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The effect of the dynamically screened electron-electron interaction on the superconducting tran-
sition temperature is investigated by solving the Eliashberg equation in both frequency and momen-
turn variables. The present calculations are performed within the random-phase-approximation
(RPA) —screened free-electron model and for electronic density parameters r, & 5. The full normal-
state self-energy is included self-consistently. In parallel, the equation for the Coulomb pseudopo-
tential p* is set up and solved using the imaginary-frequency representation. We find that in RPA
plasmon exchange leads to a change in sign for p at r, -2.5. For r, &2.5, p* &0 and the system
becomes superconducting even without consideration of phonons. These results show that the effect
of electron-electron attraction by plasmon exchange is overestimated in RPA, and that vertex
corrections must be included. Similar conclusions have to be drawn for electron attraction through
other high-frequency bosons such as excitons.

I. INTRODUCTION

If theory is to be of help in the search for superconduc-
tors with high transition temperatures T„ it has to possess
the capability of predicting T, from first principles better
than at present. Despite the enormous progress made in
the last decade in the microscopic theory of superconduc-
tivity, reliable prediction of T, remains a problem. '

Since the basic equations for determining T„viz., the
Eliashberg equations, ' are held to provide T, within 1%
or better, and since the solution of these equations is also
capable of accuracy to within a few percent, the source of
errors is traced to the normal-state properties which are
inputs to the Eliashberg equations. These consist of the
electron band structure, the phonon spectrum, the
electron-phonon interaction, and the Coulomb repulsion
between electrons. The focus of this paper is on the last
item.

Bemuse of the enormous difference between the phonon
and electron energies in most metals, it is advantageous to
solve the Eliashberg equations in two steps by dividing the
co space into two regions. ' ' For frequencies below, say,
coo-5coD (coD being the Debye frequency) and momenta
near the Fermi surface, the formation of the Cooper pair
is dominated by the electron-phonon-electron interaction
modified by the effects of Coulomb interaction between
electrons, which can be characterized for a given cutoff coo

by a single number p'. In this region, the reduced Eliash-
berg equation may be solved by the usual simplifications
made possible by the Migdal theorem. p* is determined
by the solution of the Eliashberg equation outside the pho-
non frequency range, namely greater than coo. There, the
dynamically screened Coulomb interaction between the

electrons has to be taken into account, which excludes fur-
ther use of Migdal's theorem. Consequently, the solutions
for the self-energy now depend on both frequency and
momentum, and vertex corrections may become impor-
tant.

In principle, p* can be determined from measurements,
such as the isotope effect and the tunneling spectra.
However, the availability of measured values of the iso-
tope shift of T, is limited to some elements and a few
compounds, and a certain amount of uncertainty in the
derived values of p* arises by the so-called indirect isotope
effect. Similarly, the tunneling data are restricted to a
few materials, and there is also uncertainty in the extrac-
tion of p*. From these considerations, the value of 0.13
for p in transition metals of 0.10 in simple metals have
become widely adopted. It has recently become evident
that in some materials, such values of p' do not adequate-
ly represent the effects of the electron Coulomb interac-
tion. In some materials, such as compounds of vanadium,
the calculated T, is too high compared with the measured
T, . Since the error is significantly larger than that es-
timated for the electron-phonon interaction, it leads to
the conclusion that p must exceed 0.1 considerably,
mainly because of the pair-breaking influence of spin fluc-
tuations. ' On the other hand, it has been suggested that
plasmons, particularly acoustic plasmons, could reduce p*
or even render it negative, i.e., sustain superconductivity
without phonons. "*' There have also been suggestions'
that proximity of semiconductor band structure can create
in a metal excitonlike excitations which would lead to
very high T, .

All these excitations —plasmons, acoustic plasmons, and
excitons —which are suggested as more potent replace-
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ments for the phonons, can be grouped together with spin
fluctuations as various manifestations of the frequency
dependence of the effective electron-electron interaction.
The solution of the Eliashberg equation with a given ef-
fective electron-electron interaction, therefore, deserves
careful study. The common practice of estimating the
strength of the electron repulsion which determines tu.

*
by

averaging a statically screened Coulomb interaction over
the Fermi surface is clearly inadequate. An approxima-
tion by Kirzhits, Maksimov, and Khomskii' ' (KMK)
which converts the co and k dependence of the Eliashberg
equation into an equation with only k dependence, is fre-
quently used for estimating T, due to nonphonon mecha-
nisms. ' ' ' However, it has been shown' that, in the
weak coupling limit, where the KMK approximation is
supposed to be valid, an important term has been left out
which vitiates the resulting T, estimate. For the
electron-interaction model considered in this paper, the
KMK approximation fails completely.

In this paper, we adopt the random-phase approxima-
tion (RPA) for the electron interaction in the jellium
model. Thereby, the polarizability of the positive back-
ground is neglected, i.e., no phonons are considered in this
model. The attractive interaction due to the plasmons
serves as a paradigm for the various attraction mecha-
nisms at high frequencies, proposed in the literature. The
dielectric formulation takes care of the delicate balance
between the attractive part (the collective mode) and the
original repulsive nature of the Coulomb interaction. The
order parameter in the Eliashberg equation is calculated as
a function of co and k. As far as we know, this is the first
time both ~ and k dependence are taken into account
simultaneously. The resultant p' for the electron gas as a
function of r, serves as a first approximation for simple
metals. The paper is organized as follows. In Sec. II, the
Eliashberg equations for T, are given, together with a
short description of the numerical procedures for their
solution. In Sec. III, the variation of eigenfunctions of the
gap equation with both momentum k and frequency co is
discussed, with particular emphasis on their nodes and
dependence on the structure of the interaction. In Sec. IV,
the contribution of the Coulomb interaction to the Eliash-
berg equation is reduced to an equation for the pseudopo-
tential g". An exactly soluble square-well model is used to
illustrate the delicate balance between the static Coujiomb-
repulsion and the dynamic Coulomb attraction due to
plasmon exchange. Section V presents the numerical re-
sults when the RPA is used for the Coulomb interaction.
We start this section by discussing our results for the
normal-state properties: renormalization constant Z,
effective-mass ratio m*/m, and correlation potential g, .
These quantities are important ingredients in the equation
for p'. Moreover, they offer a valuable check of our cal-
culations by comparing them to earlier results of other au-
thors. Our findings for p and T, show that the RPA
favors superconductivity too much, which means that (i)
using the RPA in nonphonon mechanisms, in general,
tends to overestimate T, and that (ii) corrections beyond
the RPA are important. Section VI contains a summary
of our findings and a discussion of the future direction of
our investigation.

II. ELIASHBERG EQUATIONS
AND NUMERICAL TREATMENT

Since our considerations of superconductivity are re-
stricted to T„only the Eliashberg equations linearized in
the gap function are needed. In an imaginary frequency
representation and for isotropic systems they are written
as

$„(k)= —T g f dk'k' V (k, k';v„)

x G (O')P (k'), (la)

ci)„—co„(k)=T g f dk'O' V+(k, k', v„)

&& G (k')co~ (k'),

X'„(k)=T g f dk'k' [V+(k,k';v„)—Vo(k, k')]

xG (O')~ (k'), (lc)

4X'"(k)= f dk'O' V (k, k')T

X g [& (k')G (k') —eo(k')G (k')], (ld)

X() (k) = f dk'O' Vo(k, k') ——,
' +T geo(k')G~(k')

(le)

Here, we use the following abbreviations:

G„(k)= 1/[co„(k)+e„(k)],
G„(k)=1/[co„ZO(k) +e()(k)],
e„(k)=k +X„(k)—g',

co„=(2n + 1 )vrT, v„=co„—co

co„(k)=co„Z„(k) .

(2a)

(2b)

(2d)

(2e)

X'„(k) comes from the correlation part of the self-energy
diagrams and Xo"+AX" from the exchange diagram with
the intermediate states renormalized. Were the renormali-
zation neglected as in common practice, the exchange part
would reduce to

Xoo(k) = —4~
k2 —1 4+1 I-ln + — at T =0 (4)4k k —1 2

with m=1/~kzaz ——r, /6. 03, the Coulomb coupling con-
stant.

P„(k) is the momentum- and frequency-dependent gap
function, and [co„—co„(k)] is the odd part of the normal-
state self-energy, while its even part X„(k) has been
decomposed into

X„(k)=X'„(O)+X() (O)+&X'"(O) .
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If not stated otherwise, energies and temperatures are
measured in units of eF and momenta in units of kz. g is
the chemical potential which at T =0 is given by

g= I+Xp (k/)+ &X'"(k/)+g, , g, =X'(co =0,ky )

k'2Vp(k, k')[G (k')e (k') —G (k')ep(k')]

1/Q)~, pz ~ oo
2

1/k', k'~ oo
(10d)

(&)

where X'(m, kF) is the analytical continuation of X'„(kF)
onto the real axis. For low temperatures, g, -Xp(kF).
The potentials V—+(k, k', v) and Vp(k, k') are given by

k+k'
V +—(k, k', v) =— J dq qV+-(q, v), (6)

4~2kk'

Vp(k, k') =—,ln2o. k +k'

F(q, v) =
3 I dk kin

q P v+(2kq —q )

In order to perform the unlimited summations over m and
integrations over k', the proper knowledge of the asymp-
totic limits for P„(k), co„(k), and X„(k) is required. We
summarize the power laws which can easily be derived
within the RPA as follows:

(k), n~ oo

P„(k)- '

c/k, k~ oo
r

1/cu„, n —+ oo

"'-'1/k, k

1/co„, n ~ oo
3/2""'- I/k~, k-

Xp"+bX'"(k) —1/k, k ~ co

(9b)

(9c)

(9d)

Restricting the arguments of the left-hand sides of Eqs.
(1) to co, -cop [~q (4~e N/m)'i ), k ———kF, we find for
the right-hand sides

1/corn, UE ~ (I)
2

k'v (k, k', v„)G (k'-)p (k')- '1 k,, (10a)

where V (q, v) is the Cooper-pair interaction and V+(q, v)
the interaction entering the normal-state self-energy.
Vp(k, k') is the s-wave average over the bare Coulomb in-
teraction, and since (6) also represents an s-wave average,
our solutions will be restricted to s-wave pairing. In gen-
eral, V+ and V are different because of the spin depen-
dence of the four-point vertex. Within the RPA, V+ and
V are equal and given by'

2a "+"' dq 1

kk' & —I'
q 1+F(q v)

and, with

for Eq. (le), it follows that

ep(k')

, )™nh .')=""'

k'—Vp(k, k')nf, —1/k', k'~op .

In Eq. (10b) the fact has been exploited that co„(k) is an
odd function in n Exc.ept for the I/co decrease in (10a)
and (10d), all other power laws provide excellent conver-
gence and allow for low-lying cutoffs co, and k, . In our
calculations, co, = 3coz and k, =3 proved sufficient to
guarantee a relative accuracy of 10 or better for both
pseudopotentials p* and eigenvalues X of the gap equa-
tion, while ~, =5~& and k, =4 were required to provide
the same accuracy for the normal state properties Zp(kF ),
m'/m, and p, (see below). Equations (la) and (ld) cannot
be cut off at co, . Instead, we set Z„'"'=1, X'„(k)=0, and
P„(k)=P (k) for co„)ro„and we transformed the m
sums into integrals which were carried out explicitly to in-
finity.

A further problem is presented by k being a continuous
variable. We subdivided [O,k, ] into nI, sections, assuming
the self-energy to be constant within each section. A
direct measure of the quality of this approach is the con-
vergence of the results for increasing nk. nk ——50 was re-
quired for the evaluation of the derivative de„(k)/dk and
for the determination of p, . For all other quantities,
nk ——10 is sufficient. Thus, for the normal-state self-
energy we used nk ——50, while for the solution of the gap
equation and pseudopotential equation, respectively,
nk ——10 was taken. Raising nk from 10 to 30 resulted in
relative changes of A. and p,

* (see below) of order of or less
than 10

Care must be taken for a proper treatment of the loga-
rithmic singularity in V-(k, k';v) at k =k'. We extracted
this singularity and integrated it analytically, keeping the
remaining factors constant in a small neighborhood
around the singularity. A similar procedure was applied
to G (k) which is sharply peaked for small
co and k~0.

Equations (la)—(le) are solved by iteration. For a given
T, Eqs. (lb) —(le) are solved first. Once co (k) and X„(k)
have been calculated, Eq. (la) is cast into an eigenvalue
equation by multiplying it on the left-hand side with the
eigenvalue A, . In self-explanatory notation,

k' [V+(k,k';v„)—V+(k, k';v„)]G (k'ko (k')
41/Q)m, foal ~ oo

C

1/k', k'~ oo

k' [V+(k,k';v„) —Vp(k, k')]G (k')e (k')

1 /Cpm ~ Ul —+ oo
C

(1/k', k'~ ca

(10b)

(10c)

AP= —V GP,
where A, =A,(T). Equation (ll) is solved for A., again by
iteration. Since a superconducting transition is now
characterized by I,( T, ) = 1, we repeat the cycle for dif-
ferent T in order to find X=1.

The iteration of an eigenvalue equation leads to conver-
gence towards the dominant eigenvalue (the one with larg-
est absolute value). The physical eigenvalue Az which we
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are interested in, is the largest with positive sign, but is al-
ways smaller in absolute value than at least one other
eigenvalue A, ~, which is very large and negative, and some-
times smaller than a second eigenvalue A,2, also negative in
sign. We overcame this difficulty by using a 3)&3 repre-
sentation of the gap equation, starting with three trial
functions orthogonal to each other and diagonalizing the
iterated eigenfunctions after each step.

The procedure described in the last paragraphs turned
out to be practicable for T)0.01 only. If T drops below
this value, the increasing number of frequencies ~ will
quickly render the calculations too time consuming. Ac-
tually, we used this approach only for T) O. OS and for
qualitative investigations of the structure of the eigenfunc-
tions. For T (0.05 and for practical purposes (calculation
of T, or p ), the pseudopotential method described in Sec.
IV turned out to be much faster and more elegant.

4„(~)- ~ ~ ~
~~

~~

/
~H ~

eg k = 1.05 for X ~, Xp

k=0.75 for

~
~

~

.I-0,8 I I 1 I I I I I I I I

0 1

FICx. 2. Gap functions P„(k) vs co„at k =1.05 for A, =A, &, A~

and at k =0.75 for A, =A, 2.

III. STRUCTURE OF THE GAP FUNCTION
IN THE RPA

We now study the k and co„dependence of the self-
energy in the RPA, laying particular stress on the gap
function P„(k). We illustrate this discussion by explicit
calculations for the following set of parameters: r, =4,
T =0.05 (again in units of eF), and defer the discussion of
T„p*,and the normal-state self-energy to Sec. V.

The first three dominating eigenvalues of Eq. (11) are
A,

&

———2.82, k2 ———0.70, and k~ =+0.63. The last eigen-
value is the physical one, tending to 1 for T =3)&10
thus driving the system superconducting. The corre-
sponding eigenfunctions are presented in Figs. 1 and 2 as
functions of both k and co„. Here, n =0 and k =1.05,
respectively, have been used, with the exception of P ~,
where k =0.75 has been used instead (this eigenfunction is
almost zero near kF).

From the fact that all matrix elements of V 6 in (11)
are positive it immediately follows that P has to have at
least one line of nodes in the k, co„plane to produce a posi-

tive eigenvalue. If V were without structure, i.e.,
without k and co„dependence, so would be P and no posi-
tive eigenvalue could appear. Thus, it is evident that
structure in V is necessary to yield superconductivity in
a system with completely repulsive interaction. The ques-

tion is now, where the nodes of P are. The eigenfunction
has no node, either in to„or in k. It represents the

1

"ground state" of the system with the largest negative,
and therefore unphysical, eigenvalue A, &. A,2 again is nega-
tive, but P~ has a node in k near kF. The physical eigen-

2

value Az is accompanied by a Pq which has a node in co„
IP

at about 0.6coz. It also has a node in k around 2, but ac-
cording to Eq. (9a) this is already in a region which con-
tributes slightly to Az. From these findings it becomes
clear that structure of V in co„ is decisive for the possi-
ble occurrence of superconductivity in the system under
consideration. So, any type of approximation to Eqs. (1)
which neglects or averages structure in co„ is not applic-
able to our system.

We conclude this section by analyzing the shape of the
Cooper pair interaction V (k,k;v) for the RPA as given
by Eq. (7). As has been discussed in the preceding section,
in the numerical treatment the logarithmic singularity at
k'=k has been removed by integrating k' over the corre-
sponding k section. In Fig. 3 we show this coarse grain
averaged potential ( V(k, k';v) ) as a function of v and for
k, k'=0. 9. Qualitatively, these potentials can well be ap-
proximated by

~—O~
4- ~~4

~~
~M

~X)3

~ Xp

-0.6
0 k/kF

0-
0 5

V /(dp

Flax. 1. Gap functions P„(k) vs k at n =0 associated with the
three eigenvalues largest in absolute magnitude.

FIG. 3. Imaginary frequency dependence of the effective
electron interaction, coarse grain averaged in k space at
k =0.9=k'.
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2

( V (k, k';v) )-f (k, k') 1 o—(k, k')
V +6)p

(12)

Of course, (12) is not used in the calculations, but it
demonstrates the well-known fact that V is made up of
two components, a static repulsive part and an attractive
part due to exchange of virtual plasmons. This latter part
leads to a depression of ( V (k, k';v)) for v~0, its
strength being given by cr(k, k'). As will be discussed in
the following chapter, this depression is of vital impor-
tance for the possible occurrence of superconductivity,
and p* and T, are extremely sensitive to changes in
cr(k, k'). A plot of o(k, k) which in general terms is de-
fined by

[( V (k, k; co )) —( V (k, k;0))]
( V-(k, k; ~))

is shown in Fig. 4.

IV. PSEUDOPOTENTIAL

Since the pseudopotential approach has been discussed
considerably in the literature, ' we will just sketch what
we need. The basic idea consists in separating the fre-
quency dependence into two ranges, below and above a
cutoff ct)p which is chosen to be large enough to include
all the phonon effects but also small enough to be below
the scale of EF or co&. In the frequency range below cop,
the k dependence of the gap function may be removed by
confining k to the Fermi surface, and the Coulomb in-
teraction between electrons reduces to a pseudopotential
p*. The contribution of the direct electron-electron in-
teraction to p* is obtained by solving the Eliashberg equa-
tion above coo [see Eq. (19)].

Before proceeding with this, let us consider a simple but
instructive model, with the following gap equation:

p„=—TQK„J de
2 2$

m ~m+&

where

p(1 —cr)
/

cia~
/

(cop,
f
co~

/

(cc)p
K„ p otherwise .

T, =1.13cooexp(1/p* ), (16)

p* = —P/[1+P(f +lncoo)], (17a)

(17b)

f=T g tan '(1/co ) .2

f) I~~I ™ (17c)

p' is identified as the pseudopotential of our model, and
clearly depends on the choice of the cutoff ~p whereas T,
does not.

The condition for the occurrence of superconductivity
is

p* (0 or cr ) ( 1+pf)

The depression of the well has to be sufficiently large for
superconductivity to exist, i.e., there is a critical value for
0. below which no superconductivity can occur. This im-
portant statement is also true for the more general k and
co dependent interaction (V (k, k', v)), and it is the par-
ticular virtue of the simplified model to preserve this
feature.

Whenever 0 is close to 1/(1+elf), p" and T, react
very sensitively to any change in o.. As will be demon-
strated by our numerical results in the next section, it is
just this situation we are dealing with in the case of
Coulomb interaction. There, static repulsion and dynamic
attraction are almost in balance, and any approximation
affecting this balance will lead to severe errors.

Returning to the pseudopotential equation for the more
general interaction, we make use of the discrete k repre-
sentation discussed in Sec. III and write the gap equation
(la) in the following way:

P„(k, ) = g g K„'J S'. (k, )

o

K„'& S&, (k, ),
j lrn

l )mo

k.
K„'J = —TA V (k;,ki;v„), SJ =2kJG (kl) (19)

K„represents a square-well potential with a fractional
depression o., roughly modeling the screened Coulomb in-
teraction in Eq. (12). Equation (14) can be solved trivially.
If a cutoff ct)p is deliberately introduced, the transition
temperature assumes the form

where 6=k, /nk is the width of the k intervals and
coo=(2mo+1)AT. In matrix notation, (19) can be written
as

Q =KiSQ+K2SQ, (20)

where K& is the part of the matrix E with columns

~

m
~
)mo replaced by zeros, and K2 is the complementa-

ry part of K. Equation (20) can be rearranged to give

FIG. 4. Coefficient of attraction from Eq. (12), 0.(k, k) vs k. P =CSQ „ (21)
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C=(1 K—2S) 'Ei . (22) V. NUMERICAL RESULTS

Since E'&'nj ~ =0 for
~

m
~

& mp, the m sum on the right-
hand side of Eq. (21) is restricted to

~

m
~

& m p or
~co

~

&cop, and S acts as a 5 function for k~=kF. The
summation over kj (integration over k') can be carried
through, and we are left with

p„(k;)= g C„' p (kF) .
ZD

(23)

k,.kFFor mo « cop Cp ~ is independent of n, m for
~
co„~,

~

co
~

&cop, and so is P„(kj). Restricting k; to
k; =kF, we finally get

(24)

kFkF
P = —

T Coo

Bop(k)
Z =Zp(kF), D =1+

F k=kF

(25)

(26)

The calculation of p* from (25) requires the solution of
(22), i.e., the inversion of the matrix (1—K2S). In k
space, this matrix is of dimension nk —10. Since T, «1
in all realistic situations where p is to be used, in co„
space we assumed a quasicontinuum which was summed
over from coo to co, by means of a Simpson integral pro-
cedure. Typically 15—25 points were used with decreas-
ing spacing for decreasing co„, resulting in a relative error
in p* of about 10 . Above cu, we summed eo„explicitly
in exactly the same way as when solving the gap equation
(see Sec. III). Thus, the overall dimension of the matrix to
be inverted is about 150—250, which represents no prob-
lem on a modern computer. The normal-state self-energy
which enters K& and K2, has been calculated for T =0.05
throughout, which represents an excellent approximation
to the T-0 values we actually need. Changes in these
quantities when decreasing T further to T =0.01, turned
out to be completely negligible.

m" Im =Z/D . (27)

For r, & 5 we find m*/m close to 1 and approaching the
high-density evaluation of Du Bois' for r, & 1 (see Fig. 5)
in both the RPA and SRPA. But in the RPA, m*/m —1

changes sign at r, -3, while in the SRPA, m /m is slight-
ly depressed and always below 1.

The full co„and k dependence of the normal-state self-
energy enters T, and p, respectively, implicitly via Eq.
(la) and Eqs. (22) and (25), respectively. In Figs. 6—8,
X„(k) and Z„(k) are shown as functions of cp„and k,
respectively. Again, r, =4 and T =0.05 have been chosen
together with k =kz and n =0, respectively, as represen-
tative examples.

The last normal-state quantity to be discussed is g„ the
correlation contribution to the chemical potential. Since
g', and the correlation part E, of the ground-state energy
are related by

r, BE,=E ——
C C (28)

Our numerical solutions have been generated by using
dressed Green's functions in the irreducible self-energy
parts in Eqs. (1), which is achieved by iteration. In what
follows, we will designate this self-consistent treatment of
the RPA as the SRPA. Typically, five to ten iteration
steps are sufficient to keep the relative changes in the
self-energy below 10 for two successive steps. For
reasons of comparison to results already quoted in the
literature, we also performed calculations starting with
undressed Green's functions and stopped after the first
iteration step. Following common usage this will be
called the RPA.

We first present the normal-state self-energy. Explicit-
ly, it enters p* by the product ZD via Eq. (25). Z and D
are given in Table I for both the RPA and SRPA.
Hedin' has published RPA results for Z which are in ex-
cellent agreement with our RPA results.

Whereas Z and D enter p* as a product, the effective
mass m* is determined by their ratio,

TABLE I. Normal-state properties Z, D, and g„and superconducting properties p* and T, of the free-electron gas in the RPA
and SRPA; p* values are defined for a cutoff of coo ——1000 K; effective mass defined by m*/m =Z/D.

0.25 0.5

z'
Zb
ze
DR
Db

g a

g
b

p* (1000 K)'
T, (v.-')

1.038
1.041

1.072
1.073

—0.004
—0.004

1.075
1.081

1.122
1.123

—0.013
—0.013

1.139
1.158
1.164
1.205
1.203

—0.046
—0.045
—0.047

0.045

1.247
1.302
1.302
1.343
1.330

—0.148
—0.144
—0.15

0.022

1.335
1.435
1.429
1.466
1.438

—0.272
—0.280
—0.29
—0.018

10—22

1.411
1.561
1.548
1.582
1.537

—0.426
—0.446
—0.47
—0.066
3~10—4

1.477
1.680
1.661
1.695
1.629

—0.597
—0.637
—0.65
—0.12

0.22

'Present calculation (SRPA).
Present calculation (RPA).

'Reference 18.
Reference 21.
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FIG. 5. Effective mass vs r, . HD: high-density evaluation of
Ref. 19.

0, 1 I

0 1 kr'kF 3

FIG. 7. Odd part of the normal-state self-energy vs k for
n =0.

+Xo (kF)+EX "(kF)—Xoo(kF), (29)

which is also given in Table I. g, is very close to g'„so
self-consistency has little influence on g', in the range
0&r, &5.

We now proceed to our results for p* and T„which are
listed in Table I. The calculations for p' were performed
using a cutoff coo ——1000 K, which is 5—10 times the De-
bye temperature of the alkali metals. If a different cutoff
cop is to be used, p* has to be transformed according to

1/p (~Q) = 1 lp (~o) —in(coQ/coo) . (30)

Superconductivity appears whenever p*&0. From Eq.
(24) it follows that T, is given by

our results may be compared to published results for E, as
those given by Vosko et aI. ' for the RPA. From their
data we calculated BE,/Br, by fitting E,(r, ) with a suit-
ably chosen function and determining its derivative
analytically. These g, values are compared to ours in
Table I. In the RPA, our results are lower by a few per-
cent, a difference which could be reduced by increasing k,
and co, (see Sec. II). This would mean considerably more
numerical effort, and since p' and T, are virtually in-
dependent of g„we forego further improvement of this
accuracy. In going from the RPA to the SRPA, the re-
normalization effect on the exchange interaction has to be
taken into account as a further correlation contribution,
and the proper quantity to be compared with is

T = 1.13upe '~" (31)

if the electron interaction alone is responsible for super-
conductivity. In the SRPA, p* &0 for r, )2.5. It is in-
structive to consider the frequency dependence of the
pseudopotential for k at the Fermi surface. In Fig. 9, the
quantity

k k, kCF= CF'F/T

is plotted as a function of co„ for r, =1 (p* &0) and r, =4
(p* &0). p* is related to C„via Eq. (25). In both cases,

kF
there is a strong reduction of C„ from the high-frequency
value-to that at zero-frequency transfer, thus clearly mani-
festing the almost complete cancellation between static
repulsion and dynamic attraction. For r, =4, exchange of
virtual plasrnons overcompensates repulsion and leads to
superconductivity, whereas for r, =1 repulsion dominates.

Our SRPA results for p' are in contradiction to the ex-
periment on the alkali metals. With the exception of Li,
bandstructure effects are small in these metals, and they
should be well described in terms of a free-electron gas.
Since electron-phonon coupling, though weak in these
metals, provides an additional pair-binding mechanism,
the occurrence of a negative p* would result in compara-
tively high T, 's. For instance, for Na, r, -4 and in the
SRPA, p* ——0.07 for r, =4. Together with an electron-
phonon coupling strength A, -0.16 and OD —160 K, this
would lead to T, -2 K, in striking disagreement with the

+
Qd)

I—0

o

~4 0.4—

0.3-

0.2-

0.1—

-X„(kF)F

z„(kF)-~

I [ s e i s

1 2 kf'k F 3

0
0

FIG. 6. Even part of the normal-state self-energy vs k for
n =0.

FICr. 8. Even and odd parts of the normal-state self-energy vs

co„ for k =1.0.
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ckF
=-15

0.25- -1.0

I

UJ„/(dp

0
--0.2

kFkFFIG. 9. Pseudopotential-C„o /T vs ~„ for a cutoff
coo——0.04m eF.

VI. SUMMARY AND DISCUSSIONS

For the dual purpose of studying electron-attracting
mechanisms at high frequency and of investigating the
contribution of the electron Coulomb interaction as embo-

experiment which shows no superconductivity down to
the mK range. Thus, the change of sign in p' for r, & 2.5
is clearly an indication of the inadequacy of the SRPA
and proves the necessity of the inclusion of vertex correc-
tions (spin-fluctuation-type diagrams) in the effective
Cooper-pair interaction V . This will be left to a forth-
coming paper, but we want to anticipate one major result:
The consideration of vertex corrections generally leads to
a flattening of V as a function of energy transfer [i.e., to
a reduction of o(k, k') in Eq. (12)], and as a consequence
to a p* which is positive over the whole range 0(r, & 5.

Incidentally, we note that our numerical solution for
Eq. (la) without the normal-state self-energy correction
yields a T, at least an order of magnitude higher than that
with the self-energy correction in the range of r, & 5. This
demonstrates the danger of regarding the system as weak
coupling merely because T, «Zt;, to&. Our T, values for
r, & 10, without the self-energy correction, are 3 orders of
magnitude higher than those of Takada, ' who considered
the same RPA interaction as we do but using the KMK
approximation' to solve the Eliashberg equation (la).
Thus, the unreliability of the KMK approximation for
high-frequency attractive mechanisms is demonstrated.

died in the quantity p,*, we adopt a well-defined model of
the RPA in an electron gas. The Eliashberg equation with
two variables, momentum and frequency, is solved numer-
ically, including the self-energy correction. As a by-
product, we have obtained the normal-state self-energy in
the self-consistent RPA.

The T, results show that the attraction due to plasmons
within the RPA is an effective counterbalance to the low-
frequency Coulomb repulsion. If we apply the electron-
gas results to simple metals for r, &2.5, the net Coulomb
interaction effect is to lower T„although the effective p
is lower than the common estimate for aluminium (r, =2).
For lower-density metals (r, & 3), the RPA predicts super-
conductivity due to electron Coulomb interaction alone.
From these two facts we infer that the plasmon attraction
is overestimated within the RPA.

The terms left out of the RPA for the Cooper-pair in-
teraction include the vertex corrections and the crossed di-
agrams (electron-hole ladders responsible for the spin
fluctuations). We have found that static appmxima-
tions ' ' " to these terms depress T, and, hence, increase
p* drastically. However, since the frequency dependence
of the Cooper-pair interaction is important, these static
approximations may have overestimated the effects of the
corrections to the RPA. Therefore, we plan a more care-
ful investigation of p* in the electron gas beyond the
RPA.

The plasmon attraction is very simi1ar in structure to
the exciton mechanism. ' ' Even though T, is very small
compared to the typical plasmon or exciton frequency, it
is misleading to regard the resultant superconductivity as
weak coupling, in the sense that self-energy and vertex
corrections are not negligible. Our calculations show that
neglecting these terms may lead to an overly optimistic es-
timate of the superconducting transition temperature due
to the high-frequency attraction
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