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Low-frequency techniques are used to examine the predictions of the equilibrium Kosterlitz-
Thouless theory of the vortex-pair unbinding transition in indium/indium-oxide composite super-

conducting thin films. The renormalized superfluid density obtained from independent measure-

ments of the kinetic inductance and the exponent of the current-dependent resistance are in agree-
ment. At the transition temperature T„ the critical va1ue of the superfluid density agrees with

theory for a finite measurement length. Experimental sensitivity is such that the resistance near T„
measured to be about 9 orders of magnitude below the normal resistance, is explained by the motion
of a single thermally excited free vortex in a superAuid background renormalized by bound-vortex

pairs. The corresponding critical magnetic field for flux entry is also measured. The resistance of
the thermally excited free-vortex plasma and the correlation length above the transition temperature

obey the qualitative prediction of the theory. Nonuniversal constants in the renormalization-group
theory are obtained from the experiment and are found to be sample dependent.

I. INTRODUCTION

Phase transitions in thin-film superconductors, '

Josephson-coupled superconducting arrays, ' ' and in
superfluid helium films' have received a great deal of
attention bemuse of the evident applicability of the theory
of Kosterlitz and Thouless for phase transitions in two-
dimensional systems in the same universality class as the
X-F model. ' ' The theory applies to these systems
because thermal fluctuations are dominated by vortex ex-
citations, which are treated as a neutral two-dimensional
Coulomb gas interacting with a logarithmic pair potential.
The theoretical problem was solved using renormal-
ization-group techniques. The central result is a phase-
transition temperature T„below which vortices exist only
as bound pairs. In this region the equilibrium order-
parameter correlation function decays algebraically with
distance. Just below T, the theory predicts that the equili-
brium superfluid density approaches a minimum value
with a characteristic ( T, —T) ' ~ temperature depen-
dence. There is a vortex-pair unbinding transition at T„
where a neutral plasma of free vortices appears, causing
the superfluid density to jump to zero. Nelson and Kos-
terlitz show that the jurnp should be given by a universal
quantity which is determined by the fixed point in the
Kosterlitz recursion equations. These equations give the
length-scale dependence of the renormalized superfluid
density and vortex excitation probability due to the screen-
ing effect of the thermally excited vortex pairs.

These features of the theory are the results in the limit
in which renormalization is extended to infinite lengths.
No sharp equilibrium transition is expected when finite
lengths accessible to experiment are taken into account.
However, one can obtain predictions for the smooth
behavior expected in the vicinity of T, . ' Finite length

is introduced experimentally as one of the following: the
width of the sample, the frequency-dependent vortex dif-
fusion length, or the current-dependent critical separation
for vortex-pair breaking. We review the theoretical for-
mulas in the next section, paying particular attention to
these finite-size effects.

The ac measurements of the superfluid transition in
liquid-helium films, made by Bishop and Reppy, ' showed
that the jump in the superfluid density agrees with the
universality prediction and that a dissipation peak above
T, is explained by vortex excitations. Following a theoret-
ical study by Ambegaokar and Teitel of the dynamics of
vortex pairs in an oscillating force field, the experimental
data' were fitted by the theory with the use of a pro-
cedure in which the renormalization process is terminated
at a diffusion length r =(14D/co)'~, where D is the vor-
tex diffusivity and co the experimental frequency.

Prediction by the dynamical theory of a frequency-
dependent manifestation of the Kosterlitz-Thouless transi-
tion was verified for superconductors, where the complex
ac impedance was measured over 5 orders of magnitude in
co '" Equilibrium behavior was inferred by extrapolating
logarithmic frequency dependence to zero frequency. In-
dependently, measurements of the noise spectrum have
demonstrated that vortex transport is indeed responsible
for the resistance above T, . The dc resistance measured
at temperatures above T, for a variety of films was
presumed to be dominated by the plasma of free-vortex ex-
citations. The time constant associated with thermal
relaxation in the plasma was found to be short compared
to typical measuring times and concluded to be incon-
sistent with dynamical theory. In liquid helium the vor-
tex plasma was observed as a contribution to thermal
resistance which disappears at T, . ' '

The bound-vortex pairs have also been probed by
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current-induced dynamical pair breaking in superconduct-
ing films. ' ' Theory predicts a power-law dependence
of electrical resistance upon current, and that the renor-
malized superfluid density can be determined from the ex-
ponent. ' Analogous heat-flow experiments were done in
li qu jd helium. 20~ 22' 24

New experimental results are reported here which pro-
vide a detailed test of the equilibrium theory as it applies
to superconducting films. ~e used low-frequency tech-
niques with both room-temperature and superconducting
quantum interference device (SQUID) detectors to study
the regime where a dynamical correction for the reorienta-
tion of vortex pairs is not required. ' This is accom-
plished by working at a frequency which is small com-
pared to Dw, where m is the width of the sample. We
observe a small, activated dc resistance near T, for small
applied currents. The nonlinear resistance observed above
a threshold current gives the renormalized superfluid den-
sity, which agrees with the results of independent kinetic
inductance measurements. Magnetic field study shows a
flux-entry field below T„owing to the finite area of the
film. ' ' The resistance depends sublinearly on mag-
netic field below T, and superlinearly above T, . The
free-vortex plasma is observed for T )T, when the condi-
tion g+ & w is satisfied, where g+ is the vortex-pair corre-
lation length, which is proportional to the mean distance
between the free vortices. '

The theory is applied by using measured values of the
superconducting parameters, and a consistent fit to the
data for T & T, is obtained. The temperature dependence
of the resistance above T„which theoretically is propor-
tional to g+, is shown to be given only approximately by
the values of g+ obtained from solutions of the Kosterlitz
recursion equations.

II. KOSTERLITZ- THOULESS THEORY
FOR SUPERCONDUCTORS

We briefly mention the theoretical results presented in
several theoretical papers, ' particularly the treatment
of the superconductors case by Halperin and Nelson, and
the dynamical theory by Ambegaokar, Halperin, Nelson,
and Siggia. The theory is constructed in terms of two
parameters: K, the reduced stiffness constant, and y, the
vortex excitation probability, also called the vortex activi-
ty. These quantities are renormalized by thermally excit-
ed bound-vortex pairs. Theory predicts that knowledge of
E and y at any given length r can be used to predict
behavior at other lengths through a solution of the Kos-
terlitz recursion equations,

dSC
—'

=4 y (2.1)

and

K =n, A /4mk&T, (2.3)

— = (2 ~K)y, —
dl

where l is a length parameter defined as I =in(r/g, ) and

g, is the vortex-core size. The connection with experi-
mental quantities is

where n, is the renormalized superfluid density and m is
the electron mass. The exponent g for the algebraic decay
of the superconducting order-parameter correlation func-
tion is related to K by

q=1/2' . (2.4)

Equations (2. 1) and (2.2) contain a fixed point which
determines T, and is given by

lim K(l)=2/n
l~ oo

(2.5)

at y =0. The temperature dependence near the fixed point
is obtained by expanding K and y to first order in
r= (T T~ )/T—„

K =(2/rr)+Kp+Kir,

y =yo+y&& .

(2.6)

(2.7)

The results can be expressed in terms of a temperature-
dependent parameter X( T) which, following the form
given by Halperin and Nelson, is given as

with

(2.8)

br, =(32ypy| —2KpKi ) (2.9)

r, =(T,p T, )/T, . — (2.10)

4my(l) =X(T)exp[ —IX( T) /2] (2.11)

~K(l) =2+X(T)/2 . (2.12)

Right at T„ the solutions at large l are

4rry ( I) = I (2.13)

7rK(1) =2-+1-' . (2.14)

Equations (2.8) and (2.12) display the theoretical predic-
tion of Nelson and Kosterlitz that the temperature
dependence of the superfluid density contains a square-
root cusp. In a finite experimental system, a critical point
is not observed because the maximum l is bounded by the
width of the sample m. ' ' ' ' Hence, we introduce an
experimental length parameter

l =In(w/g, ), (2.15)

and make use of the solutions to Eqs. (2.1) and (2.2) at
l =l . In the present work l =9. The result is that

The parameters b and 7., are nonuniversal and are not
given by the theory. The parameter ~, is introduced in
anticipation of scaling which involves the BCS tempera-
ture T,p.

' Solutions to Eqs. (2.1) and (2.2) near the fixed
point are given in the paper by Ambegaokar et al. We
summarize the noteworthy features below.

For T ~ T, the asymptotic behavior, defined for
lengths I ))I —= [P(T)] ', is given by the expressions
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K(/ ) and y(/~) are continuous functions of temperature
in the vicinity of T, . It is also true that the large-I solu-
tions given above are inadequate for I-I -9, since the
exact formulas depend significantly upon unknown initial
condition (/ =0) parameters. Direct integration of the re-
cursion relations circumvents this complication.

In order to observe predictions of the static theory, the
characteristic time of the measurement must be slow
enough for the system to relax under the influence of an
external current. For measurements carried out at a fre-
quency co, the dynamics of vortex-pair polarization fixes
an effective value of I given as

0.05—

0.02—

0.0I—

I I I I I I I I I
I

I I I I
I

I I I I

/„= —, ln(14D/cog, ), (2.16)

R =2vrg, nfR~, (2.17)

where nf is the areal density of free vortices and R& is the
normal-state resistance. This equation is used to evaluate
the resistance at all temperatures, including the T & T, re-
gion. The relationship between nf and y (/ ) is given by

nf =y(/ )/w (2.18)

In applying the recursion Eqs. (2.1) and (2.2) to our ex-
periment, we implicitly assume their validity over the en-
tire range I =0—I~ for T & T, . Solutions as a function of
I are readily obtained by numerical integration. A nurner-
ical solution is necessary because the approximate solu-
tions given above are valid only in the vicinity of ~K-2.
We have assumed for our analysis that at the
shortest length, r=g, given by /=0, the system is an
idealized Ginsburg-Landau superconductor, where
K(0) cc(T,O T)/T and y(0)=yo—exp[ —CK(0)]. T,o is
the BCS mean-field transition temperature and the con-
stant C is determined by the vortex-core energy. We fur-
ther assume that yo ——1, which is equivalent to taking one
available vortex location per unit 2m/, area. ' From a
model of a vortex due to Clem we have an estimate that
C =1.0.

Solutions for y(/) as a function of K '(/) are displayed
in Fig. 1, which was computed from fits to one of our
samples (sample G, as discussed further in Sec. VI). The
locus of initial conditions [y (0),K(0)] labeled / =0 in the
figure is an implicit function of temperature. The separa-
trix curve passes through the fixed point (K =2/m, y =0)
and determines T, . The locus I =I for T & T„shown as
a dashed curve, was computed using
/ = [2m'X( oo )—4] . Predicted equilibrium behavior in
the finite sample is shown by the dashed curve for / =/~.

where D is the vortex diffusion constant. Thus dynamical
corrections, which were needed in interpreting previous ac
experiments, are unnecessary if I„&Im, i.e., when
co&14Dm is satisifed in the experiment. In contrast, if
l~ & Im, then bound-vortex pairs contribute to the dissipa-
tion asy (/„).

Assuming equilibrium conditions are met, therefore,
Eqs. (2.11) and (2.13) show a nonvanishing probability
y(/ ) for a free-vortex excitation for T& T„which im-
plies a small finite resistance. The following expression
from the Bardeen-Stephen theory is used to compute the
resistance

0.5
vr -' K-'

FIG. 1. Theoretical dependence of the parameters y(l) and
K (l) of the Kosterlitz- Thouless theory obtained by integration
of Eqs. (2.1) and (2.2) using the parameters for sample 6 in
Table I. l =0, I,1,and 1+ curves are discussed in the text.

0.6

l+g+=g, e +, (2.19)

from which the density of the free-vortex plasma fol-
lows, "'

—2
nf =Ci(+ (2.20)

The undetermined numerical factor C] is on the order of
unity. For the finite sample, there is a temperature T
above T„where the I+ ——I crossover occurs. We have

g+ & iJ in the region T, & T & T, so our procedure is to
use the /=/~ solution for the computation of the resis-
tance at all temperatures below T

Equation (2.17) is applicable in the T & T, region for
computing the resistance of the free-vortex plasma.
Halperin and Nelson have written a formula for the plas-
ma resistance based on the asymptotic behavior near the
fixed point, namely

/+ =2m. /X(T) . (2.21)

The constant Ci was selected by an interpolation pro-
cedure, with the result for T close to T„

R =10.8bR„exp( —2
~
br, /r I '"), (2.22)

which involves the same nonuniversal constant b as was
given in Eq. (2.8). In Sec. VI we analyze data for the plas-
ma resistance in terms of both Eq. (2.22) and values of /+
computed by the numerical integration method.

In the foregoing discussion, the measuring current was

This latter curve is somewhat sensitive to the I =0 condi-
tions, as opposed to the I —+ oo limit, which is insensitive
to the initial conditions and is of particular theoretical in-
terest.

We note, as Kosterlitz has observed, that y (/) does not
decay to zero at large I for the family of T & T, curves.
The theoretical procedure employed previously in this re-
gion is to terminate the renormalization at I =I+ where
y(/+)=y(0), thus defining the two-dimensional correla-
tion length,
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assumed to be small. Current-induced depairing of the
bound vortices occurs when the I.orentz force, proportion-
al to the measuring current I, exceeds the force of mutual
attraction in the bound pair, proportional to r 'K(l).
Depairing is expressed in terms of a characteristic dis-
tance r, „such that pairs separated by r ~ r, are considered
as free vortices. The result is

r, =2vrc—wkly TK(1, )/Igo, (2.23)

where l, =in(r, /g, ) and Po is the flux quantum. Onset of
depairing in a finite film is given by l, = l or r, =m,

which corresponds to a threshold current

I,t, ——2eK(1 )kg T/A, (2.24)

which is dependent on tc only very close to T, [see Eqs.
(2.14) and (2.15)]. For r, ~&tc, the resistance increases
with current owing to the current-induced breaking of the
bound pairs. We assume that the condition l, & l is satis-
fied so that dynamical relaxation of bound pairs is not an
issue here. Halperin and Nelson provide the formula"

8 =A~(2~K 4)(I/Io)"—

where

(2.25)

Io ——toke T,e/fig, . (2.26)

Equation (2.25) leads to a power-law dependence of resis-
tance as a function of current when l, ~ l . Pair breaking
may also be observed in the regions l, &l for T & T,
and l, &l+ for T ~ T„as discussed further in Sec. VI.
We will introduce additional theoretical relationships, as
needed, in the following sections describing our experi-
mental results.

A. Sample preparation

The indium/oxide films for the experiments were
prepared by reactive ion-beam sputter deposition in which
an indium target is sputtered by argon ions in the presence
of a background partial pressure of oxygen. " The sub-
strates were silicon with a thermally grown oxide.
Characterizing parameters for our three films are given in
Table I. Transmission-electron microscopy has revealed
that the structure of these films can range from granular
crystalline to mixed amorphous and crystalline, depending

upon the oxygen pressure during deposition. Film 6 is
granular and consists of crystalline -60-A-diam particles
and crystalline In203. Films A-1 and A-2, produced at
higher oxygen partial pressures, contain amorphous indi-
um and some crystalline In203. Rutherford-back-
scattering-spectrometry measurements show that the aver-
age indium concentration is 60 at. %%uo.

Multiple sample areas were delineated in each film us-
ing photolithography and wet-chemical etching. The
low-frequency or dc measurements were made on
rectangular-strip samples whose dimensions are given in
the table. Additional measurements of the kinetic induc-
tance were made for 3-mm-diam circular samples on films
6 and A-2, which are distinguished with the notation 6-C
and A-2-C.

The granular films tend to have a sheet resistance
which is uniform across the substrate because the resistivi-
ty is a slowly varying function of the oxygen partial pres-
sure. For film 6 the maximum fractional change in
sheet resistance per unit length is 6)&10 mm '. The
main effect of sheet-resistance variation is on T„since the
mean-field BCS transition temperature T,o is close to that
of pure indium, 3.4 K.

Amorphous films, on the other hand, have a resistivity
which increases with oxygen partial pressure, and the
T,os which we obtain are significantly depressed with
respect to pure In. Presumably, this is an effect of elec-
tron localization on superconductivity in high-resistivity
materials. We find that the resistance of the amorphous
films can be reduced by annealing. This was done for
films 3-1 and 3-2 by placing them under a heat lamp.
The anneals took place in air at a temperature of approxi-
mately 95'C. This treatment permits adjusting the sheet
resistance so that the phase transition occurs at a tempera-
ture convenient for our pumped liquid-helium cryostats.
After heat treatment several samples on film A-2 were ex-
amined and we found b, T, /DR=7)&10 KQ '. The
A-2 sample described in the table was selected from the
most homogeneous region on the substrate, where unifor-
mity in sheet resistance is about the same as for sample 6.
The computed broadening in the resistance transition for
sample 3-2 is 1.2& 10 K.

B. Measurement techniques

Sample 2-1 was measured with room-temperature volt-
age detectors, and the resistance was obtained from the

po,
(m Torr)

T.
(K)

+CO

(K)
po

(men cm) (mm) b (A)Film (mm) +C

6 0.97 1.0 1248 3.404 3.234 0.052
A-1' 2.96 0.5 3735 2 29 1.903 0 21
A-2 40 0.4 1777 2.62 1.782 0.47

'See also Ref. 38 where R~, T,o, b, and g, were derived from the data by different methods.

EC

428
150
304

1.21
1.2
1.80

0.3
0.1

0.2

0.21
0.58
0.42

4.6
4.6
2.2

8.9
8.8
8.8

TABLE I. Parameters for indium/indium-oxide films. Sample 6 is granular; samples 2-1 and 3-2 are amorphous. Po is the am-
2

bient oxygen pressure during growth, po is the resistivity at 300 K of as-grown film, I is the sample length m is the width, R~ is the
normal-resistance at 4 K, T,o is the BCS transition temperature, T, is the Kosterlitz- Thouless transition temperature,
r, =(T,o T, )/T, b is the con—stant in Eq. (2.22), g, is the Ginzburg-Landau coherence distance at T„e, is the vortex dielectric con-
stant at T„Cis the vortex-core energy factor, and I =ln(w/g, ). All films are 100 A thick.

N
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FICx. 2. dc resistance transition for film sample A-2. T, is the
Kosterlitz-Thouless temperature and T,o is the BCS tempera-
ture.

voltage/current ratio. The nonlinear current-voltage
curves were recorded by passing through the sample a
current obtained from a circuit which multiplies a unipo-
lar square wave by a slow ramp. For samples 6 and A-2,
the voltage leads were connected to a nulling circuit with
an S.H.E. Corporation SQUID detector. The complex
impedances were obtained by balancing a bridge operating
at an angular frequency of either 100 or 1000 s '. The
nonlinear impedance was measured with a bipolar square-
wave current source.

We found sensitivity to weak ambient magnetic fields
using the SQUID detector, so special precautions were
taken for those measurements. The samples were mount-
ed on a block of Macor ceramic in a vacuum cryostat.
The SQUID was operated at 1.1 K while the sample tem-
perature was varied using a heater. A copper Helmholtz
coil was used to produce transverse fields. The coil, cryo-
stat, and SQUID were surrounded by an aluminium shield
whose superconducting shielding was switched on or off
by changing the helium-bath temperature by a small
amount. The ambient magnetic field outside the alumi-
num shield was typically 0.1 mOe, achieved by canceling
the ambient laboratory field with a nested arrangement of
trim coils, p-metal shields, and ac de-Gaussing coils. The
transverse component of the field applied to the sample
was nulled using the Helmholtz coil and a transverse trim
coil outside the aluminum shield. The rms field at the
sample was 10 pOe or less.

For four-probe impedance measurements, electrical con-
tacts were made by press-contacting indium-coated wires.
For the SQUID measurements, superconducting wire was
used for the voltage leads, and a 1-pQ series resistance
was added to avoid persistent currents. Thermal cycling
seemed to eliminate trapped flux.

More accurate measurements of the kinetic inductance
were made by using the 3-mm circles, samples 6-C and
A-2-C, in a variation of the two-coil mutual inductance
technique of our earlier work. The sample disc was
placed between two astatic-pair coils. The primary coil
produces a localized transverse ac magnetic field on the
sample. The detector coil was wound from 25-pm-diam

I ) I l I I [ I I l I f I 1

0
0

I

2
r(K)

FICi. 3. Paraconductivity contribution to the resistance of
sample A-2 as a function of temperature. Line is a fit to the
Aslamosov-Larkin expression, Eq. (4.1). T,o is the mean-field
BCS temperature.

copper wire coated with Pb-Bi-Sn superconductor and
connected to the SQUID detector. The complex sheet im-
pedance is computed from the perturbation of the mutual
impedance as described previously.

IV. RESISTANCE FOR T ) Tco

All samples show a negative temperature coefficient of
resistance from 8 to 370 K, as is generally found for
high-resistivity metals. We are particularly interested in
the region just above T,p, where the temperature coeffi-
cient is positive. Here the conductance of the films,
enhanced by fluctuations of nucleating superconductivity,
should be describable by the theory of Aslamasov and
Larkin for paraconductivity effects in two dimensions.
The theoretical functional form is

R '=R~ '+Rp '/(T/T, p 1), —(4.1)

V. KINETIC INDUCTANCE T & T,

At low temperatures, the impedance is dominated by ki-
netic inductance

where R& is the normal resistance, R p e /16fi-—
=6.58)&10 0/~, and T,p is the BCS mean-field transi-
tion temperature.

The resistance transition for sample A-2 is shown in
Fig. 2. We have fitted Eq. (4.1) to the temperature region
between 3 and 5 K in order to find T,p and R&. In princi-
ple these parameters may be temperature dependent owing
to the activated contribution to the normal resistance. A
three-parameter fit, where Rp is also varied, provides an
experimental value for Rp. Results for sample A-2 are
shown in Fig. 3, and we obtain Rp ——6.0X10 0/ . Fix-
ing Rp at the theoretical value changes T, p by —0.03 K.
For sample 6, the best fit is obtained for Rp ——4.6)&10
0/ . For sample A-1, R p could not be meaningfully
varied in a three-parameter fit because of the large activat-
ed resistance, so Rp was held at its theoretical value. The
results for Rz and T,p are collected in Table I.
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I I I I
/

I I I I
f

I I I I
f

I I I 1
/

I I I quency dependence is observed in the vicinity of T„as ex-
pected theoretically. The location of T, may be estimated
by using the theoretical behavior at T =T„Eq. (2.14),
substituting l =l as given by Eq. (2.16). The result is

vrA l4Lke ksT, =nK(l )=2+I (5.4)

p5—

Lk ——m /n, e (5.1)

which can also be written in terms of the two-dimensional
screening length

A=mc /2~n, e (5.2)

2.5
T (K)

FIG. 4. Inverse kinetic inductance vs temperature for circular
film sample G-C at co = 10 s ' (solid curve). Inset: dependence
near the transition at given frequencies.

In Sec. VI we determine that the vortex diffusion length at
T, is 0.09 cm for co=1000 s ' and l =10. Thus for sam-
ple G-C, Lk ——3.6 nH at T, =3.25 K, and for sample A-2-
C, Lk ——7.4 nH at T, =1.68 K. We were unable to ob-
serve equilibrium behavior (frequency independence) in
sample G-C even though the diffusion length is larger
than the film diameter at the lowest cu in Fig. 4. For sam-
ple 6-C we were unable to completely eliminate the am-
bient magnetic field, which introduces a number of free
vortices (approximately four). The transition in sample
3-2-C is broadened by comparatively large film inhomo-
geneity. In all cases, the experiment is not limited by the
finite value of A, ' which is about 0.5 cm at T =T, .

It is evident from inspection of Figs. 4 and 5 that the
n, ~ T,o —T temperature dependence one might expect
from Ginzburg-Landau theory does not describe the data
because of the pronounced curvature at low temperatures.
For sample G-C, we have taken the nonlinearity into ac-
count with a polynomial fit and obtain T,o

——3.43+0.02 K
by extrapolation through the critical region. Thus we find
that extrapolation of paraconductivity (T,o 3.40 K) and-—
the kinetic inductance give consistent results. The tem-
perature dependence of the data may be compared to the
dirty-limit formula'

to give

Lk ——2m A/c (5.3)
c

69
k&co h(T)

h
b,(T)

2m A( T) hR~ b, (0) 2k' T
For obtaining the temperature dependence of the film-
sheet inductance L, the two-coil contactless method has
more sensitivity and accuracy than the four-probe contact
method. We plot the inverse kinetic inductance obtained
for 3-mm-diam samples G-C and A-2-C in Figs. 4 and 5,
respectively.

The temperature range where L ' drops to zero is the
critical region near T, . Figure 4 shows that some fre-

I I I I ] I I I I J
I I I I ( I I I I ] I I I I

0.4—

I I I I I I I I I I I I I I I I I I I I I I I I

1 1.2 1.4 1.6 1.8
T(K)

FIG. 5. Inverse kinetic inductance vs temperature for circular
sample A-2-C at co=10 s

(5.5)

With the use of the values of R& and T,o given in Table I
for sample G, Eq. (5.5) predicts that Lk ' asymptotically
approaches a maximum of 1.96 nH ' at low temperature,
which may be compared to the apparent leveling of our
experimental curve for sample 6 at 2.15 nH '. Thus the
change in R& over the temperature interval from 1 K to
T,o is only about 5%. A.n accurate check for sample 3-
2-C is not possible since L ' changes more rapidly with
temperature at our lowest measuring temperature.

For the remainder of the paper, we concentrate on re-
sults obtained on the comparatively smaller samples,
which are 6, A-1, and 3-2. Complex impedance measure-
ments on samples 6 and 2-2 were taken with the direct-
contact four-probe technique. A small contribution to the
measured signal which comes from the mutual inductance
between the current and voltage leads was subtracted.
This correction was determined by assuming that the ki-
netic inductances of strip and circular films are the same
at T-1 K. There is also a negligible geometrical contri-
bution. In contrast to the data near T, for the circular
films, there is no significant dependence of R and L on
frequency, which was varied between 16 and 160 Hz, to
an accuracy of about 5%. Theoretically, this is expected
for samples where l ~l . Most of the data were taken at
160 Hz, where a better signal-to-noise ratio is obtained.
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VI. CRITICAL REGION T- T,

D =Rc k&T/Bgp . (6.1)

A. Magnetic field dependence

The vortex diffusion coefficient in a superconducting
film is obtained from the magnetic field dependence of the
flux-flow resistance

100
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104

I I I i IIII( I I I I I I I Ill I I I I l Ills I-

T(K)
1.829
1.815
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{T, ) 1.782

An implicit assumption here is that the free-vortex density
is proportional to the magnetic field,

nf B/Q——p . (6.2)
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FICx. 6. Resistance ( V/I) vs current threshold transition,
T & T„for sample A-2.

Minnhagen's theoretical treatment of the analogous prob-
lem of the charged two-dimensional Coulomb gas ' shows
that the linear dependence of Eq. (6.2) holds at T=T, .
For T & T, there is a critical field for flux entry. The
magnetic field dependence is faster than linear because of
the screening of the interaction between bound pairs by
the externally generated vortices. For T & T, the presence
of thermally excited free vortices yields a sublinear depen-
dence of nf on the external field.

Experimentally, we find that the resistance is indepen-
dent of current for low currents, so that the critical
current is zero. There is no pinning-effect threshold for
flux flow. Fisher has argued that a random pinning po-
tential will yield an activated diffusion coefficient.
Theoretically, we expect a priori from Eq. (2.24) to find a
threshold current I,h of 55 na for the onset of nonlinear
resistance which comes from vortex-pair breaking. In our
experiments we begin to observe an increase of several per-
cent in the resistance for currents above 20 na at T =T„
which is in reasonable agreement. Figure 6 shows an ex-
ample of a threshold transition for sample A-2 at a tem-
perature which is 0.01 K below T, .

Data for the magnetic field dependence of the resistance
were taken with a 160-Hz, 18-na current. Some of the re-
sults are shown in Fig. 7 for sample A-2. These and other
data for A-1 and G show the qualitative features predicted
by Minnhagen. '

The resistance varies much more rapidly with tempera-
ture at low field, a region dominated by activated vortex
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FIG. 7. Resistance vs magnetic field isotherms for sample A-

nucleation, than at high field, where the temperature
dependence is dominated by the more weakly activated
vortex diffusivity. For a temperature in the vicinity of
1.782 K, there is a factor-of-100 range in H where the
magnetic field dependence is linear. We presume from
theory, because R is proportional to H, that this tempera-
ture is close to T, . The deviations at low field, where the
temperature dependence becomes most pronounced, is ex-
pected because of the finite size of the film. We can ex-
press finite size in terms of a field Hp=fp/w, which is
5)&10 "Qe for sampled-2.

The curves in Fig. 7 tend to merge together at high
magnetic field where nf is dominated by the external mag-
netic field. The curve identified as being close to T, is
used with Eq. (6.1) to find the vortex diffusion coefficient
and using nf =B!Pp in Eq. (2.17) to obtain the coherence
distance g, and hence the parameter l given in Table I.
For fields much above 1 Oe, the formula of Eq. (6.1) no
longer precisely describes the data, as some negative cur-
vature is evident. Part of the temperature dependence of
the resistance near 1 Oe presumably arises from the ac-
tivated behavior of D and part from the temperature
dependence of the thermally excited vortex density. The
diffusion coefficient at T, is 0.6 cm s ', which corre-
sponds to a vortex diffusion length of 0.09 cm at our
measuring frequency. Thus the absence of frequency
dependence near T, is explained by the sample width be-
ing less than the vortex diffusion length. The large mag-
nitude of D in turn suggests that the effects of pinning po-
tentials are comparatively weak near T, for all the sam-
ples.

With the magnetic field dependence of the resistance,
we now have the scale factor between R and nf, the densi-
ty of free vortices. When we examine the low-field, low-
temperature region in Fig. 7, we find that the effective
value of nf is as much as a factor of 50 smaller than w

implying that the probability of finding one vortex per
unit m area is less than unity.

In an infinite sample the flux-entry critical field H, &

vanishes at T, because of the appearance of thermally ex-
cited free vortices at lengths greater than A. A convenient
and ad hoc measure of the flux-entry critical field in our
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finite sample is the external field which produces one vor-
tex in an area m . This corresponds to a threshold resis-
tance of 2~(,R&/w =2.6X10 " 0 in sample 3-2. The
values of H, &

we obtain in this manner, uncorrected for
any temperature dependence of D, are plotted against tem-
perature in Fig. 8. Note that the temperature of 1.784 K,
where H ~ =Ho is about the same temperature where the
resistance is linearly dependent on the field for H »Ho.
Because of the finite value of Ho there is flux exclusion at
all temperatures to about 1.79 K.

Our data are in qualitative accord with Minnhagen's
theoretical functions. ' Minnhagen has defined H, , as an
intercept in a plot of nf vs 8. It was not possible for us to
use the same procedure because of the nonlinearity of the
R (H) curves for T & T, . For T ~ T, we can obtain criti-
cal exponents from the magnetic field dependence. How-
ever, the formulae presented by the theory involve several
unknown parameters whose values must be fit. For this

reason, and also because the effect of finite sample size is
introduced only approximately in the theory, such fitting
results would not be meaningful.

B. Temperature dependence

The renormalized stiffness constant to be compared
with theory is computed from data for the kinetic induc-
tance by the relation

nE(l )=sruti /4e LkksT . (6.3)

The static limit I =1m applies for the small samples. The
quantity nK(l ) is plotted against temperature as open
circles in Fig. 9 for sample A-2. A theoretical value of
m'K(8. 8)=2. 11 at T = T, is given by Eq. (2.14). The
predicted deviation from the precise value of 2, valid in
the l ~ oo limit, is small and comparable to our experi-
mental accuracy. The temperature where ~E crosses 2.11
in Fig. 9 is 1.782 K, with an uncertainty of about 3 mK.
We find that this is in good agreement with the critical
temperature (T, =1.782 K) identified with the linear
R (H) curve in Fig. 7. Data for the kinetic inductance do
not extend too far above T, because the rapidly increasing
resistance eventually dominates the impedance.
Temperature-fluctuation noise prevents accurate measure-
ment of Lk in this region.

A second procedure for experimentally determining ~JC
is from the exponent of the nonlinear dependence of the
resistance on current for I & I,h. The family of isotherms
for R vs I for sample 2-2 is shown in Fig. 10. A similar
set of curves has been obtained for sample 2-1 (Ref. 38)
and sample G. A current range was selected so that the
resistance is at least an order of magnitude greater than
the linear resistance at small currents. The current corre-
sponds to a vortex-pair-breaking length r, —10 pm, which
is an order of magnitude or more smaller than the sample
width. Thus the influence of the sample boundaries can
be neglected in the analysis of these data. ' To the ex-
tent we observe straight lines on our log-log scale plot
shows that the dependence of K on the parameter 1 can be
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neglected. For these data we have l, =In(r, /g, )-6. We
have fitted Eq. (2.25) to these data and plotted the results
for ~IC as the open squares in Fig. 9. The agreement be-
tween the kinetic inductance measurements and nonlinear
resistance measurements of mK, compared in Fig. 9, is ex-
cellent near T„although the deviation below 1.75 K is not
readily explained. The scaling current Io is plotted
against temperature in Fig. 11 for sample A-2. The values
of Io agree to within a factor of 2 with the expression
given in Eq. (2.26), computed with the results for g, ob-
tained from the flux-flow resistance. Since both Io and D

depend on the vortex-core radius g„we can also treat the
nonlinear resistance and the flux-flow resistance as in-
dependent measurements of g, . The comparison is made
in Fig. 12, where the temperature dependence is plotted
for sample A-1. Resu1ts for both measurements show a
pronounced increase in g, near T, . Pinning effects are
possibly important, and may influence the flux-flow mo-
bility. Such effects on Io, which is determined by the
vortex-core size, should be much less. A theoretical pre-
diction of enhanced diffusion near T, by Petschek and
Zippelius ' is in qualitative agreement with this observed
increase in g, .

For temperatures below T„we can neglect the length
dependence of K if the value of l fixed by the experiment,
the smaller of I, or l is larger than the characteristic
length I . However, this condition cannot be satisfied
near T, because of the divergence in l . We calculate a
small, 5% difference between K(l, ) and K(l ) at T„al-
though we are not able to resolve it experimentally. How-
ever, meaningful results for K(l, ) are obtained by consid-
ering the generalization of Eq. (2.25),

~K(l, )= d 1nR

G lnI
C

(6.4)

which is valid even for T ~ T, if I, ~l+. The small
amount of curvature predicted in logR-vs-1ogI plots for
T—T, is not discernible in the data of Fig. 10 or previous

38

Our procedure for testing the renormalization-group
theory is to fit the temperature dependence of mK(l, ) by
solving Eqs. (2.1) and (2.2) with numerical integration.
For this purpose we assume two adjustable parameters:
the unrenormalized K (0) parameter, assumed to have a
simple (T,o T)/T temp—erature dependence, and the
vortex-core energy factor C, assumed to be a constant in-
variant with temperature. The parameter T,o is taken
from Table I. The transition temperature T, is not expli-
citly an adjustable parameter, and l, =6 was assumed to
be constant. Qnce a fit for I =I, is obtained, we find T,
by inspecting the behavior at large l.
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FIG. 12. Vortex-core parameter g', vs temperature obtained
from flux-flow resistance (triangles) and from nonlinear resis-
tance (circles}.

FIG. 13. Reduced stiffness constant vs reduced temperature
for sample A-2. Fitted curves are for l, =6, l~ ao, and l =I+
(dashed curve).
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FIG. 16. Normalized resistance vs reduced stiffness constant
for sample 2-2 and a theory curve, Eq. (6.6), for / =9.0.

We present the results for samples 6 and 3-2 in Figs.
13 and 14. The temperature scale is written in reduced
form as (T —T, )l(T, O T, ), so as —to test the normaliza-
tion with respect to the parameter r, of Eq. (2.10). For
temperatures above T„ there is a temperature T where
we truncate the numerical integration because y(l) recov-
ers to its initial value, in accordance with the theoretical
prescription. The minimum values of mE displayed in the
fits are located at T =T . The T ~ T region is
displayed in Fig. 13 as a dashed curve. The fitting param-
eters e, and C are given in Table I, where the dielectric
constant at T =T, is defined in the usual manner,

e, =vrIC(0)/2 . (6.5)
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FICz. 15. Normalized resistance vs reduced stiffness constant
for sample 6 and a theory curve, Eq. (6.6), for I =7.3.

Figures 13 and 14 also show the result for T & T, when
the i~co limit is computed with the same parameters
making the fit for l = l, . The difference is significant only
very close to T„where the square-root cusp is visible and
where ~K drops discontinuously from 2 to 0. This
method of finding T„where the values obtained are given
in Table I, agrees with the previous analysis of the mag-
netic field dependence to within experimental accuracy.

We also use this method to calculate the parameter z, .
We now turn to an analysis of the low-current resis-

tance and test whether the magnitude of the resistance
agrees with the theory. In the temperature region T & T~,
we substitute Eq. (2.18) into Eq. (2.17) and obtain for the
dc resistance

R —2r
=2me y(l~) .

1V

(6.6)

Equation (6.6) differs from the dynamical case, where
l &l, and where the ac resistance is proportional to
coy (l„), i.e., the density of vortex-pair excitations. A
nonobvious property of the solution of the recursion equa-
tions is that 2rre y(l), when plotted as a function of
IC(l), produces a curve which is insensitive to the 1=0
locus. This relationship is displayed in Figs. 15 and 16.
For the data points ordinates were computed from the
low-current resistance, and for the abscissa scale the small
difference between m K ( I, ), the measured quantity, and
vrK( l ), the computed quantity, was neglected. The
theory curves (solid lines) in the two figures were comput-
ed from Eq. (6.6) for a choice of I which best fits the
data. Varying l in this way shifts the curves in the ordi-
nate direction. The curves terminate on the left at a point
corresponding to T =T where l~ = l+. These fits corre-
spond to l =7.3 and 9.0 for samples G and A-2, respec-
tively, which may be compared with the independently
determined values of 8.9 and 8.8 given in Table I. We re-
gard this as good agreement between theory and experi-
ment for T & T, confirming the theory thai dc resistance
near T, arises from a free-vortex excitation in the sample.

The resistance at temperatures above T~, where we
have l+ &l, is dominated by the free-vortex plasma.
Previous work on superconducting and liquid-helium
films has shown that the temperature dependence of Eq.
(2.22) gives quite a good fit to data over the broad tem-
peratures range where R/R& &0.1. A fit for sample A-1
is given in Ref. 38. The fitting parameters b are given in
Table I. For sample A-2 the value given is approximate
because of systematic deviation from Eq. (2.22). The scal-
ing method of the next paragraph gives a better fit to the
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FIG. 17. Comparison of normalized resistance vs reduced
temperature for three samples.

(6.7)

and found that universal scaling is not obeyed in this
scheme either. However, it is instructive to plot the data
in a manner which produces a straight line if the asymp-
totic behavior for X &1 is to be tested. We choose a

A-2 data. The parameter b varies among the samples, as
shown by the results in Table I. This was noted for earlier
work by Abraham et al. ' Further display of the failure
of ~, scaling is shown in Fig. 17, where the three samples
are compared in plots of R/R~ as functions of sir, . The
plots do not superimpose. This implies that the supercon-
ducting transition does not obey a simple scaling law with
normal resistance, as originally proposed by Beasley,
Mooij, and Orlando. '

Following a suggestion of Minnhagen' that the tem-
perature scaling should include the Ginzburg-Landau
temperature dependence of the underlying superfluid, we
have also tested the dependence of R/R& on a parameter
X, given by

[1n(2vrR~/R)] '=(bX)' (6.8)

—2i=2vre +y (1+),
R~

(6.9)

where in this scheme y (I+ ) =y (0). The computed results
of this procedure show that the ~ ' dependence of l+
given by Eq. (2.21) is obeyed in the rather restrictive inter-
val r/r, &10 just above T, . ' At higher temperature
I+ decreases more rapidly than ~ ', eventually going to
zero at ~=~o, which corresponds to the point where the
extrapolated l =0 and l+ curves in Fig. 1 meet,

7O e, —1

ac+re
(6.10)

This corresponds to mli. (0)=2. Although Eq. (6.10) gives

The quantity expressed in Eq. (6.8) is (2l+ ) '. Presenting
the data in this manner in Fig. 18, we find that the
square-root law of the theory is applicable in a limited in-
terval, as shown by the dashed lines passing through the
data curves. For temperatures too close to T„ the diver-
gence in l+ is cutoff at l, while at high temperatures, for
R/R&)0. 1, the asymptotic formula is not expected to
apply. Figure 18 also shows that the X parameter does
not produce a universal plot for the two samples shown,
and therefore such a dependence does not confirm univer-
sality.

A more critical test of the theory is to compute l+
directly from the renormalization procedure as discussed
in Sec. II using the same constants which fit the data for
T & T, . However, in order to compute the resistance, we
must assume a value for the unknown constant C~. Our
procedure is to choose a formula which makes R continu-
ous at the quasitransition which occurs at T . Thus we
use
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FICx. 18. Plot of reduced resistance on the universal tempera-
ture scale parameter, Eq. (6.7). Dashed curves are fitted accord-
ing to Eq. (6.8).
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FIG. 19. Experimental (solid curve) and theoretical (dashed
curve) dependence of normalized resistance on reduced tempera-
ture for sample G. Theory for T & T given by Eq. (6.6) and for
T & T by Eq. (6.9). T marks I =I+.
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FIG. 20. Experimental (solid curve) and theoretical (dashed
curve) dependence of normalized resistance on reduced tempera-
ture for sample 2-2. Theory as in Fig. 19.

the width wo of the critical region predicted from Eqs.
(2.1) and (2.2), the actual critical region may be wider, as
indicated by experimental data for the resistance above

7—9, 38
C

The predicted temperature dependence obtained from
numerical integration is compared with the data for sam-
ples 6 and 3-2 in Figs. 19 and 20, respectively. Only the
region T ~ T, is plotted. We note that the region near T„
where l+ ~ l, or T (T, is given correctly. For the re-
gion T ~ T, the vortex plasma phase, on the other hand,
the theoretical curve rises too rapidly with temperature to
agree with the data. Adjusting the unknown constant C&

by an order of magnitude obviously cannot improve the fit
very much, since that would translate the theory curves
for T ~ T in the ordinate direction. These log-log plots
reveal that the computed curves could fit the data much
better if the temperature scale is reduced by about a factor
of 3. This suggests that the theoretically computed values
of l+ are too small by a factor of 3' . The theoretical
method for computing l+ is thus shown to be accurate to
a factor on the order of unity. Theory is less precisely for-
mulated in the T ~ T, region. Also, one has to be con-
cerned with higher-order terms ' which are neglected in
Eqs. (2. 1) and (2.2), and which may be important.

VEE. CONCLUSIONS

We have performed a test of the equilibrium Kosterlitz
and Thouless theory of the vortex-pair unbinding transi-
tion with low-frequency measurements on small-area su-
perconducting samples of indium/indium-oxide films. In-
dependent measurements of the vortex-diffusion coeffi-
cients give diffusion lengths which are larger than the
sample widths. This corroborates the absence of frequen-
cy dependence in the inductance and resistance of the
small samples. The critical temperature is identified in
several ways, through magnetic field dependence and
through the values obtained for the reduced stiffness con-
stant, although T, is not precisely defined for small sam-
ples. For T(T„ the stiffness constant obtained from ki-
netic inductance and from the exponent of the current-

dependent resistance are nearly the same. In the vicinity
of T, we observe the small amount of resistance which
comes from a thermally excited free vortex in a sea of
thermally excited bound pairs of vortices.

The temperature dependence for the density of the
free-vortex plasma phase above T, has the qualitative ex-
ponential inverse-square-root temperature dependence
given by the theory. The nonuniversal scaling constant b
for T & T, is a factor of —3' smaller than the value
which fits the Kosterlitz-Thouless transition for T (T, .
We suspect that this has to do with the neglect of higher-
order terms in the solution of the Kosterlitz recursion re-
lations at higher temperatures. The data indicate that y (l)
and K(l) vary more slowly near l-l+ this is indicated by
the solutions of Eqs. (2.1) and (2.2) for T & T, .

The prediction of universality in the jump in electron
superfluid density at T, is confirmed to a precision of
about 10%. The uncertainty arises mainly from the 10%
scatter in the experimental points, although the funda-
mental limitation is the finite value of I . The fit to the
data at finite l also reveals the results to be expected as
l —+Go. The difference occurs mainly in a small region
very close to T, . To make a significantly better examina-
tion of the cusp behavior near T, requires a much larger
value of l, say l -50. This is an unrealistic extension of
the experiment; for superconductors, l ( in(A/g, ) —14,
because of the magnetic screening in a charged super-
fluid. 39

The displacement of T, below T,o, as given by the ~,
parameter, does not follow from a simple analysis of the
dirty-limit formula for the penetration depth. The trend
of the data shows more rapid reduction of T, with oxygen
doping. Simanek has shown the zero-point phase fluc-
tuations from electrostatic charging in granular films
ought to be considered. The influence of electron 1ocaliza-
tion and inhomogeneities have not been taken into ac-
count either. Presumably these effects could explain the
variations in e, and C among our samples, since these
quantities are determined by extrapolating to short lengths
the behavior of the superconducting films measured at
macroscopic lengths. A combined renormalization-
localization theory is lacking at present.

The Bardeen-Stephen model for fIux-flow resistance
plays an important role in evaluating the relative experi-
mental length scale r/g, and the thermally excited free-
vortex density nf. Since nf varies very rapidly with tem-
perature near T, compared with the vortex diffusivity D
(compare low- and high-field regions in Fig. 7), we have
assumed that neglecting the temperature dependence of D
yields an unimportant systematic error.
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