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Vortices in rotating superfluid He-A
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We investigate the properties of rotating 'He-3 in the absence of a magnetic field. For fast rotat-

ing He-2 (0»Q, i) we find a transition from the type-I lattice of nonsingular vortex textures dis-

cussed by Fujita et al. to a lattice of singular 2~ vortex textures with polar cores at a rotation speed

of O=(A/2m3)(3L, D) =32 rad/sec for T=T, . A second transition to a lattice of singular vortices

occurs at a much higher rotational speed 0=10 'Q, 2. We also discuss ion mobility and sound at-

tenuation in these vortex textures.

I. INTRODUCTION

The equilibrium state of an infinite stationary super-
fluid is a uniform order parameter, while configurations
with either continuous variation of the order parameter or
singular defects have higher energy. In this context, rota-
tion plays an interesting role because the equilibrium state
of a rotating superfluid typically contains one or more
singularities associated with the finite angular momentum.
These ideas are familiar in connection with superAuid
He, where the defects are quantized vortex lines with a

core of radius of order the coherence length g. Although
these vortices can, in principle, have multiple circulation,
energy considerations favor single quantization. The re-
sulting equilibrium state of a rotating superfluid in a
cylinder of radius R depends on the angular speed Q. For
low angular speed, the superfluid remains at rest. At a
critical value Q, i=(A'/m4R )In(R/g), a singly quantized
vortex first appears; for larger angular speeds, superfluid
He rotates by forming an array of these quantized vor-

tices. This situation persists up to a second critical value
0,2-A'/m4$, when the cores start to overlap. Since g is
very small for He(g= A), 0,2 is unattainably high
(=10' rad/sec); in contrast, 0„ is very low (=3X10
rad/sec for R =1 cm). Thus most experiments deal with
intermediate speeds, Q, & «&0 «0, 2.

The analogous situation for He is less understood be-
cause its order parameter is more complicated. In particu-
lar, dipole-locked He-2 has only a single topologically
stable type of line singularity associated with one quantum
of' circulation. ' Higher circulation states are topological-
ly equivalent to configurations with lower circulation, but
an energy barrier may intervene. One of the simplest non-

singular textures with circulation is a doubly quantized
(4n)vortex, first stu. died by Anderson and Toulouse
(AT). In principle, rotating He could contain an array
of' these textures, but other nonsingular configurations
turn out to have lower free energy.

The equilibrium state of nonrotating He-A in a
cylinder was first studied by Mermin and Ho (MH), who

constructed a nonsingular texture with a single unit of cir-
culation at the outer boundary. ' At a critical angular
speed 0„=10(A'/2m 3R ), the equilibrium texture
changes to one with three units of circulation at the outer
wall, but remains nonsingular throughout the cylinder.
For somewhat higher angular speed, the detailed sequence
of states is not known, but the situation becomes simpler
when the total number of circulation quanta is large, be-

cause the effect of the cylinder boundary can be omitted.
At moderate rotation speeds, a square array of nonsingu-
lar textures, similar to those studied by MH, is believed to
have the lowest free energy. For very high rotational
speeds Q =Q, z

—=A/gm 3g, where g is the tem-

perature-dependent Ginzburg-Landau coherence length,
and for T= T„Schopohl finds that the minimum-

energy configuration is a triangular lattice of singular vor-

tices with the order parameter having either the axial or
polar form. Comparison of these two limits implies that a
transition must occur from nonsingular to singular vor-
tices at some intermediate angular speed.

This paper addresses the question: What is the se-

quence of states in rotating He-3 for Q, & «0« Q, 2 and
zero magnetic field? This limit is both theoretically
tractable, because the density of vortices is large so that
boundary effects can be ignored, and experimentally ac-
cessible, because II, &

is comparable with that for He,
whereas 0,2 is very large (0,2= 3 && 106 rad/sec for
/=0. 03 pm and T/T, =0.9). Section II describes the
general properties of vortices in the A phase and how they
can be combined to form a regular array. The free energy
of various possible configurations is considered in Sec. III.
A comparison of the free energy of these configurations
determines the angular speeds where textural transitions
occur. In particular, we find that a nonsingular array is
energetically favored when 0 &A/18m3LD —32 rad/sec,
where LD is the characteristic dipole length, and that ei-

ther of two distinct singular vortices can occur depending
on the angular speed. In Sec. IV we discuss ion mobility
and sound propagation in rotating He-A, and suggest that
ion-pulse shapes and sound attenuation measurements can
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distinguish between the possible zero-field vortex-texture
lattices.

II. GENERAL PROPERTIES OF VORTICES

The general features of vortices in superAuid He-2 are
best understood in comparison with those of He. We
first review the situation for the simpler superfluid.

tainer appropriately. If the walls rotate with constant an-
gular velocity Q, then the normal fluid executes solid-
body rotation with v„=m4A' '0 X r, and the free-energy
density in the rotating frame is

f=f m4—fi '0 (r)& j ),
where f includes the normal-fluid kinetic energy density

2
2 p„v„and

A. Vortices in superfluid He II

The order parameter of liquid He is a complex scalar
function, %(r )=

~

V(r )
~

e' '' '. Spatial variations in-
volve an energy density proportional to

~

V4 ~, and the
most important part comes from gradients of the phase
( VS) because variations in

~

4
~

are generally more costly
in energy. Thus the order parameter for superfluid He
effectively reduces to a scalar phase function S. Its gra-
dient is related to the superfluid velocity

v, =VS .

Since V(r ) is single valued, the phase S can change only
by an integral multiple of 2m on going around any closed
contour C. As a result, we obtain the well-known quanti-
zation of superfluid circulation

v, .d s =2~p, p =0, +1,+2, . . . .
C

Equivalently, p is the winding number of the phase; if
p&0, then there must be a singularity in S(r ) somewhere
inside C.

The simplest case is to have

S(r )=py+S, ,

where P is the azimuthal angle in cylindrical polar coordi-
nates, and So is a constant. The corresponding superfluid
velocity is

v, = (p/r)P,

representing a p-fold quantized vortex line on the axis of
symmetry. Although closed velocity streamlines are the
most common way to visualize a vortex, it is often more
instructive to consider the phase 5 directly by drawing a
field of unit vectors oriented at the local angle S with
respect to some fixed direction. This approach focuses
directly on p as the winding number; Fig. 1 illustrates
various possibilities for p =+1. Note that all three cases
for p =1 have the same superfluid velocity, even though
they look quite different.

The energy per unit length of a vortex is obtained by in-
tegrating the kinetic energy density f= —,p, u, to give
rrp, p ln(a/g'). The logarithmic divergence is cut off at the
core radius g and at a large distance a, which is either the
size of the container or the intervortex spacing. The loga-
rithmic factor reflects the singularity in the phase func-
tion which forces a defect in the order parameter;
must be decreased to zero inside the core, r (g.

It is evident that a vortex represents an excited state of
the system at rest, but it can be made the true thermo-
dynamic equilibrium state merely by rotating the con-

3 =p. v. +pnvn

is the total current. Simple manipulations allow us to
rewrite f as

f= Yps( vs —vn ) —YpUn

where the last term is a constant that depends only on the
angular speed and the shape of the container and will be
omitted from here on. Thus, thermodynamic equilibrium
is obtained by minimizing the mean-square superfluid
velocity in the rotating frame, namely (v, —v„) .

Since curl v, =0, except at singularities, whereas
curl v „=2m 4 Q /A, v, —v „cannot vanish identically.
Nevertheless, the superfluid can mimic solid-body rotation
by forming a uniform array of rectilinear vortices parallel
to the rotation axis. ' If C is a contour in the plane per-
pendicular to 0 enclosing X, vortices in an area 2„ then
Eqs. (1) and (2) show that

f v, is=2vrpX, . (7)

To minimize (v, —v„) on the average, we require that
Eq. (7) also equals the line integral of v„around C;
Stokes's theorem then gives the mean vortex density

X, /3, =m40/vrpfi .

For an angular speed 0= 1 rad/sec, the vortex density is
X, /A, =2000 cm

The preceding considerations assume only a uniform
vortex density and are independent of the precise arrange-
ment of the vortices. It is useful to consider the specific
case of a lattice of rectilinear vortices parallel to z and in-
tersecting the xy plane at the points r „=mb&+nb2,
where m and n are integers and b& and b2 are elementary
lattice vectors. Tkachenko" has studied the phase func-
tion for such an array, which we shall denote C&(r). It

(b)

(c)

FICi. 1. Phase-angle representation of vortices. (a), (b), and
(c) all represent p =+ 1 vortices. (d) represents a p = —1 vortex.
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can be constructed by introducing complex numbers
+ +~/ zmn xmn +~gmn ~ and by using the prescription

@(r ) =Imp log(z —z „),
m, n

but this series is not well behaved for an unbounded array.
An alternative and rigorous procedure shows that N(r )

satisfies certain quasiperiodic relations. For the case of a
square lattice with basis vectors b~ bx——and b2 by——, @(r )

obeys the recursion relation

N(r+mb~+nb2)

=@(r )+nb '(my —nx)+m(m +n +mn), (9)

where the choice of sign is unimportant because N is de-
fined only modulo 2m. Furthermore, the lattice rotates
about some lattice site (the origin) and C&(r ) inside the
first square unit cell (

~

x
~

& , b,
~ y —~ & —,

'
b) has the rapid-

ly converging expansion

between two points is just the corresponding line integral
of v, . It also follows that v, = VC& cannot be periodic.
Indeed, the lattice itself executes solid-body rotation, i.e.,
it is stationary in a frame rotating with the angular speed
given by Eq. (8), where p is the circulation per unit cell of
area A, (here N, = 1). Consequently, we infer that the
quantity

v, —v„= VC& —(mp/A, )z)& r

is strictly periodic, and this relation holds for general
two-dimensional vortex lattices.

In the rotating frame, it follows that the relevant part
of the free-energy density f= —,'p, (v, —v„) is periodic
with the lattice symmetry, so that the total free energy can
be found from that for a single unit cell. For simplicity,
we introduce an equivalent circular Wigner-Seitz (WS) cell
of area A, /N, given by Eq. (8) and radius

a = (p R/m qQ )
'~

1.854r
b

4
2sin4$—

525
1.854r

b

8

sin8$

which for A=1 rad/sec is a =0.01 cm. Inside this cell,
the true relative velocity is replaced by the axisymmetric
flow v, —v„=UP, where

+ ~ ~ ~ (10)
v =p/r —m4Q, r/A'

=p(r ' —r/a ) . (13)

It is then straightforward to evaluate @ throughout the ar-
ray, with the result shown in Fig. 2. A similar analysis is
possible for a triangular array, but it is unnecessary for
our purposes.

It is evident by inspection that N(r ) is not a periodic
function (even modulo 27r) Instead. , the phase twists in-
creasingly rapidly in moving away from the origin. This
behavior must reflect the presence of a net induced circu-
lating superfluid velocity arising from the uniform density
of vortices, since Eq. (1) implies that the change of phase

Note that v =0 on the boundary of the circular WS cell,
although this relation is not generally correct for the true
polygonal unit ce11. An elementary integration now gives
the approximate free energy per unit cell

f d r f=—vrp, p [1n(a/g) —
4 )), (14)

omitting small terms of order (g/a) . Detailed calcula-
tions" show that Eq. (14) differs from the exact value for
the square or triangular lattices by only a small correction.

B. Vortices in superfluid He-A

In the case of superfluid He, the spin-triplet p-wave or-
der parameter Az, is a vector in spin space with respect to
index p and a vector in orbital space with respect to index
i. For He-A, it has the specific form'

b

0

A&, hd„(b, , +ib2);, —— (15)

where 6&, 62, and l —= 6& && 62 are orthogonal unit vectors,
and l is the direction of the orbital angular momentum of
a Cooper pair. Thus, the orbital part of the order parame-
ter is fixed by specifying the orientation of an orthonor-
mal triad (b ~, b,2, 1) throughout space. A convenient way
to parametrize the triad is to use the Euler angles
(a,p, y). ' In this convention, a and p are the azimuthal
and polar angles of the vector l with respect to some fixed
set of axes (x,y, z), and y then represents an additional ro-
tation about l. Specifically, the auxiliary triad

FIT&. 2. Phase-angle representation of the function W( r ) for a
square lattice of vortices. Vectors twist increasingly rapidly in
moving away from the center of rotation at 0.

l =(x cosa+y sina)sinp+z cosp,

m =(x cosa+y sina)cosp —z sinp,

n = —x sine+y cosa,
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allows us to write the order parameter as

b, ~+ihz e——'r(m+in) . (16b)

In He, the physical properties are invariant under an
overall constant rotation of the phase S, but local changes
6S in phase between r and r+6r are related to the super-
fluid velocity by 6S= v, 6r. Similarly in He-A, the
change in the orbital part of the order parameter between
r and r +6r represents an infinitestimal rotation 6m of
the rigid triad. Part of this rotation is a change in the lo-

cal direction of l, and the remainder 6' l is a rotation
about the direction l. It is this last part that is analogous
to the local phase change in He. The corresponding su-
perfluid velocity in He-A has the form

v, = —Vy —cosPVa . (17)

This relation is the appropriate generalization of Eq. (1)
for He-3 and has several important features.

(i) curlv, does not, in general, vanish. Instead,

curlv, =sinP(VPX Va), (18)

which shows, in the absence of singularities of y, that the
superfluid vorticity is determined by l and its derivatives.

(ii) This distributed vorticity means that there is no
quantization of circulation in superfluid He-A, although
there may also be additional concentrated vorticity associ-
ated with the singularities of y.

(iii) The hydrodynamic description of He-A uses the
vector fields v, and l. Since both follow directly from the
three Euler angles, they are not independent variables.
Indeed, Eq. (18) is often considered a constraint relating

curlv, and l.
The Euler angle P may have values between 0 and m. In

contrast, the angles a and y can increase without limit; in
this sense both are analogous to the phase function S for
superfluid He. Many of the interesting and unusual
properties of superfluid He-A follow from the occurrence
of two such functions. For example, a line singularity in
S represents a vortex in He through Eq. (1). Correspond-
ingly, line singularities in o, or y lead to vortices and
singular textures in He-A. There are several different
possibilities.

(i) If a and P are constant, then l is constant and the re-
sulting superfluid velocity is given by

v, = —Ty .

Thus any singularity in y will result in a "phase" vortex,
essentially the same as a vortex in He. In this case, —y
plays the role of the phase function S, and all the previ-
ous relations about quantized vortices hold here as well.
In particular, if y= —pP+yo, then we have a p-fold
quantized vortex with a velocity field that diverges near
the axis as in Eq. (4), leading to a singular vortex. Simi-
lar considerations apply if a and P vary smoothly
throughout space, so long as l is nonsingular.

(ii) If y is constant, then v, = —cos/3Va. Thus line
singularities in a typically generate a singular superflow,
and the resulting vortex may be called an l vortex, since,

in general, l has singular regions where its direction is not
defined. The exception is when sin/3=0 at the singulari-
ties of a (so that i =+z ), but v, remains singular. Alter-
natively, we can make v, finite if cos/3~0 near the vortex
center, but l is then singular. In either case, the free-
energy density diverges at the vortex core unless some cut-
off procedure is used. A simple example of this class of
singular vortices is (in cylindrical polar coordinates r, P,z)

a=py+ao, /3=/3(r), )'=Xo, (20)

where /3(0) =sr/2 and /3(r) has a finite slope at r =0 and
increases smoothly to m for large r. The resulting
v, = —(p cos/3/r)P looks like a p-fold quantized vortex at
infinity, but v, is everywhere bounded. On the other
hand, l near the origin has precisely the form shown in
Fig. 1 (a p = 1 disgyration).

(iii) Both a and y may have singularities, and, in gen-
eral, the resulting texture has singularities in both v, and
l. In certain cases, however, these separate singularities in
cx and y combine to cancel, leaving a nonsingular texture
in which v, and l are smooth and bounded throughout
space. This possibility arises for the following reason: In
the special cases that the Euler angle /3=0, the rotations
labeled by o, and y are equivalent, so that only the sum
a+@ is relevant. This feature is evident in the superfluid
velocity (17), which becomes v, = —V(a+y) when P=O.
If a and y have opposing singularities (so that a+y is
everywhere continuous) and if /3=0 in that region, the re-
sulting superfluid velocity will be bounded and nonsingu-
lar there. For example, if a=P+ao (a p =1 singularity,
as shown in Fig. 1) and /3(r) vanishes at r =0, then i varies
smoothly in the vicinity of the origin with no singularity

i =sin/3(r cosao+P sinao)+z cos/3 . (2la)

In addition, taking y = —P (to make a +y nonsingular),
the superfluid velocity is purely azimuthal, with magni-
tude

v, =(1 cos/3)/r . — (21b)

showing that 6&+i b 2 is continuous across a region where
cosP = 1 if a+ y is continuous there. This representation

This quantity evidently vanishes as r —+0, if 1 —cos/3~0
faster than r.

The asymptotic behavior of the superAuid velocity as
r~ &n is also interesting. If /3(r) approaches m. /2 for large
r, the texture becomes planar with one unit of circulation
at the boundary. This is the texture studied by MH for a
cylinder. Instead, if /3(r) approaches m for large r, then
the texture has two units of circulation and is the coreless
4~ vortex studied by AT. More generally, the orbital
part of the order parameter in Eq. (16b) can be written ex-
actly as

6)+iZ2 e'~~+r'(x+——iy )

—e ' [(x cosa+y sina)(1 —cosP)+z sinP]

(22)
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also confirms that a+y is the net rotation angle about
l =z.

A similar argument applies to regions where cosP= —1,
in which case y —a is the rotation about l = —z and must
be nonsingular. For the specific example a= —P+ao [a
p = —1 singularity, as shown in Fig. 1(d)] and P(0) =m,
the I texture is no longer axisymmetric, but it is again
nonsingular,

l = [r cos(2$ —ao) —P sin(2$ —ao)]sinP+z cosP . (23a)

The additional choice y = —P then gives a bounded super-
fluid velocity with purely azimuthal component

u, = ( 1+cosP) /r (23b)

that is asymptotically a positive singly quantized vortex if
cosP approaches 0 for large r. This texture is called the
mixed-twist texture' because l rotates once about z in the
negative sense on once encircling the origin (as in the

p = —1 case of Fig. 1), in contrast to the positive rotation
of i for the p = + 1 texture in Eq. (21a). Nevertheless, the
superfluid velocity for both p =+1 textures is in the +P
direction.

It is interesting to consider how uniform normal-fluid
rotation with angular velocity 0 affects the equilibrium
configuration of superfluid He-A. As in superfluid "He,
the normal fluid executes solid-body rotation with
v „=2m 3R

' Q X r. In the rotating frame of reference the
free-energy density f is obtained from f for A =0 by re-

placing v, everywhere by the relative velocity v, —v„,
and subtracting the constant —,pu„[compare Eq. (6)].
This prescription is easily implemented in the hydro-
dynamic model, where b, in Eq. (15) is assumed to be
fixed and the only spatial variations arise from the
reorientation of the unit vectors d, 6&, and 62', this model
is particularly useful in studying nonsingular textures,
where the temperature dependence occurs only in the hy-
drodynamic parameters appearing in f. ' ' However, the
hydrodynamic model cannot be used for systematic stud-
ies of singular regions (for example, a vottex core), where
the order parameter departs from its A-phase form in Eq.
(15). In this case, we start with the more general
Ginzburg-Landau (GL) free-energy density, which, how-
ever, holds only near the transition temperature. The
transformation of the GL free energy to rotating coordi-
nates is straightforward; we replace the gradient operator
V in the bending energy [see Eq. (29) below] by
V —2m3iR (0 X r ) (identically equal to V' iv„)—

From our previous discussion we expect that bulk rotat-
ing superfluid He-A will have an array of vortices or tex-
tures arranged in a regular lattice with a unit cell of area

The order parameter depends only on the two-

dimensional coordinate r. Furthermore, l and v, —v„
must have the periodicity of the lattice. In particular [see
Eq. (16a)], a(r ) should be periodic modulo 2n.. If, in ad-
dition, a(r ) is continuous, then the same arguments used
in obtaining Eq. (11) imply that Va —(mp/A, )zXr is
periodic, where p is the net winding number of a encir-
cling the unit cell once. Evidently, the second term con-
flicts with the periodicity (modulo 2') of a unless either

p =0 or a is not continuous. In the following we consider
these possibilities separately.

A texture with no net winding of a has been proposed
independently by Ho'" and by Fujita et al. , in which
a( r ) has p =+ 1 singularities at the corners of a square
two-dimensional lattice and p = —1 singularities at the
centers. The unit cell (shown dotted in Fig. 3) contains
two singularities of each type which give a net circulation
of a equal to zero. Furthermore, P varies smoothly from
0 at the +1 singularities in a (shown as circles in Fig. 3)
to ~ at the —1 singularities (shown as X s in Fig 3)., so
the l texture flares up at the positive singularities of u and
down at the negative singularities. This up-down arrange-
ment (the type-I structure of Fujita et al. ) ensures that i
has no singularities, and the resulting elastic contribution
to the hydrodynamic free-energy density is finite every-
where. To ensure that v, is also finite, it suffices to
choose the remaining Euler angle y to have —1 singulari-
ties at both sets of sites; the texture can then be viewed as
a set of interpenetrating MH nonsingular vortices (the 0
sites) and mixed-twist nonsingular vortices (the X sites),
arranged on two interlaced square lattices [see the discus-
sion of Eqs. (21)—(23)]. As shown below, this nonsingular
texture appears to have the lowest free energy for bulk
He-3 in zero magnetic field at low and moderate angular

velocity.
Another way to arrange vortices on a lattice is to give

up the continuity of a. This is the situation for the struc-
ture suggested by Volovik and Kopnin, ' and analyzed in
detail by Fujita et al. (their type-II structure). In this
case, one takes a two-dimensional triangular lattice and
constructs the %'S polygons enclosing each unit cell. ' I.et
P=O at the lattice sites (/ is up) and P=m. along the boun-

dary of the unit cell (l is down). If N(r) is the phase
function for singly quantized vortices [Eqs. (9) and (10)]
arranged on the same lattice sites, then the choice
a —y =2& ensures that the order parameter is continuous
on the unit-cell boundaries [see the discussion before Eq.
(23)]. However, a(r) must be periodic (modulo 2m. ) and
hence cannot be a multiple of N. Instead, we choose
a(r )=[@(r)], where the square bracket means the
periodic repetition of 4& in the central unit cell throughout
the entire lattice. For a square lattice, this function is

r

~1

FICx. 3. Type-I lattice. Unit cell (dashed box) encloses two
MH (0 sites) and two mixed-twist (X sites) vortex textures.
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2„;=M„[cosP(cosao r; +sinao P, ) —sinP z;

+i ( —sinao r; +cosao P; )] (25)

with n/2&P&m, a=ao+P, and y=O. The correspond-
ing texture and superfluid velocity from Eqs. (16a) and
(17) are

v, = —cosP—,
l =sing(cosaor+sinaog )+cosPz . (27)

given explicitly in Eq. (10), and the generalization to other
geometries is not difficult. Note that this a is discon-
tinuous at the cell boundaries, which permits it to remain
periodic modulo 2~ while avoiding the extra twist normal-
ly associated with the presence of all positive singularities.
The texture looks locally like a coreless AT vortex in each
unit cell. Although the I texture is continuous every-

where, certain derivatives of l (including divl and curll )

are discontinuous on the cell boundaries, implying that l
has singular surfaces analogous to higher-order vortex
sheets. It is an open question whether these discontinui-
ties affect the stability of the texture.

To study the corresponding superfluid velocity, it is
helpful to rewrite Eq. (17) as

v, = —V(y —a) —(1+cosP)Va .

The first term is differentiable and continuous, but not
periodic modulo 2m; it contains the overall induced rota-
tion that makes the lattice stationary in the rotating
frame. The second term of Eq. (24) is periodic and con-
tinuous but not differentiable on the cell boundary, again
implying the presence of certain higher-order discontinui-
ties, although the vorticity [Eq. (18)] vanishes identically
on the cell boundaries. It follows from Eq. (24) that the
superfluid velocity has a net circulation of 4~ on once
traversing the boundary of the unit cell, confirming the
interpretation of this texture as an array of AT vortices.
All estimates indicate that this configuration has a signif-
cantly higher free energy than that for the texture shown
in Fig. 3.

Besides these lattices of nonsingular textures, He-3
may, in principle, rotate by forming an array of singular
vortex textures similar to that of rotating He. In He-A
the closest analog of the rotating He vortex lattice is
described by y= —@(r )+yo, with a, P, and yo equal to
constants. In this case —y plays the role of the phase
function S for He and describes a lattice of 2n phase vor-
tices embedded in a uniform l texture. Since v, = V'N(r )

is singular and l is nonsingular, there is necessarily a core
around each singularity of v, where the order parameter
deviates from the local 2-phase form. These singular
phase vortices are important in He-3 at high rotational
speed.

Muzikar's analysis ' of the structure of a Deo-ennes dis-
gyration suggests that a lattice of more complicated singu-
lar vortex textures may be the equilibrium configuration
of rotating He-A. An axisymmetric vortex with 2~ circu-
lation of the type studied by Muzikar has the form

Thus for P—+m at large distances the order parameter de-
scribes a singly quantized vortex l= —z. At short dis-
tances P~m/2 and the velocity field is nonsingular, but
the texture l~cosaor+sinaog is singular. Energy con-
siderations (see Sec. III) show that the radial dipole-
unlocked disgyration (a0=0, /3=+/2) is favored for dis-
tances less than O(LD). But since l is still singular, there
is necessarily a core with radius r, -g where the order pa-
rameter deviates from the A-phase form. Muzikar showed
that the polar core gives a lower energy than either the
normal core (b, ~O) or the planar core. In particular the
axisymmetric order parameter

A„;=v 2M&( —cos8z;+i sin0$;)

interpolates between the dipole-unlocked radial disgyra-
tion for 8=m/4 and the polar phase for 8=0.

We construct a lattice of singular vortex textures that
have the same local structure as that described by Eqs.
(25) and (28) by choosing a = [@(r )] and y = [4&(r)]
—@(r ) with P periodic, continuous, and varying between
m on the cell boundary and vr/2 on a closed contour in the
cell interior with a radial dimension of order g. Inside
this contour the order parameter changes continuously
from a p = 1 singularity in l [Fig. 1(a)] to the polar phase
at the center of the cell. As with the type-II nonsingular
structure of Ref. 4, a is periodic but not continuous across
the cell boundary. Thus, although both l and v, are con-
tinuous, neither is differentiable on the cell boundary. It
is also unknown whether the singular surfaces that result
from derivatives of 1 and v, affect the stability of this lat-
tice of 2n vortex textures.

III. FREE ENERGY OF VORTEX TEXTURES
IN ROTATING He-A

In this section we examine the energy and relative sta-
bility of the various structures discussed in Sec. II as pos-
sible equilibrium states for rotating He-A in zero magnet-
ic field. At low and moderate rotational speeds (but still
II ~~0, 1) the nonsingular lattice of interpenetrating MH
and mixed-twist textures (we shall use the notation of Ref.
4 and refer to this lattice as the type-I structure) has the
lowest energy. There is a textural transition to a lattice of
singular 2w vortex textures with l = —z on each cell boun-
dary at a rotation speed of 0~—A'/2m 3(3LD) =32
rad/sec for T=T, . The structure of these vortex textures
(which we call z vortices from here on) varies from a 2~
vortex to dipole-unlocked radial disgyration to polar core
within each cell [see Eqs. (25)—(28)]. There is a second
textural transition at a much higher rotational speed
Az-10 Q, q to a lattice of singular 2m vortices with nor-
mal cores and l uniform and perpendicular to the rotation
axis [see the paragraph above Eq. (25)]. We call these vor-
tices x vortices. This lattice is consistent with Schopohl's
result that for very high rotational speeds (Q=Q, q) the
equilibrium state of rotating He-2 is a lattice of singular
vortices with normal cores. The rest of this section
discusses the calculations that lead to these conclusions.
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F= J d r[f„[A]+fD[A]+fs[(V—IV„)A]],

f„[A]=aTr(AA')+p,
~

Tr(»)
~

'+p, [Tr(»')]'
+p Tr[AA(AA)*]+p Tr[(AA ) ]

+PgTr[AA (AA )*],
f [A]=g [ i

TrA
i

+Tr(AA') ——,Tr(AA )J,
fg[VA] =K)(V,Ab, )(V,Ab, )+K2(V,Ab, )(V,Ab, )

+K3(V,Ab, )(V,Ab, ),

(29a)

(29b)

(29c)

The equilibrium configuration of He-A in a rotating
container is determined by minimizing the free-energy
functional in the rotating frame. For temperatures T & T,
this functional is given by the GL free energy

where f„ is the uniform free-energy density that deter-
mines the condensation energy, fD is the dipole energy,
and fg [ V'A] is the second-order gradient energy.

For the uniform equilibrium A phase, the order parame-
ter is given by Eq. (15) with 6 =

~

a
~

/4p245 and

~

I.d
~

=1 which minimizes the dipole energy in Eq. (29c).
The parameter b. defined by Eq. (15) and (29b) corre-
sponds to the maximum value of the anisotropic 2-phase
energy gap. For slowly varying textures in He-A, the or-
der parameter is of the A-phase form [Eq. (15)] with the
orientation of the triad (b, &, 52, I ) and d varying smoothly
in space. For the dipole-unlocked A phase the free-energy
density, measured relative to the uniform equilibrium
free-energy density for dipole-locked He-A, reduces to the
hydrodynamic form

f= —,'p, v, ——,'po(l v, ) +Cv, (V XI ) —Co(v, I )[I (V XI )]+—,K, (V I ) + —,K, [l (V XI )]

+ 2Kb IIX(VXI ) I'+ 2K, V [l(V' I ) —(I V )I]+—,K, (l Vd. )'+ —,'K6[(IXV).db] + ~pllLD [1 I'")
(30a)

The hydrodynamic free-energy density defined by Eq.
(30a) is not restricted to T near T„however, the parame-
ters in Eq. (30a) are related to the GL coefficients in this
limit (see Appendix). In the calculations described below
we use the temperature-dependent hydrodynamic parame-
ters calculated by Williams in the weak-coupling
Bardeen-Cooper-Schrieffer (BCS) plus Fermi-liquid
theory. For T=T, the weak-coupling BCS theory
predicts K

&

——Kz ——K3 =K = —,N (0)go, where

$0=0.13%v+/ks T, =120 A is related to the temperature-

dependent coherence length

g(T)—= (K/~ a
~

)' '=[—', (1—T/T, )] ' 'go,

a= —,'X(0)(T —T, )/T„and X(0) is the density of states
for one spin population. The other length scale that enters
is the dipole length LD ——[K/gD]'~ =6X10 cm.

For spatial variations of the order parameter that occur
on length scales which are large compared to LD, the or-
der parameter remains dipole locked. In this case, the free
energy reduces to

f= —,p, v,
' ——,po(l v, )'+Cv, (V'XI ) —Co(l. v, )l (VXI )+ —,'K,'(V I )'+ —,'K,'[I (VXI )]'

+ —,K,'
~

IX(VXI )
~

+ —,K,'V'. [I(V I ) —(I V')I ], (30b)

p~A
cell (31)

where p is the number of circulation quanta per cell.
To estimate the relative energies of different vortex-

texture lattices we note that the free-energy density is

where the dipole-locked parameters are related to the
dipole-unlocked parameters by Eqs. (Al) in the Appendix.

The coupling of the superfluid to the uniform rotation
of the container and normal fluid is made by the transfor-

mation VA —+(V I v„)A in Eq—. (29d) and v, ~v, —v„
in Eqs. (30). For fast rotating He-A (Q, , «0 «Q, ~), F
is minimized by a lattice of vortex filaments which mimic
rigid-body rotation far from the center of rotation. The
relation between the cell area and the rotation speed, in
analogy to Eq. (8) for He, is

periodic so that F= g„,&,F„~~ where F,d& is the free ener-

gy of the unit cell. We use a WS approximation to calcu-
late F„s. The equivalent WS area is given by Eq. (31) and
radius

a =(pfi/2m3Q)' (32)

If the texture l(r ) has the same axial symmetry of the
cell, then for a first approximation the true relative veloci-

ty is replaced by the axisymmetric flow v, —v„=v(r)&j.
We expect the WS approximation to be reasonably good
for estimating the relative energies of arrays of vortex tex-
tures with different structure provided a &~/ (0 &&Q,z).
However, the WS approximation is clearly inadequate for
determining the relative energies of different lattice
geometries of the same type of vortex texture.
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The single-cell WS approximation must also be used
with care. For example, the term proportional to K4 in

Eq. (30a) gives a contribution to F only at the surface of
the container. This surface term is the same for all lattice
geometries because / is normal to the container wall.
However, if Eq. (30a) is used to calculate F„II then there
is a contribution from the K4 term at the cell boundary.
For the actual lattice these surface terms cancel because
the surface normals on adjacent cell boundaries are in op-
posite directions. Thus, the X4 term is not included in the
estimates of F„ll using the WS approximation. Similarly,

—+ A.
the coupling energy proportional to v ( V X l ), with
v = v, —v„being the flow field in the rotating frame, also
contains spurious surface contributions to F„ll. This is
easily seen by using vector identities and the MH relation
for V && v, to write

v (VX&)= —& (VXv„)+—, V [[l(V l ) —(l V)l ]

—2(v Xl )I .

Thus the hydrodynamic free energy that we use to calcu-
late F„ll for dipole-locked textures is

f —p u———po(I'v ) —Cl'(V Xv ) —Co(v l )(I.V XI )+ —,K,'(V I ) + —,K& (I VXI ) + zKb
~

tX(VX1 ) (33)

Although the spurious surface terms are obvious from
Eqs. (30), they are easily overlooked if F„~I is calculated
directly from the GL functional in Eqs. (29).

A. Nonsingular vortex textures

The MH (or 2') and AT (or 4') structures in a cylindri-
cal WS cell are defined by Eq. (2 la) with P(0) =0,

P(a) =pIr/2, and p = l(2) for the MH (AT) structure, and
have velocity fields given by

v =u(r)P= 1 —cosP pr
r a

(34)

with v =0 at both r =0 and a. The free energy per unit
length calculated from Eq. (30b) with the trial function
P, „=p~r/2a is

F„II——Ir [0.002 1p, —0.9252C + (2.1910K,' +0.8669Kb )cos ao

+(—0.0013po+2. 5384K,'+0.5194Kb —0. 1054CO)sin ao]

for the MH structure, and

F„II——sr[0.2672p, + 1.6211C +(3.6862K,' +2 4674K. b )cos ao+ ( —0. 1952po —1.603SCO+ 5.3241K,' +0.8295Kb )sin ao]

(35b)

t

11 F 11 d~ j:Xl —— d 1V.S cell
(37)

If j,' has no perpendicular component at the wall, then
the surface term vanishes and the free energy is necessari-
ly lowered by imposing the conservation law. For cylin-
drically symmetric MH and AT structures we can take y&
to be a function only of r, and find

v I
——sinaocosaosinp

for the AT structure. These equations indicate that there
is very little conventional kinetic energy associated with
these vortex textures. Furthermore, these energies depend
on the local orientation of / through the rotation angle uo.
With the use of the weak-coupling hydrodynamic parame-
ters, Eqs. (35) are minimized by a rotation of ao Ir/2 for-—
both textures; this is the conclusion of Fujita et a/. How-
ever, for general ao the supercurrent in the rotating frame
with v given by Eq. (34),

j,=p, v —po(l. v )I,
violates particle conservation. Therefore these textures
cannot be solutions to the complete Euler-Lagrange equa-
tions obtained from Eq. (30b). The conclusion that
ao ——m. /2 is therefore suspect because there may be tex-
tures with ao&O, Ir/2 which satisfy particle conservation
and have lower energy. This in fact is the case. For any
given texture which violates particle conservation, we can
construct a new texture whic'h is topologically equivalent
to the original and satisfies the conservation law. In par-
ticular, for either the MH or AT structure with energy
E„ll we can add to v a nonsingular velocity field
v&= —Vyl with a corresponding current j 1 such that

j,'—:j,+ j &
satisfies V. j,' =0. The corresponding free

energy is

[posinpu (r) +Co[d p/dr + ( 1/r)sinp cosp] )
X 2 2

r .
(p, —posin p cos ao)

(38)

The free-energy density for both structures is reduced by

f f= —
V I'p ' VI—

= —
2 s111 p s111 apcos ao

I posinpu (r) +Co[d p/dr + (1/r)sinp cosp] I
X 2 2

(p, —posin pcos ao)

(39a)

which vanishes for ao ——O, m. /2, but is strictly negative for
other values of cxo. The reduction in energy 5E„11
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vl= —Vgl (40b)

and v l has zero circulation and is chosen to ensure parti-
cle conservation. The free energy of a 2m mixed-twist (mt)
structure, neglecting v &, calculated using p, ,&

——m.

—mr/2a, is

F Ii =m[0. 0021p —0.0007po+ 0.9253C +0.0219Co

+0.0955K' +0.2692K,' +0.6931Kb ], (41)

independent of ao, and has significantly lower bending en-

ergy than the MH texture. This mixed-twist structure
violates particle conservation because I( r ) is not cylindri-
cally symmetric. Imposing particle conservation lowers
the energy of the mixed-twist structure by a small con-
stant, also independent of ao. Thus in the type-I lattice
with both MH and mixed-twist structures interlaced there
is no competition between the MH structures which prefer
rotations of ao =m /4 and mixed-twist structures whose
energy is independent of ao. Unlike the cylindrically sym-
metric MH and AT structures, y& for the mixed-twist
structure satisfies a complicated partial differential equa-
tion and cannot be taken as a function only of r. As an
estimate of the energy of the type-I structure we add the
energies of the MH texture calculated from Eqs. (35a) and
(39b) with the mixed-twist energy calculated from Eq.
(41); we neglect the v

&
contribution to the mixed-twist en-

ergy which we expect to be small as it is for the MH
structure. Similarly, we estimate the energy of the type-II
structure by the energy of the 4m. AT texture calculated
from Eqs. (35b) and (39a). The dimensionless quantity

F„s/mp~~ for a type-I cell varies from 10 at T/T, =1.0 to
approximately 6.5 at T/T, =0.7. The corresponding

d r(f ' f—) calculated with p, ,~
gives a minimum

cell
energy for ao-m/4 .To an excellent approximation 5F„s
for the MH texture is given by

5F ce)) ———m sin (2ao)(4p, )

&& (0 0010po+ 1 4830Co+0 0720poCo) ~

(39b)

and is also a small correction to the total MH energy,

~

5F
~

/F =0.03 for T=T„but becomes significant
at low temperatures,

~

5F
~

/F =0.5 for T~O.
Since a lattice of only MH structures is not possible we

must also consider the mixed-twist textures. The simplest
2m. mixed-twist texture differs from the cylindrically sym-
metric MH texture by a(P)~a( —P)= —P+ao,' conse-
quently, the mixed-twist texture [Eq. (23a)] is not axisym-
metric. In a WS cell the mixed-twist structure with 2m

circulation has a velocity field v '= v+ v
~

where

v =[r '(1+cosP) r/a ]P-, (40a)

values for the type-II cell are approximately 1.4 times
larger. Thus we find, in agreement with Fujita et al. , that
the type-II lattice of AT vortex textures is never the
minimum-energy state of rotating He-A.

The estimates of the energy for these nonsingular vortex
textures in cylindrical cells made with the linear trial
function are generally good. Only minor improvements
on these can be made by solving the Euler-Lagrange equa-
tions for p(r) numerically. For example, we find that

~

(F —Ft„,&)/Ft„.,~
~

&0.02 for the MH structure with
ao=O

B. Singular vortex textures

r] (r &a
p(r) =

(m/2)(1+r/r)), r &r,
(42)

which interpolates smoothly between the 2m vortex with

l= —z on the cell boundary and the disgyration with

l=(cosaor+sinaoP) for r~O. The length scale r, is a
variational parameter, which is of order LD. We also fix
d =z and make cylindrical approximations for the other
Euler angles, a=P+ao and y=y~(r). The rotation angle

ao determines the local orientation of l, while y&(r) is non-

singular and is chosen to guarantee particle conservation.
In the absence of y~ integration of Eq. (30a) for r & r,
yields the free energy of the z vortex outside the core

At sufficiently high rotational speeds a lattice of singu-
lar vortex textures is energetically favored over the type-I
lattice. The z vortices described by Eqs. (25)—(28) are
good candidates for the equilibrium lattice of rotating
He-A at moderately high rotational speeds because the

velocity field is nonsingular and the associated kinetic en-

ergy is low. The structure of the z vortex is determined by
competition between the kinetic energy, bending energies,
and dipole energy. The texture l(r ) is dipole locked along
—z at distances a )r »LD, so in this outer region all of
the energy is conventional kinetic energy. For distances
r-LD the kinetic energy is comparable to the energy re-

quired to decouple I and d. The 2~ vortex with I = —z is
topologically equivalent to the dipole-unlocked disgyra-
tion, and since this texture can have smaller gradient ener-

gy than the vortex, the order parameter will rotate con-
tinuously from the vortex to the disgyration for
r &r, -LD. The superfluid velocity [Eq. (26)] vanishes
inside the dipole radius where P—+m. /2 for r «LD, how-
ever, the texture is singular, so for distances r & r, -g (in-
side the core) the order parameter deviates from the A-

phase form in order to eliminate the divergent gradient

energy due to I.
We estimate the energy of a lattice of z vortices using

the WS cell approximation and the trial function

F „u——m'(p, [In(a Ir ~ ) +0.0741+0.1894(r ~ /a ) ]+2C [1 —0. 1894(r
&
/a ) ]—(K4+ C)+0.1487p

~ ~

( r ~ /LD )

+cos aoI K, [ln(r
& lr, ) —0.9572]+0.3669Kb J +sin aoIPo[ —0.3047+0.1801(r,/a ) —0.0346(r, /a ) ]

+Co[ —0.3906+0.1988(r ~ /a) ] 0+. 3854 ,KK+b [1 (rn~ r/) —1.1288]j ) . (43)
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for r] ~ a. The bar over hydrodynamic parameters means
normalized to pl I. In the limit of slow rotation
(a (&LD) ri ——2.25LD for T= T„and decreases to
r

&
——1.95LD at higher speed when a =r]. For higher rota-

tional speeds r, =a (see Fig. 4).
To complete the calculation of the z-vortex energy we

must add the core energy to J"' „]~. The core energy is es-
timated using the GL functional and the order parameter
in Eq. (28). Both the gradient energy and the change in
the condensation energy contribute to the energy density
so that

f ~ =26 [Kz[(dBjdr) +r sin B]

K3(r ' d Bjdr)sin2B-

+Kp(2$') '(Pi3/Pygmy)cos'(2B) j . (46)

With the use of the trial function B(r) =re/4r„ the
weak-coupling coefficients Ki ——-K2=K3=( —, )pll/b, , and

1

/3i3/Pq4q ———,, the core energy becomes

Evidently the z-vortex free energy is minimized by o.p ——0
since Xb ~3K, at all temperatures and the logarithms
ln(r i /r, ) -ln(LD/g) —6.5, dominate the bending energies.
However, there may be z vortices with ao&0 and pi
chosen to ensure particle conservation which have lower
energy than the ap ——0 z vortex. The construction of y]
for the z vortex follows the same argument as that given
for the MH and AT vortex textures, so that v] is given by
Eq. (38) with v(r) = —[r 'cosP+rja ], and the reduction
in the z-vortex energy density is given by Eq. (39a), except
that now ir/2&P(ir. The kinetic anisotropy energy in
Eq. (39a), which is nonzero only when v, is not parallel to
an eigenvector of p„ is minimized by o.p ——~/4 and com-
petes with the orientation ap ——0 that is preferred by the
bending energies.

An analytic mlculation of the kinetic anisotropy energy
is not possible in general. However, a useful estimate of
the magnitude of this energy can be obtained in the limit

pp QQp Cp which is valid for T—+0 In this case integra-
tion of Eq. (39a) usmg P,~» in Eq. (42) gives

5F',»]
———0.0139ir(CO/p, )sin (2izo) .

The z-vortex energy outside of the core, given by the sum
of Eqs. (43) and (44), is minimized by ao=0; equivalently
(~r for r~0. The reason the z vortex prefers o;p ——0
whereas the MH vortex texture preferred ep ——~/4 is that
in the latter case the terms proportional to cos o.p and
sin ap in the free energy are essentially identical and so
the unperturbed MH energy is almost independent of ap.
Furthermore, thc v i correctIon to F ii has a laI'ge nega-
tive coefficient. For the z vortex the opposite occurs„ the
bending coefficients that enter the cos ap and sin exp terms
are significantly different bemuse this vortex is dipole un-
locked.

Minimizing F „]&with respect to r
jI gives

r ) [0.1894(p, —2C)a +0.1487LD ]= ( —, )(p, —K, ),

IO=
a/LD

4 5
I

r(/LD —14
Z ~ —15

12

—8

0 I 2 5 4 5 6
a/LD

FIG. 4. Free energies for the type-I and z lattices are mea-
sured in units of mpll for a cell with two units (4m) of circulation.
Arrows mark the WS cell radii at which textural transitions
occur for T/T, =0.99 {solid curves) and T/T, =0.8 (dashed
curves). Inset shows the dipole-core radius for the z vortices as a
function of 'WS cell radius.

F„ii——J d r[p, v po(x v ) ]/2, —
C

where v = V@(r ). In the WS cell approximation v is re-
placed by the axial flow field

F,~e))
——irpll[0. 0868+0.0372(r, /g) ] .

Thus the sum of Eqs. (43) and (47) for the total free en-
ergy for the z vortex becomes

F '»~ ——ir [p, [ln(a /r i ) +0.0741+0. 1894(r i /a ) ]

+2C [ 1 —0. 1894(r i /a ) ]—(Kg+ C)

+0. 1487pl l(r i /LD )'+K, [ln(r, /r, ) —0.9572]

+0.3669K', +pl [0.0868+0.0372(r, /g) ]I,
(48)

where r, =3.66K,' g minimizes F'„s. In Fig. 4 we show
the free energies for the type-I and z-vortex lattices as a
function of a/LD. For low rotational speeds (large a) the
type-I lattice is favored at all temperatures. For
T/T, =0.99 there is a textural transition to a lattice of z
vortices at Q~ ——(iii/2m3)(3. 0LD) =32 rad/sec, and 1n-
creases to A]—4.5&10 rad/sec at T/T, =0.8, which is
still small compared with Q, 2-10 rad/sec.

For high rotational speeds essentially all of the z-vortex
energy is due to the bending of l. In this limit a lattice of
2~-phase vortices with uniform J', which has no bending
energy, has comparable energy to the z-vortex lattice.
Since I is the direction corresponding to the smallest
eigenvalue of p„ the minimum-energy 2~ vortex with uni-
form texture has l perpendicular to z,' we choose l=x.
The free energy per unit cell of an x-vortex lattice is cal-
culated in analogy to that of the z-vortex lattice. Outside
the core (r ~ r, -g) the free energy per unit length is all
kinetic and given by
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(
—

)
I /2

v= T
I+pocos P

(50)

which ensures particle conservation. The corresponding
kinetic energy is

F „&&
——~p~~ I(p, )' [In(a/r, ) —1]+—,

' (1+p, ) I . (51)

To estimate the z-vortex core energy we take the core
order parameter to be the x-vortex order parameter for
r & r, multiplied by the radial function 5(r) =r/r, . The
free-energy density in the core is

f = —
„p~~g (5 —1) + —,'p, [5 v +(5') ]
——,'po[5 (x.v ) +(x.V5) ], (52)

which, when integrated and combined with E„]],gives a
total x-vortex energy equal to

OJ

2

I

0.0 l 0.02
a/Lo

0.03 0.04

F"„a——np~
~
[(p, )' [in(a /g') —1.396——,

'
Inp, ]+—,( I+p, )I,

(53)

FIG. 5. Free energies for the x and z lattices are measured in
units of npI~ for a cell with 1 unit (2n.) of circulation. Arrows
mark the WS cell radii at which textural transitions occur for
T/T, =0.6 (solid curves} and T/T, =0.8 (dashed curves).

and an optimum core radius (r, /g) =6(p, )'~. Figure 5
shows the energies for the x and z vortices and the textur-
al transition that occurs at 02 ——0.100,z (a2/(=6. 3) for
T/T, =0.8. This transition to a lattice of singular vor-
tices with normal cores is consistent with Schopohl s re-
sult for A=A, 2.

IV. DISCUSSION

It is interesting to consider the formation of these vor-
tex lattices. As seen in Fig. 6, the equilibrium texture in
zero magnetic field depends on both the temperature and
the angular velocity. If the system is cooled at rest into
the A phase and then brought into rotation, the first struc-
ture formed should be the nonsingular type-I array, which
will persist up to a relatively high angular velocity
0& (=30 rad/sec). For still higher angular velocities, a
lattice of singular z vortices has lower free energy, but the
transition may be inhibited by a large energy barrier asso-
ciated with the nucleation energy of the singular core re-
gions and the rearrangement from square to triangular
symmetry. In contrast, if normal He is rotated and then
cooled slowly into the A phase, the initial vortex array
should be the singular z vortex with normal core, fol-
lowed by a transition at A2(T ) to the singular z vortex. In
this case, the same energy barrier should help preserve the
singular textures, even if the final T and Q would favor
the formation of a nonsingular type-I texture. Thus su-
perfluid He-2 may display significantly more hysteresis
than "He II because of the possibility of qualitatively dif-
ferent types of vortices.

An unambiguous detection scheme is essential for an
experimental study of these equilibrium vortex lattices and
their kinetics. Unfortunately, nuclear magnetic resonance
(NMR) is not feasible as a probe of the nonsingular type-I
lattice and the singular z lattice, because textural NMR
analysis is difficult except in high fields, which suppress

v =pE —)gaol(l E ), (54)

where po/@=0. 1. Thus ions move faster in a region
where l is perpendicular to E. Consider the case of E
along the rotation axis (z ), and assume that the ions move
solely in the z direction, ignoring the small effect of focus-
ing. In the presence of a texture 1( r ), an ion initially at r
in the xy plane (z =0) will arrive at the plane z =I. in a
time

R
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Non singul ar Type - I l a tt ice
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0.8
T/Tc

l
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FIG. 6. Q-T phase diagram for rotating He-A in zero mag-
netic field.

both textures. Other possibilities are ions and zero sound.
Here we concentrate on the ion-pulse shape as a way to
measure the relative distribution of l, throughout the sam-
ple. The basic observation is that the ionic mobility in
He-3 is anisotropic; in an electric field E, the resulting

steady-state ion velocity is given by
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t(r )=t, [1—(p&&/1M)I,'(r )] (55)

N(t) pti pP
p,t' po

(57)

Consequently, the quantity t N(t) provides a direct mea-
sure of P (x).

In practice, the two relevant structures are the non-
singular type-I and the singular z lattices. For simplicity,
we first consider the circular WS model for the type-I lat-
tice with p(r)=mr/2a. T. he resulting integral is easily
evaluated to give

p ( )
4 arccosx 1/2

2 x 1/2( 1 x )1/2

which diverges as x ~0 and vanishes at x = 1. The corre-
sponding pulse (see Fig. 6 of Ref. 7) has a singular leading
edge arising from the finite region (the cell boundary)
where l is perpendicular to E (and hence large mobility);
the negligible trailing edge comes from the central region
where l is parallel to E, with a smaller mobility. A better
approximation for the actual type-I lattice can be obtained
with the periodic function

cosP(x,y) = [cos(2mx/b)+cos(2rry/b)]/2,

which has the proper linear behavior near the center of
each cell (in contrast to that used in Ref. 4). The corre-
sponding distribution function becomes

where tj ——L jpE is the arrival time for an ion moving

perpendicular to l. It is convenient to introduce the distri-
bution function

P(x)=A,„If d r 5(x —I, (r )) . (56)

Evidently, P(x)dx is the probability that l, lies between x
and x+dx, and P(x) is normalized on the interval (0,1).
For 1V ions initially distributed uniformly in the xy plane,
the pulse shape at z =L has the form

q l=cosO, where q is the direction of sound propaga-
tion

a=a~~cos 0+2+,sin Ocos 0+a&sin 0 . (60)

The strong anisotropy observed in a for He-A is due to
the rapid variations of a, and nz with temperature and
frequency.

Nakahara et al. suggest that the magnetic field depen-
dence of a can be used to identify the nonsingular type-I
lattice. Since textures are typically distorted by fields
greater than 20 G, these distortions will be reflected as
changes in the sound attenuation with magnetic field
through Eq. (60). Volovik and Hakonen propose that a
lattice of singular vortices with 1 perpendicular to 0 (e.g. ,
the x vortex) could be identified by the anisotropy of a as

a function q H for both q and H perpendicular to O.
Here we note that because of the rapid variation of a,

and az near collective mode resonances, measurements of
a in zero magnetic field ( which would neither destabilize
the type-I and z lattices nor distort the textures) may be
used to differentiate between different vortex-texture lat-
tices. In particular, for sound propagation along the rota-
tion axis q =z the effective attenuations obtained by
averaging Eq. (60) over the WS cell for type-I, z, and x
vortex lattices are

al ——0. 173m~ ~+0.250m, +0.578'&,

a, = (1—r1/tt ')~z~ ~+ (r1/~ )'

)&(0.578a +0.250a, +0.173at), (61)

&x =&i .

The relatively large coefficient of az for the type-I lat-
tice arises from the region near the cell boundary where

l(r ) is perpendicular to q. The opposite is true for the z

vortex; 1 is parallel to q in the outer region of each cell.
Figure 7 shows the effective attenuation for the type-I, z-,

P(x)=, K[(1—x )'/ ], (58b)

where X is the complete elliptic integral. This function is
very similar to that in (58a).

The other structure of interest is the z vortex, with l,
specified by Eq. (42). In the WS approximation, l is paral-
lel to E throughout an annulus r

&
& r & a and becomes per-

pendicular to E only at the center. Thus the associated
pulse should have a smooth leading edge and a singular
trailing one, which is confirmed by the explicit expression

S ~/2n=25 MHz

p =33.5 bar

q ii 71

E 5

c5

n
I $

I

I

I

l

l

l
I

P(x)= 1 — 5(1—x)+
a 2

2Ti arcsinx '

1/2( 1 x)1/2

(59)

It is apparent that these two lattice structures produce
very different ion shapes.

The anisotropy of ultrasound attenuation may also be
useful for identifying possible vortex lattices in rotating
He-A. The A-phase sound attenuation depends on

0.20 0.1 0

(1-T/Tc)'
0.0

FIG. 7. Effective sound attenuation for the type-I (solid
curve), z (dashed-dotted curve), and x (dashed curve) vortex lat-
tices at p =33.5 bar and sound frequency of 25 Mhz with q ~ ~

Q.
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TABLE I. Elastic hydrodynamic parameters normalized to p~~ for He-A at melting pressure (from Ref. 22).

1.0
0.9
0.8
0.7

ps

2.00
2.08
2.17
2.27

po

1.00
1.08
1.17
1.27

0.50
0.55
0.60
0.67

Cp

1.00
1.05
1.10
1.17

0.50
0.43
0.37
0.31

0.50
0.47
0.44
0.41

1.50
1.44
1 ~ 39
1.33

1.00
0.89
0.79
0.68

2.00
1.67
1.36
1.10

2.50
2.10
1.73
1.41

2.50
2.14
1.80
1.51

2.50
2.33
2.18
2.01

I.D (qm)

5.96
6.95
8.10
9.21

and x-vortex lattices obtained using Wolfle and Koch s
values of o'~~, a„and o.'& at co/2m=25 Mhz and p =33.5
bar. The peak in the sound attenuation at t' =0.10 is
due to the clapping mode of the order parameter, and the
different strengths shown in Fig. 7 reflect the different
weights multiplying a~ [Eqs. (61)] in which this mode ap-
pears. Thus, by calibrating o.z for Q=O these changes in
attenuation may be useful in identifying textures in rotat-
ing He-3; experimental confirmation of the nonsingular
vortex lattice would be most valuable.

Experimental studies of rotating He-A (Ref. 29) have
relied on NMR, necessitating a large magnetic field
(8-300 Oe), that qualitatively alters the vortex texture
from that considered here. Although theoretical estimates
indicate that singular vortices have lower energy in such
fields, the observed transverse NMR satellite (fre-
quency shift and intensity) suggests that nonsingular p =2
vortices are actually created. More research will be need-
ed to resolve this discrepancy.

Kb ——Kb+K5, K4 ——K4 —K6 .
(Al)

P, =Kb =45 (K2+. —,K, + —,K3), C =26, K, ,

po
—Co —2b, (K, +K3), K, =K, = K4 ———,—Kg 2b, K2,——

(A2)

Kb ——2A (K, +K2+K3),

K,' =K,' =Kb ———K4 ——2b, (3KP+K)+K3) .

In the weak-coupling BCS theory the GL parameters
satisfy K~ ——Kq ——K3. Thus for T=T, the BCS values for
the hydrodynamic parameters become

For T=T, all of the hydrodynamic parameters can be
related to the A-phase gap b,(T ) and the GL coefficients
in Eq. (29d),
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APPENDIX

The dipole-locked bending coefficients in Eq. (30b) are
related to the dipole-unlocked bending coefficients in Eq.
(30a).

1 ]
p, =K6 ——2, K, =K, = —K4 ———,K5 ———,

1C=—
2 &

3
Kb ———, (A3)

po=co =1 5K,' =K,' =Kb ———K4 ———, ,

where x =x ~pii and pl)
—=p —pc.

For lower temperatures, Williams has tabulated the
weak-coupling hydrodynamic parameters including
Fermi-liquid effects. The temperature-dependent hydro-
dynamic parameters used in this paper are given in Table
I.
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