softening of the shear modulus.

F. Condition for 2D collective pinning

We are now in a position to derive the criterion to ob-
serve 2D collective pinning, namely L, »d. An estima-
tion of L, is obtained by comparison with the 3D LO

that the thermally excited dislocation pairs are not free to
move throughout the entire sample, but are limited to the
grains in which they were activated because of the action
of the grain boundaries that leads to pinning of disloca-
tions. So, the interaction with the disordered boundaries
of the correlated regions might prevent the detectable flow
of flux lines. Recently, Fisher, Halperin, and Morf
pointed out that the melting criterion (in absence of pin-
ning) is the same for grain boundary mediated melting. In
the 2D collective pinning no account was taken of the de-
crease of free energy arising from the entropy related to
the disorder. It, therefore, actually is a T =0 theory. In a
simple attempt to combine collective pinning (equal to
random field) with the thermal activation of grain boun-
daries we arrive at the following expression for the in-
crease in free energy per unit volume ' (see Appendix B
for notation):

'2

5F=~ ——( W )
' —P (7)

ao ao k~T R,
4 R, ' ' R, R ao

where k~ is the Boltzmann constant and P is an adaptable
parameter of the order 1 proportional to (ao/s)ln(s/ao),
in which s is the spacing of the dislocations in the grain
boundaries. Minimizing with respect to R, yields a
temperature-dependent correlation length

theory, ' which suggests quite naturally
1/2

(b)'~~
Lc= Rc =3m Rc .

1 —b
(10)

2~2

f~ d] C( 1 —b)D bp/ao2 (12a)

Since R, o: (1—b) and R, & 2 pm at b =0.1, L, & 100 ]Mm,
much larger than the thicknesses of our samples. In order
to translate the condition L, »d in direct accessible quan-
tities, we present

J,' «0.28' d

with J, in A/m, B in T, and d in m. In most cases8' =1, so that for pinning systems with J,—10 A/m
the samples must be much thinner than 6 pm. For amor-
phous superconductors J, 's of —10 A/m are reported3
leading to d «600 pm. But it should be pointed out
again, that a smooth surface and a » 1 are important con-
ditions as well (Sec. II).

IV. THE PINNING FORCE IN TRANSITION-
METAL GLASSES

As in crystalline materials flux pinning in supercon-
ducting metal glasses arises from interactions with de-
fects. The nature of defects in amorphous materials is
still a subject of numerous investigations, mostly by com-
puter modeling. The work of Srolovitz et al. concen-
trates on structural defects as the regions in which the
internal stresses and local symmetry coefficients on an
atomic scale deviate significantly from their average
value. The work of Chaudhari et al. ' is devoted to sta-
bility computations of larger scale defects such as edge
and screw dislocations, vacancy clusters, and dislocation
loops. The conclusion of these recent studies is that all of
these defects are stable at zero temperature. Kronmiiller
et al. ' ' were able to describe the magnetic saturation of
amorphous ferromagnets by proposing clusters of quasi-
dislocation dipoles as the predominant defect structure.
For sputter-deposited films we rather think of quasidislo-
cation loops, with the plane of the loop parallel to the
plane of the film, as the defects responsible for flux pin-
ning. But we also should consider inclusions of sputter
gas, though they are supposed to be very small (of atomic
size) and for alloys it might be that the fluctuations in
composition and/or chemical order (microcrystallites,
comparable to precipitates in crystalline substances) con-
tribute to the pinning. As in the case of domain wall pin-
ning in ferroinagnets, we expect that only the more ex-
tended dislocation loops [of sizes comparable to g(0)] can
give a reasonable contribution to the pinning force. As to
the microcrystallites, we know they were not detectable
with the TEM analysis nor with x rays, which limits their
size to less than 1 nm and their volume density to at most
1%.

For dislocation loops, vacancies, and precipitates
reasonably well-established expressions for the elementary
pinning force f~ are available in the literature. The first-
order elastic interaction (volume effect) of a dislocation
loop with diameter D has been derived by Pande and
Kramer. ' For D «ao it is given by
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W~(0) =Cgi(t)b (1 —b) (12b)

Here bo is the Burgers vector and C =p(1+U)5e, o/(1 —&)
with p the shear modulus and v the Poisson ratio of the
superconductor. The volume dilatation 5E'„p can be related
to the pressure dependence of 8, by 5e, o

——(8, /2po)
&&dB, /dp leading to

2
d8,

C„(r)~n„D 8„(r)8,(r)
dp

This Cz(t) is equivalent to C~(t) in the preceding section.
%'e do not take into account the second-order elastic in-
teraction of a dislocation loop here, although it has been
reported ' ' to be somewhat larger, but it essentially has
the same dependences on loop diameter, field, and tem-
perature. It should be noted that any numerical result we
obtain from the following analysis is only a rough esti-
mate.

The expression for the elementary interaction of vacan-
cies or voids of volume D has been derived by Campbell
and Evetts and Kramer

3

O 5—

D

~o
Q

o~
I O ~

rw

I.O—
cJ

CQ
CV

JD
I

C)

NbpSi 29B~

—I.O

/
Mo ~Si 208~ —0.5

—0

fp, vac g (1 b)D 8,—/po
Qp

(14a)
Nb AGO I 91S

which results in

8'„.,(0)=C„.,(r)b'(1 —b)', (14b)

where C„„(t)=C3(t) in Sec. III.
For small precipitates Kramer and Freyhardt showed

that fz ~, is considerably smaller than fz „„,roughly by a
factor (D/g) . In a forthcoming paper we plan to discuss
the elementary interaction of vacancies and precipitates
more extensively, taking into account some doubt that has
been raised ' about the validity of Eq. (14a). As a matter
of fact, Thuneberg et al. very recently pointed out that
D3 should be replaced by D go or by (Ref. 10) D g(0).
For the discussion here it suffices to point out that the in-
teraction with precipitates and vacancies leads to a
b (1 b) field d—ependence of 8'(0) [Eq. (14b)]. In Sec.
III (Fig. 2) we demonstrated that this behavior is not ob-
served in any of our samples. In addition, a quantitative
analysis shows that we have to assume either much larger
defect sizes or much larger densities than the limiting
values set by the TEM observations, in order to account
for the experimental value of 8'(0) at b =0.4. For exam-
ple, assuming a vacancy diameter of 0.3 nrn, a density is
required so large that the mutual distance of the vacancies
should be 0.3 nm as well, which makes no sense at all.

As was noted in Sec. III, the best way of analyzing the
pinning characteristics is provided by a plot of
8'(0)/(I b) vs b as gi—ven in Fig. 7 below the peak re-
gion. For Nb3Ge and Mo3Si Cq~(t) is dete™~edfrom the
slope of the straight lines through all the data points, for
Nb3Si only the data below b =0.5 were considered. For
t =0.7 the resulting values of Cz~ are listed in Table III.
These can be directly compared to the values we obtained
from the linear behavior above b =bz as discussed in Sec.
III C. Taking into account the experimental accuracy one

I .00 0.5
b= Bc~Bc

FIG 7 Plot of fY(0)/( 1 6) 8 (t) vs 6 as obtained from Fp
vs b (Fig. 2) and Eqs. (813) and (814). Results for N13Ge 1918
at t =0.79 (circles), t =0.70 (triangles), t =0.50 (squares),
t =0.40 (diamonds); for Mo3Si 208 at t =0.75 (inverted trian-
gles), t =0.50 (half-filled circles), t =0.25 (half-filled squares);
for Nb3Si 298 at t =0.80 (canted triangles) and t =0.60 (hexa-
gons).

may conclude that the correspondence is very satisfactory.
In order to compare the characteristics for the different

samples, we prefer to look at Cz~/8, 8,2, because this ab-
sorbs most of the temperature dependence (the data were
sometimes taken at slightly different reduced tempera-
tures) and the small differences in the superconducting
properties of samples of the same material. The quantity
dB, /dp in Eq. (13) plays a minor role, since it has been
empirically established by Rohrer that it is roughly pro-
portional to (1+at ), where the constant a can be either
positive or negative, but it always turned out to be much
less than 1 . The fact that for all three materials studied,
almost the same value of Cq~/8, 8,2 is found (see Table
III), points out the equivalency of the pinning mechanism
and the density and size of the quasidislocation loops.
Here we assume that quantities such as b p, p, v, and
dB, /dp are almost equivalent for the different materials.
For instance, for Nb3Ge, adapting values observed for Nb,
bp ——2. 8&& 10 ' m, p=3& 10' N/m, v=0. 39, and
(Alers and Waldorf ) 5E o(t =0.7)=5X10, we obtain
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TABLE III. Characteristics of dislocation loop pinning at t =0.7.

Sample

Nb3Ge 176A
175A
1748
1918

0.70
0.70
0.70
0.70

C~(t)
(10 N/m)

4.6
4.3
3.0
3.8

Cg)(b &bp)
(10 ' N'/m')

6.8
3.9
3.1

3.4

Cd)/8, 8,2

( 10—4 N2/m3 T3)

2.7
2.4
1.9
2.3

Mo3Si 208 0.75 33 5.0

Nb3Si 27C
26A
318
298

0.71
0.65
0.60
0.60

2.5
1.3
2.7
1.1

3.8
2.7
2.5
0.5

2.6
1.3
1.6
0.93

n„D =2 &&10 ' m, which is a quite acceptable result.
For example, assuming D =5 nm [g(0)=7 nm], we get
n„=3)&10 m, hence, an average spacing of 15 nm.
For D =10 nm, we obtain, respectively, 2&10 m and
37 nm. Very small loops, D =1 nm, yield an unreasonable
large density, n, =2X10 m, and, therefore, a very
small spacing of 2 nm. A plot of (Cd~/B, B,2)' vs t, as
displayed in Fig. 8, reflects the temperature dependence of

dB, jdp. The reasonable agreement with the linear expec-
tation, confirms the preceding conclusion that quasi-
dislocation loops of size g(0) are responsible for the flux
pinning in the amorphous superconductors investigated.

V. STRUCTURAL RELAXATION

Structural relaxation studies of glasses provide unique
insight in the dynamics and stability of the stress modula-
tion on an atomic scale under thermal annealing at tem-
peratures below the glass temperature. ' ' Not much is
known yet about the influence of structural relaxation on
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FIG. 8. Plot of (CdI/B, 8,2)' ~d8, /dp vs t for Nb3Ge
1918 (circles), 1748 (triangles), 175A (squares), 176A (inverted
triangle), for Mo3Si 208 (filled inverted triangles), for Nb3Si 27C
(filled circles), 26C (filled squares), and 298 (filled triangles).
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3.0 I
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tonn(")
FIG. 9. Effect of structural relaxation on the (superconduct-

ing) properties of amorphous Nb3Ge 1918 after annealing at
415'C for increasing annealing times t,„„.
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TABLE IV. Superconductive properties of Nb3Cxe 191B and 175A before and after annealing at 415 C and 580 C, respectively.
The data in the last three columns are taken at t =0.7.

Sample
Nb3Ge

191B

tann

(h)

0
3
6

12
24

3.998
3.548
3.478
3.451
3.400

12
13
13
19
20

po
(pQ cm)

166
169
174
171
174

B,(0)
(m T)

50
45
43
42
41

I' (b =0.4)
(10 N/m )

16.1
8.60
7.67
6.90
7.40

(10 N/m )

38
17
14
13
14

(10 N/m T )

2.3
1.5
1.5
1.4
1.4

175A 0
24
48

3.99
3.25
3.14

77
17
17

157
164
166

52
41
39

6.49
3.39
3.01

43
17
15

2.4
1.3
1.2

the more extended defects. In view of the results of the
preceding section flux pinning is very likely to be a sensi-
tive tool tc obtain this information. In order to demon-
strate this and as a prelude to more extensive investiga-
tions, we sequentially annealed sample Nb3Ge 1918 at
415 C ( && Ts~„,-750 C) for 3, 3, 6, and 12 h in a flow of
purified He gas and studied the superconductive proper-
ties after each annealing treatment.

The results are summarized in Table IV and Figs.
9—11. Obviously, from Fig. 9, the most drastic changes
take place within the first 3 h. Upon the first annealing
step a much smaller but monotonous change in T, and po
persists, whereas F~(0.4) and so Cd~ seems to have been
fully relaxed to a lower bound. Figure 10 shows a loga-
rithmic decrease of T, with t,„„as commonly ob-
served ' in glassy superconductors. This time depen-
dence, as pointed out by Elmquist and Poon, reveals a
relaxation of internal strains characterized by a distribu-
tion in activation energy f (E) and an attempt frequency
proportional to exp( E/kz T), as —observed in many phys-
ical systems. However, the mechanism leading to the de-
crease in T, might be more complex than the phonon har-
dening model, adapted by these authors, which only seems

to affect the denominator in the McMillan ' formula for
the coupling parameter A. =N(0)(I )/M(co ), whereas
the increase of the resistivity we observed, indicates a de-
crease in N(0). Additionally, there exists a density-of-
states distribution related to the local-density fluctuations,
which sharpens up after relaxation. Supposing T, is
determined by the maximum N(0) in a volume g, this
sharpening might also contribute to the change in T, . All
these effects are rather small (only several percent) and

Nb&Ge 19tB

hrs

0
0

6
IZ

24

T= 4l5OC

3.6

(4iS C)

O
CL

CL
U

3.4—
I

IO IOO

tann(")

FIG. 10. Semilogarithmic plot of T, vs annealing time for
Nb3Cie 1918 (415 'C).

I

0.5 I.O

B~Bcz
FIG. 11. Reduced volume pinning force vs b of Nb3Cxe 191B

at t =0.7 before (crosses) and after annealing for 3 h (circles), 6
h (triangles), 12 h (squares), and 24 h (diamonds).
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may partially cancel each other. Therefore, it is hard to
relate the change in T, to only one of these, unless more
experimental evidence is available. It is, however, rather
well established that these changes are related to structural
relaxations on an atomic scale.

Figure 11 shows very convincingly that the pinning
characteristics do not change upon annealing. Also, plots
of W(0)/(1 b) —vs b retain the linear behavior leading to
the conclusion that dislocation loops still are the predom-
inant pinning centers. The reduction of Cd~ by a factor
1.5 points to a decrease of the average loop size by only
1 l%%uo. This clearly demonstrates for the first time that ex-
tended defects in amorphous materials can be stable
against thermal treatment well below the glass transition.
It would be of interest to study the stability also as a func-
tion of the annealing temperature. Preliminary experi-
ments on Nb3Ge (annealed at 580 C for 24 h) also reveal
interesting results. Characteristic data are also listed in
Table IV. The same features were observed as was the
case for Nb3Ge 191B. This leads us to the conclusion that
annealing up to -600 C does not alter the characteristics
of the extended defect structure.

dHcz
dT

dH,
dT T

(A5)

~=3.54~10'[pP]'",
ppH, (0)=ST, /2. 45m. ,

in units of T,

N'(0) = 1.78 X 10"'S/pp,

in states J 'm spin '. From

(A6)

(A7)

(A8)

P T)=o.85(g,l)'"

Tc—=g(0)
C

Tc

Tc —T
1/2

1/2

(A9)

[gp is the BCS coherence length fiuF*/eh(0)] it follows

the following relations are obtained (all quantities in
Systeme International (SI) units: [pp] =0 m,
[S]=TK '):
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A(0) =AL (0)[gp/1]'~ (Al 1)

in units of m. Note that g(0) differs from the Ginzburg-
Landau (GL) coherence length at T =0, which is given by
gGL(0) = [0p/27TppH&2(0)] 0 p=h /2e is the flux quan-
tum. Finally, from Ref. 54, pp. 80 and 114,

x=0.715XL(0)/1 (A12)
APPENDIX A: EXPRESSIONS

FOR SUPERCONDUCTOR PARAMETERS

In the case of weak-coupling amorphous superconduc-
tors the dirty-limit expressions as derived by Gor'kov
neglecting band-structure complication are supposed to
hold relatively well. For the slope of H, 2 vs T at T„

dHc2 8k~

dT v; 2meD
(Al)

and
=1.56N*(0)kg T, (A3)

where pp is the magnetic permeability in vacuum, e is the
elementary charge, and kz is the Boltzmann constant. D
is the electron diffusion coefficient, related to the electron
mean free path 1, the Fermi velocity uF', and the density of
states (per spin) at the Fermi level N*(0) (the asterisk
denotes renormalized quantities ) by

D = —,uF'I = [2e ppN*(0)] (A2)

Using the Bardeen-Cooper-Schrieffer (BCS) expressions

,' ppH, (0)= —,¹(0—)b,(0)

[AL(0) is the London penetration depth], we obtain, in
units of m,

A(0) = 1.63ag(0) = 1 05 X 10 (pp/T, )' (A13)

APPENDIX B: EXPRESSIONS FOR 2D COLLECTIVE
PINNING

The average dimension of the correlated regions for the
case of 20 collective pinning is given by dR„where d is
the thickness of the sample and R, is the correlation
length over which short-range order persists in the (x,y)
plane perpendicular to the magnetic field. An approxi-
mate expression for R, can be readily obtained by a
derivation similar to that given in Ref. 2, p. 410 (same no-
tation):

R, =apd'~ c66/W(0)'~ (B1)

However, Eq. (48) of Ref. 2 for the displacement correla-
tion function has a logarithmic divergence for the 2D
case, so that a more rigorous derivation of R, seems desir-
able.

We start from the 2D displacement correlation func-
tion

dH, H, (0)—pp = 1.73pp
+c C

and the definition

(A4) 1 d k W(k)(1 —cosk. r)
d (2n) c k
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obtained from Eq. (48) of Ref. 2 by taking the limit
k, ~O. Here u and r are vectors in the (x,y) plane denot-

ing the displacement and the position of a flux line; k is
the 2D wave vector of the displacement field. W(k) is re-
lated to the correlation function of the inhomogeneities
(pinning centers). As pointed out in Ref. 3 for distances
p=

~
r

~
&ap, the small k values in (82) are important.

Therefore, the k dependence of W is neglected
I

[W(k) = W(0)+0 (k ) (Ref. SS)], and only

W(0)=n„(f ) = , n—,fp (83)

k r =
i

k
i i

r
i cosP-„—:p cosP-„

Eq. (82) yields

(84)

is retained, in which n„denotes the number density of pin-
ning centers. With the use of the definition

p

W(0) 2 2~ p 1 —cos(p cosP- )
([u(p) —u(0)] ) =

2 2 dp- dp4~ dc„ (BS)

The integration boundaries p„and pI are related, respec-
tively, to the Brillouin zone radius of the reciprocal" FLL
and the largest wavelength of the displacement field that
makes sense in a finite sample

R, =X' (ip/R, )[apd'/ cs6/W(0)'/2] .
The volume pinning force is given by

Fp BJ,= [W——(0)/dR, ]' (812)
p„=pkti 2v np/——ap,

P ) 7TP/M

(86a)

(86b)

G (p i )= ——[ 1 —y —ln(p i /2) ],2
(88)

where y =0.5772 is Euler's constant. So the final result is

W 0
( [u(p) —u(0)]') =

2
X '(w/p)

4dc 66

with

where w is some suitable dimension of the sample, in our
case the most proper choice seems to be the width. The
result of the double integration in Eq. (BS) is
G(p„)—G(pi ) with

r

Jp(p) —1 Ji (p) Jip(p)
G(p) =—m. (87)

p 2p 2

where J„(p) is a Bessel function of order n and

Jip(p)= f dt Jp(t)/t .

Since p )ao and thus p„&4, it turns out that
~
G(p„)

~
&0. 1 for all relevant p„and can be neglected.

Because p& «1 we obtain

Therefore W(0) and R, can be determined from Fz and

W(0) =X' (w /R, )(apdc66F~ ), (813)

R, =X'/ (io/R, )(apc«/F~)'/ (814)

p=dc66, W =dW(0), n =dn, ,

yielding

Fqd =BJ,d = W, /app,

aoI ~~.~~2

(81S)

(816)

(817)

Equation (816) predicts the pinning force per unit area to
be independent of thickness, as expected for 2D pinning.
For (817) we can write

—1
Rc (u)

ao
(818)

ao

which we used to evaluate our experimental data. As fol-
lows from a comparison of Eqs. (81) and (Bll), the size
effect only enters logarithmically and, additionally, turns
out to give for our experimental situation contributions of
order 1 —O. S. Therefore, it is almost ignorable in compar-
ison to the other approximations of the theory. '

Physically more transparent relations are obtained by
introducing 2D quantities

X(x)=2m. /[ln(x) —0.029] . (810) in which

The quadratic dependence on p is to be expected for 2D
systems with random fields. It leads to a much faster
growth of disorder than in 3D where it is only proportion-
al to p. The logarithmic factor X(w/p) is qualitative of
minor importance.

The correlation length R, is determined by the condi-
tion that ([u(R, )—u(0)] )'/ =ap/2, which in view of
the periodicity of the FLL is the range of the elementary
pinning interaction, if the pinning centers are much less
than ao. Hence'

(819)

(f ) (
2 )1/2(f 2) 1/2 (820)

are to be interpreted as the net displacement ( u ) of an in-
dividual flux line due to the net force (f@ ) exerted by the
pinning centers it encounters. Hence, the relative correla-
tion length is inversely proportional to the relative net dis-
placement of individual fiux lines.

'Permanent address: Kamerlingh Onnes Laboratory, University
of Leiden, P.O. Box 9506, 2300-RA Leiden, The Netherlands.
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