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Kinetic energy and condensate fraction of superfluid He
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A new method for the experimental determination of the condensate fraction, no, of superfluid
He is presented. This method, which depends on the temperature variation of the average kinetic

energy per atom, is applied to available neutron and x-ray data and yields values of no that are con-
sistent with those obtained from two previous methods. An analysis of the no results from all
methods gives the value no ——(13.3+1.2)% at T=O. This value is in excellent agreement with the
value obtained recently by Campbell from the observed surface tension but is slightly higher than
most theoretical estimates. The temperature variation of no near the X point, Tq ——2. 17 K, is con-
sistent with the expected form no —( Tq —T) ~ and the critical exponent is estimated to be
2P=0. 5+0.2.

I. INTRODUCTION

The unique properties of superfluid He are believed'
to result from a Bose-Einstein condensation which is
characterized by the macroscopic occupation of the zero-
momentum state. The fraction of atoms in this state no is
called the condensate fraction and recent theoretical calcu-
lations of no at temperature T=O give values for no of
11.3% and 9.0% depending on the interatomic-force
model.

The condensate fraction has been determined experi-
mentally from both neutron inelastic scattering measure-
ments at large momentum transfer ' and from the pair
correlation functions obtained from neutron-
diffraction' ' and x-ray-diffraction' experiments. The
results are mutually consistent and together yield a value
no ——13.9+2.3%%uo at T=O which is somewhat larger than
the above theoretical values. Recently, Campbell' has
developed a method for evaluating no in terms of the mea-
sured surface tension from which he estimates that
no ——13% at T=O which is in excellent agreement with
the value obtained from the other methods.

In the present paper we propose a new method for the
experimental determination of the condensate fraction
which depends on the temperature variation of the average
atomic kinetic energy. The latter quantity can be obtained
from any of three different kinds of neutron measure-
ments: inelastic scattering, diffraction, or transmission.
Vfe apply the method to available data and find values of
no as a function of temperature that are in good agree-
ment with those obtained in the above-mentioned
work.
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gy K, are the new methods which will be described in the
present paper and applied to available neutron and x-ray
results.

Neutron inelastic scattering measurements using, for
example, a triple-axis crystal spectrometer enable one to
determine the dynamic structure factor S(Q,co) as a func-
tion of the energy transfer fico for an arbitrary fixed value
of the momentum transfer A'Q. Method I is based on the
fact that in the large-Q limit the scattering is described
asymptotically by the impulse approximation' ' in which
case S(Q,co) is the Doppler spectrum characteristic of the
momentum distribution' n (p) of the atoms in the initial
state so that
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II. NEUTRON SCATTERING
AND THE CONDENSATE FRACTION

Figure 1 illustrates five methods for determining the
condensate fraction of superfluid He from various kinds
of neutron measurements. Methods I and II are existing
methods which will be reviewed briefly below. Methods
III—V, which depend on the average atomic kinetic ener-

FIG. 1. Five methods for the determination of the condensate
fraction no of superfluid He from various kinds of neutron
measurements.
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Here m is the atomic mass and p =(m/RQ)(co —co, ) in
which fico„=(fiQ) /2m is the recoil energy. This relation
has been used to determine momentum distributions for
both liquid helium ' ' ' and liquid neon.

The momentum distribution of superfluid He can be
expressed in the form

& (p) =&o&( p)+(1—iio)n'(p» (2)

where no is the condensate fraction and n*(p) is the nor-
malized momentum distribution function of the uncon-
densed atoms. The condensate peak in the measured n (p)
distributions is broadened by final-state interactions at the
Q values for which data are presently available so that a
distinct condensate peak cannot be resolved. Nevertheless,
values of no have been inferred from the observed tem-
perature variation of n (p) at small p.

Neutron-diffraction measurements ' enable one to
determine the static structure factor S(Q) and hence, by
Fourier analysis, the pair correlation function g(r). The
approximate relation

g (r) —1 = (1 no ) [g—'(r) —1],
0

when r & 4.5 A can then be used to obtain no. ' ' This is
referred to as method II in Fig. 1.

The final three methods depend on the average kinetic
energy per atom,

to determine K. Here U is the total internal energy, which
can be obtained from thermodynamic measurements, and
V is the potential energy which can be evaluated in terms
of a model for the pair potential and the pair correlation
function obtained from neutron- or x-ray-diffraction mea-
surements.

Neutron-transmission measurements determine the total
scattering cross section c7(Eo) as a function of the
incident-neutron energy Eo. The asymptotic expres-
sion

0(Eo)=a(oo)[1+K/3AEo+0(Eo )],
in which 3 is the ratio of the nuclear mass over the neu-
tron mass, can then be used to determine K from
neutron-transmission measurements at large Eo. This is
the basis for method V.

Methods III and IV are applied to the determination of
no in the present paper and compared with previous re-
sults from methods I and II. The available total-
scattering-cross-section data are not at sufficiently high
Eo to permit a determination of no using method V.

III. KINETIC ENERGY

We first consider the total internal energy, which is ob-
tained by integrating the first law of thermodynamics,

U(T)=U(0)+ f CdT —f @du, (10)

which can be expressed with the help of (2) as

K =(1 no)K—*

where E* is the average kinetic energy of the uncondensed
atoms. As T increases from 0 to T~, the temperature
variation of K is due partly to the depopulation of the
zero-momentum state, which increases the factor 1 —no,
and partly to the creation of thermal excitations (phonons
and rotons) which increases K*. The contribution of the
zero-point motion of the atoms to K will be essentially
constant throughout the superfluid phase since the num-
ber density [Fig. 2(d)] changes by less than l%%uo below Ti„.

If, as in methods I and II, we assume that the depopula-
tion of the zero-momentum state is the dominant effect
then K*(T)=K(Ti,) and

no(T)=1 —K(T)/K(Ti„) .
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where C is the specific heat, p is the pressure, and U is the
specific volume. Figure 2(a) shows the internal energy of
liquid He at saturated vapor pressure as a function of
temperature calculated from (10) with U(0) = —7.14

However, strictly speaking, the right-hand side of (6)
represents an upper limit on no( T).

In method III the average kinetic energy is determined
from the observed dynamic structure factor by means of
the relation

16

l2—

I I I I
0.025

(d)

o~ 0.020—

E
O
n 0.0I5—

oo

K = 11m co —Q)„S,co dco .
Q —+ oo 467~

(7)

This relation can be obtained by substituting (1) into (4)
or, alternatively, from the sum rules for S(Q,co).

In method IV we use the energy equation,

0
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FIG. 2. (a) Internal energy of liquid He at saturated vapor
pressure calculated from (10) with the help of (b) the orthobaric
specific heat (Refs. 28 and 29), (c) the saturated vapor pressure
(Ref. 30), and (d) the number density (Ref. 31).
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V2 2np——f .P(r)g (r)r dr, (12)

in which p is the number density, P(r) is the pair poten-
tial, and g(r) is the pair correlation function. In liquid
He the V3 term represents a small correction, less than
1% of Vz, and the four-body and higher-order terms in
(11) are presumably negligible.

The HFDHE2 (Hartree-Fock dispersion) potential of
Aziz et al. provides the most accurate representation of
P(r) that is available at this time. This potential, which is
shown in Fig. 3(a), has been chosen such that it fits the re-
sults of self-consistent Hartree-Fock calculations at small
r and leads to agreement with the gas-phase thermo-
dynamic and transport properties within the experimental
error. The potential so obtained is then found to give an
accurate prediction of the He-He differential scattering
cross sections measured in atomic-beam experiments. Fi-
nally, the pair correlation function of liquid He calculat-
ed at T=O using the Green-function Monte Carlo
(GFMC) method on the basis of the HFDHE2 potential

IO—

K/atom= —14.83 J/g and using the thermodynamic data
shown in Figs. 2(b)—2(d). The logarithmic singularity in
the specific heat in the region

~

T —Ti
~

&0.02 K was in-
tegrated analytically. The teinperature variation of U(T)
is due almost entirely to the specific-heat term in (10).
The thermal-expansion term is largest at temperatures
near the critical point (5.2 K) but even here it amounts to
only 3% of the specific-heat term.

The potential energy can be calculated from the cluster
expansion

+ p + o ~ ~

where V„denotes the contribution from n-body forces. In
particular,

=2 ~ dP(r)I =3p + —~p g (r)r dr
dr

(13)

However, values of X obtained from this equation are very
sensitive to experimental uncertainties in g(r) at r 2.0
A where g (r)~0 and dP(r)/dr is very large (Fig. 3). For
example, a variation of g(r) by +0.005 for r &2.3 A pro-
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agrees to within 1% with that obtained by neutron-
diffraction measurements ' at T= 1.00 K [Fig. 3(b)].

The values of V2 calculated from (12) using the mea-
sured values ' of p, the HFDHE2 model for P(r), and
the neutron-' ' ' and x-ray-diffraction ' results for g (r)
are listed in Table I. The small correction V3 for three-
body forces was interpolated at each density from values
calculated using the GFMC method on the basis of the
Axilrod-Teller three-body potential. These values of V2
and V3, together with the value of the total internal ener-
gy U calculated from thermodynamics as described ear-
lier, were then used in (8) to obtain the values of the kinet-
ic energy E that are listed in Table I.

The kinetic energy can also be obtained from the virial
theorem,
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FIG. 3. (a) HFDHE2 potential for He (Ref. 32), and (b) the
pair correlation function for liquid He at T=1.00 K obtained
from neutron-diffraction measurements (Ref. 21)~
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FICr. 4. (a) Kinetic energy K, (b) potential energy V2, and (c)
total internal energy U, for liquid He at saturated vapor pres-
sure as a function of temperature calculated as described in the
text. Solid symbols are values calculated using neutron-
diffraction results for g(r) (circles from Ref. 21 and squares
from Ref. 12) and the open symbols using x-ray-diffraction re-
sults (circles from Ref. 34 and the square from Ref. 33). We
also include values of the kinetic energy obtained directly from
neutron inelastic scattering measurements (crosses from Ref. 36
and triangles from Ref. 37).
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TABLE I. Kinetic and potential contributions to the internal energy of liquid He in units of
K/atom calculated as described in the text.

Ref. 21
(neutron)

1.00
1.38
1.97
2.07
2.12
2.15
2.27
3.00
3.60
4.27

—7.13
—7.07
—6.45
—6.18
—6.00
—5.87
—S.58
—4.74
—3.93
—2.70

14.00
13.16
14.82
14.62
15.38
15.06
15.93
15.85
15.63
15.23

—21.29
—20.38
—21.43
—20.95
—21.53
—21.09
—21.66
—20.74
—19.68
—18.03

0.15
0.15
0.15
0.15
0.1S
0.15
0.15
0.14
0.12
0.09

Ref. 12
(neutron)

1.59
1.77
1.87
2.19
2.27
4.23

—6.69
—6.79
—6.64
—5.71
—5.58
—2.79

14.35
13.67
14.86
15.75
15.75
15.27

—21.46
—20.61
—21.6S
—21.61
—21.48
—18.15

0.15
0.15
0.15
0.15
0.15
0.10

Ref. 33
{x ray)

0.79 —7.14 13.85 —21.14 0.15

Ref. 34
(x ray)

1.38
1.67
2.20
2.50
3.00
3.SO

4.24

—7.07
—6.89
—5.69
—5.31
—4.74
—4.08
—2.76

15.33
15.85
17.38
17.35
17.73
17.84
16.58

—22.55
—22.90
—23.22
—22.80
—22.61
—22.04
—19.43

0.15
0.15
0.15
0.15
0.14
0.13
0.10

duces a corresponding variation in the value of K obtained
from the virtial theorem (13) of +1.38 K/atom; but for
the energy equation (8) the variation in K is only +0.22
K/atom.

The results listed in Table I are also shown in Fig. 4.
The solid symbols are the values calculated using
neutron-diffraction results for g(r) (circles from Ref. 21
and squares from Ref. 12) and the open symbols using x-
ray-diffraction results (circles from Ref. 34 and the square
from Ref. 33). We also include values of the kinetic ener-

gy obtained directly from neutron inelastic scattering mea-
surements, i.e., method III (crosses from Ref. 36 and tri-
angles from Ref. 37).

The values of Vq calculated using the x-ray results of
Robkoff and Hallock for g(r), which are represented by
the open circles in Fig. 4(b}, are systematically lower than
the other values by about 1—2 K/atom and the corre-
sponding values of X [Fig. 4(a)] are higher by the same
amount. This discrepancy of about 7% in V~ is due to the
fact that the threshold below which g(r)=0 occurs in the
neutron results' ' ' at r=2.0 A and in the x-ray results
at a slightly higher value of r=2.2 A. One would expect
the neutron results for g(r} to be more accurate than the
x-ray results at small r since S(Q) was measured out to
Q= 10.8 A ' in the neutron-diffraction measurements but
only out to Q =5.1 A ' in the x-ray-diffraction measure-

ments because of the rapid decrease in the atomic form
factor at large Q. This assertion is borne out by the fact
that the values of K in Fig. 4(a) calculated by method IV
using the neutron-diffraction results (solid circles and
squares) are in excellent agreement with the values calcu-
lated by method III (crosses and triangles).

Uncertainties in the pair potential can also produce sys-
tematic errors in Vz and, hence, in E. For example, if we
use the MS12G6 (modified Maitland-Smith) potential,
which provides a fit to the gas-phase thermodynamic
and transport properties that is almost as good as is ob-
tained with the HFDHE2 potential, we find that the cal-
culated values of K are increased by an amount 0.64+0.04
K/atom that is essentially independent of temperature.
Such a shift in the E values will, in first approximation,
not affect the values of no calculated from (6).

The above considerations of the sensitivity of Vz to pos-
sible uncertainties in P(r) and g(r) therefore lead us to
conclude that the calculated values of Vz and, hence of K,
are accurate to within about +0.5 K. The statistical fluc-
tuations of the data points in Fig. 4 are consistent with
this estimate.

We have drawn smooth curves through the data points
in Figs. 4(a) and 4(b) as a guide to the eye, ignoring the
open circles for reasons discussed above. Consider first
the potential energy in Fig. 4(b). It is evident from (12)
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TABLF II. Comparison of the present experimentally determined kinetic and potential energies of liquid He (in units of K/atom)
with theoretical calculations at T=O.

Authors (year) Reference Potential Method + Vp + V3

London (1954)
McMillan (1965)
Schiff and Verlet (1967)
Massey and Woo (1967)
Gaglione et aI. (1980)
Whitlock et al. (1979)
Kalos et al. (1981)
Usmani et al. (1982)
Kalos et al. (1981)
Present work (T=1.00 K)

1

38
39
40
41

5
7

42
7

Hard-sphere
Lennard-Jones
Lennard-Jones
Lennard-Jones
Lennard-Jones
Lennard-Jones
Lennard-Jones

HFDHE2
HFDHE2
HFDHE2

Free-volume
Variational
Variational
Variational
Variation al

GFMC
GFMC

Variational
GFMC

Experimental

—5.66
—5.73
—6.02
—6.10
—6.85
—6.69
—6.96
—6.97
—7.13

14.6
14.6
13.73
14.30
13.96
13.62
13.62
14.77
14.47
14.00

—19.82
—19.46
—20.32
—20.06
—20.47
—20.47
—21.73
—21.59
—21.29

0
0
0
0
0
0.16
0
0.15
0.15

that the temperature variation of V2 is due to the corre-
sponding variations in p and g(r). As T increases from 0
to T~=2.17 K, V2 decreases by about 3% while p in-
creases by only 0.7%%uo. In this region the variation of Vz is
due mainly to g(r). However, as T increases from T~ to
the boiling point (4.2 K), V2

~

and p both decrease by
14%. Here, p is mainly responsible for the temperature
variation of V2.

Now consider the kinetic energy in Fig. 4(a) where it is
seen that as T increases from 0 to T~, K increases by
15%, of which two thirds comes from the change in U
and one-third from the change in V2. Since the number
density p, and hence the zero-point energy, is essentially
constant in this region, the temperature variation in K
arises from the depopulation of the zero-momentum state
and also, to some extent, from the creation of thermal ex-
citations among the uncondensed atoms. On the other
hand, as T increases from T~ to 4.2 K, the kinetic energy
is almost constant and, in fact, there is an indication of a
slight decrease of about 3%%uo. Here the decrease in the
zero-point energy from the 14% decrease in p cancels the
tendency for K to increase as a result of the creation of
further thermal excitations.

Finally, Table II shows a comparison of the kinetic and
potential energies which we have determined by method
IV at T=1.00 K with the results of various theoretical
calculations at T=O. Since the HFDHE2 potential pro-
vides a more accurate representation of the He pair po-
tential than does the Lennard-Jones potential, the varia-
tional calculations of Usmani et al. and the GFMC cal-
culations of Kalos et al. are the most relevant for com-
parison with our present results. Since the accuracy of
our values of V2 and, hence of K, was estimated above to
be +0.5 K, the agreement with the theoretical values can
be regarded as satisfactory.

np( T) =np(0)[ 1 —(T/Tg) ] (14)

which gives n p(0) = 13.3+ 1.2% and a =4.7+ 1.2. These
are consistent with the previous values n p(0) = 13.9
+2.3% and a =3.6+ 1.4 which were obtained by fitting
(14) to the results of methods I and II alone.

The analytic form of Eq. (14) is true for an ideal Bose-
Einstein gas' for which np(0)=100% and a= —,'. It has

no real justification for liquid He; we simply regard it as
a convenient way of parametrizing the data and of es-
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relative to the other values for reasons discussed in the last
section. To compensate for this fact the value

K(T~)= 17.38 K/atom was assumed (see Table I).
The results in Table III are also shown in Fig. 5 where

it is seen that all four methods yield values of np that are
mutually consistent within the present uncertainty. The
smooth curve in Fig. 5 is the result of a least-squares fit to
the expression

IV. CONDENSATE FRACTION

In Table III we list the values of no obtained in earlier
work using methods I (Refs. 8 and 9) and II (Refs.
10—13). We also give the values obtained in the present
work from (6) with the kinetic energy determined by
methods III (Refs. 36 and 37) and IV (Table I). In apply-
ing the relation (6), the value of K at T~ was taken to be
15.75 K/atom with the following exception. The K values
corresponding to the open circles in Fig. 4 are displaced

0.0
I I I

0 5 I.O l.5
TEMPERATURE (K)

I

2.0 2.5

FIG. 5. Condensate fraction of superfluid He as a function
of temperature. Data points are those listed in Table III:
method I (open squares), method II (open circles), method III
(solid squares), and method IV (solid circles). Smooth curve is a
least-squares fit to Eq. (14) and dashed curve the same to Eq.
(16).
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TABLE III. Experimentally determined values of the condensate fraction of superfluid He. Values
for method I are from Refs. 8 and 9, and those for method II are from Refs. 10—13. Values for
methods III and IV are obtained in the present work as described in the text.

no (%)
IV

0.79
1.00
1.10
1.27
1.27
1.27
1.38
1.38
1.59
1.63
1.67
1.77
1.80
1.87
1.97
2.00
2.07
2.12
2.15

14.6+3.5
10.9+2.7

0.8+0.6

12.7+2.0

14.0+3.4

10.2+2.1

9.0+3.0
7.4+2.5

3.4+2.6
5.0+2.4

3.1+2.9
2.8+2.9

—0.1+1.9

14.4+7.6
10.6+3.8
15.7+3.2
12.4+ 1.9

8.3+3.6

6.3+2.4

8.0+2.5

12.1+3.2
11.1+3.2

16.4+3.2
11.8+3.2
8.9+3.2

8.8+3.2
13.2+3.2

5.7+3.2
5.9+3.2

7.3+3.2
2.4+3.2
4.4+3.2

timating the value of no at T=O. In fact, the asymptotic
behavior of no as T~O is given by

As T~T~ from below, the condensate fraction is ex-
pected to have the form

rl 0 ( T) =N (00 )[1 —( T/ Tp ) ] np(T)=(Tg —T) ~, (16)

where (i+To) =12k cp/m in which kz is Boltzmann's
constant and c is the velocity of sound at T=O With.
c=239 m/s we find that To 7.62 K. Hence, ——no(T)
changes by less than 2%%uo below T= 1 K so that the accu-
racy of our estimate of no(0) is not limited by the degree
of validity of Eq. (14).

where the exponent 2p is at present unknown. A least-
squares fit of (16) to the no values in Table III for
T) 1.80 K gives the value 2p=0.5+0.2 and is represented
by the dashed curve in Fig. 5. Because of the large degree
of scatter in the data, and the fact that the temperatures
are not very close to T~, this estimate of 2p must, howev-
er, be regarded as tentative.

TABLE IV. Comparison of theoretical and experimental values of the condensate fraction of super-
fluid Heat T=O.

Authors (year)

Theoretical
Penrose and Onsager (1956)
McMillan (1965)
Schiff and Verlet (1967)
Francis et al. (1970)
Ristig et al. (1975)
Lam and Ristig (1979)
Kalos et al. (1974)
Whitlock et al. (1979)
Kalos et al. (1981)

Reference

45
38
39
46
47

6
48

5
7

Method

Variational
Variational
Varjatsonal
Variational
Variational
Variational

GFMC
GFMC
GFMC

np (%%uo)

8
11
10.5
10.1
11.9
11.3
9.5

11.3
9.0

Experimental
Campbell (1983)
Present work

14
8 and 9
10—13

Table III
Table III

Surface tension
I
II
III
IV
all

13
12.8+1.8
13.9+2.7
13.5+2.6
12.2+4.5
13.3+1.2
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V. DISCUSSION

Table IV shows a comparison of the results of a number
of theoretical calculations of the condensate fraction of
superfluid He at T=O with the experimentally deter-
mined values. We include here the values of no(0) deter-
mined by a least-squares fit of Eq. (14) to the results in
Table III for each method separately as well as the fit to
all the results. The experimentally determined values are
in mutual agreement within the uncertainties but are
somewhat higher than the theoretical values.

The best theoretical estimate of no{0) is presumably the
value 9.0% obtained recently by Kalos et al. using the
ostensibly exact GFMC method together with the
HFDHE2 Inodel for the pair potential. The earlier
theoretical values in Table IV used the less accurate
Lennard- Jones potential and, in this respect, yielded
values for no that would be expected to be less reliable
than that of Ref. 7. Nevertheless, the earlier theoretical
calculations of no mostly give values in the range of
10—12 % that are more in agreement with the present ex-
perimental values.

The fundamental assumption in all the methods in Fig.
1 is that the temperature variation of n (p ), g (r), and K in
the superfluid phase is due primarily to the variation of no
and that the effect of any variation of n (p), g'(r), and
E* is relatively less important and, hence, can be neglect-
ed in first approximation. This assumption is clearly a
potential source of systematic error in the experimental
values of no. However, the fact that methods I—IV yield
values of no that agree, not only with each other, but also
with the value estimated by Campbell' from surface-
tension measurements, suggests that such systematic er-
rors may be rather small. Further theoretical work, not

only on the ab initio calculation of ne, but also on the jus-
tification of the assumptions employed in the various ex-
perimental methods would, nevertheless, clearly be of con-
siderable value.

The values of no listed in Table III all refer to saturated
vapor pressure. Recently, VA'rth et a/. have studied the
density dependence of the values of no obtained by
method II from x-ray-diffraction experiments. Contrary
to expectation they find that changes in density of up to
14% produce no appreciable change in the condensate
fraction. Fitting their results for all pressures to Eq. (14)
they find the values no{0)=11.2+0.6% and a=4.64+0.48
which agree reasonably well with those found in the
present work (Sec. IV). Neutron inelastic scattering exper-
iments are currently being carried out by Mook ' at Oak
Ridge National Laboratory to determine no by method I.
His preliminary results yield values of no at saturated va-

por pressure that agree well with those in Table III. In
contrast to Wirth et a/. , however, Mook finds a very
strong decrease in no with increasing pressure. Forthcom-
ing neutron-scattering experiments on pressurized liquid
He at Chalk River Nuclear Laboratories will no doubt

shed additional light on the important question of the
density variation of the values of no determined experi-
mentally by the various methods listed in Fig. 1.
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