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We study via Monte Carlo simulation the effective superfluid density n, and the real part of the
integrated fluctuation conductivity, y2, of a model granular superconductor in which the individual
superconducting grains are coupled via Josephson tunneling. The phase-ordering transition tem-
perature T, is determined as the temperature at which n, goes to zero. Above an intergrain
normal-state resistance R -Ro ——A/e, T, falls significantly below the single-grain transition tem-
perature T,o, in agreement with our previous Monte Carlo results, and n, deviates substantially
from typical bulk behavior. At temperature T=O, we show analytically that n, in site-diluted sam-

ples is proportional to the effective conductance of the sample in its normal state. It follows that
the zero-temperature penetration depth A~(0) of the granular superconductor varies as the square
root of the normal-state resistivity. Near percolation, k~(0) ~ (p —p, ) ', where t is the percolation
exponent describing effective conductivity in composites of normal metal and insulator. A sum rule
is derived for y2, relating it to the Josephson coupling energy. y2 is found to have two characteristic
contributions. One is due to thermodynamic fluctuations and appears near T, in ordered and weak-

ly diluted lattices of superconducting grains. The other arises from "impurity modes" associated
with sites near vacancies in site-diluted lattices. This contribution persists at all temperatures near
or below T„and dominates over the first contribution above a site dilution of about 10%. The pos-
sibility of observing these effects experimentally is discussed.

I. INTRODUCTION

Superconducting composites have recently been the sub-
ject of intense investigation, both experimental and
theoretical. ' Such materials are typically composed of
one superconducting (S) constituent and one nonsupercon-
ducting (N), the latter being a normal metal, a supercon-
ductor with a lower transition temperature, a semicon-
ductor, or even an insulator such as air. They are of in-
terest because their various properties (e.g., specific
heat, ' resistivity versus temperature, ' upper critical
field"' ) are quite different from those of ordinary, true
superconductors. The reasons for this behavior are quite
complex, having to do with percolation effects in disor-
dered composites' ' and with thermodynamic fluctua-
tions in both ordered and disordered superconduc-
tors. ' ' The interplay between these influences is still
being unraveled.

In this paper, we describe a study of a model supercon-
ducting composite which shows effects of both percola-
tion and thermodynamic fluctuations. The model, first
introduced by Deutscher et al. ' and since then subjected
to a number of studies, ' ' is here investigated by Monte
Carlo simulation supplemented by several exact results.
The principal quantities to be calculated are the effective
superfluid density and the fluctuation conductivity in-
tegrated over frequencies. Our calculations thus supple-
ment our earlier Monte Carlo studies of the same model, '

in which purely thermodynamic quantiti. es, in particular,
the specific-heat and amplitude and phase order parame-
ters, were studied as functions of temperature and compo-
sition.

The model free-energy functional we study simulates a
lattice of superconducting grains coupled together via
Josephson tunneling. The lattice is described by a set of
complex superconducting gap parameters I P; I, one for
each grain. The g s behave much like classical two-
component spins of variable amplitude and phase, and the
Josephson interaction is analogous to a ferromagnetic ex-
change integral. As has been shown previously, this
functional leads to two superconducting transitions, one at
T,o where the single grains become superconducting, the
second at a temperature T, ~ T,o where the superconduct-
ing grains phase lock to produce a state with long-range
phase coherence, analogous to a ferromagnetic state in a
spin system. Only this lower transition is a true phase
transition, with a divergent correlation length.

It is straightforward to calculate the superfluid density
n, of this model, using Monte Carlo methods. According
to the second London equation, n, is proportional to the
current induced when an external vector potential is ap-
plied to the sample. Applying a vector potential is
equivalent to imposing a "twist" on the phases of the gap
parameters. This connection then leads to the definition
of n, as an effective "spin-wave stiffness constant" for the
sample. This stiffness constant can be expressed as an
average, within the canonical ensemble, of a certain func-
tion of the f s; it can therefore be evaluated by the same
methods used in our earlier papers. In like manner, we
can calculate the equal-time current-current correlation
function. Because of the Kubo relation, this function is
proportional to the frequency integral of the real part of
the conductivity.

In several cases, we are able to supplement our Monte
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Carlo results with exact statements obtained analytically.
Perhaps the most useful of these refers to diluted
Josephson-coupled lattices at T=0. In this case, n, is
shown to be proportional to the effective conductivity of
the same diluted lattice in its normal state. This leads to
the prediction that the zero-temperature penetration depth
Az(0), which varies as n, ', diverges near the percolation
threshold p, as (p —p, )

'j where r is the familiar ex-
ponent describing the variation of effective conductivity
with p in a composite of normal metal and insulator. This
prediction remains to be tested experimentally.

We turn now to the body of the paper. The model on

which our calculations are based is described in Sec. II,
and several exact results are obtained. Section III presents
the results of the Monte Carlo simulations and a brief dis-
cussion follows in Sec. IV.

II. FORMALISM

A. Model and definitions

The basis of our calculations is the following model for
the Helmholtz free energy of a granular superconductor
(in units such that kz, the Boltzmann constant, is unity):

F= —TlnZ,

Z= J' Qd 1t; exP
i cO ij ij

J Qd 1'; exP

Here g; =
~ P; ~

exp(ig;) is the dimensionless complex
energy-gap parameter for the ith grain, related to the BCS
energy gaP by 1t; = T,pk T p is the single-grain transition
temperature, 6 is a dimensionless size parameter defined
by 5=1/[%(0)UT, p], where X(0) is the electronic density
of states per unit volume at the Fermi energy, and U is the
grain volume; R;J is the normal-state tunneling resistance
between the ith and jth grains, and Ao ——A/e -4000 A is
a characteristic resistance. The integrals in Eq. (1) run
over all complex values of the gap parameters.

The physics on which Eq. (1) is based is described in
Refs. 16—18. In this paper, we assume that the grains lie
on the sites of a simple-cubic lattice, introducing
quenched disorder by site dilution. %'e also assume that
there is Josephson coupling only between nearest-neighbor
grains. The normal-state resistance between such grains,
R,J., will be denoted R. Our results will thus depend on 5,
8, the absolute temperature T, and the volume fraction p
of grains present. Although the phase-ordering transition
in two dimensions is of particular interest, ' ' it will not
be considered in this paper.

One quantity of concern in this paper is the effective
superfluid fraction y, defined by

prescription

(&)=Z J g d '4 &(0i . ~ PjvG)exp

(3)

where 0 is any operator which depends on P~, . . . , f~,
and Xb is the number of bonds parallel to the z axis,
whether present or absent.

The quantity (3) is simply a generalization of the "heli-
city modulus, " introduced by Fisher, Barber, and Jasnow
for liquid He, to an order parameter with amplitude as
well as phase variations. To see its connection with the
superfluid density n„we note that in the presence of a
vector potential A(x), the coupling term in ~ must be
generalized as follows:

X cos(P; —Pj +2;j),
(4)

where the integral is to be taken between the centers of the
ith and jth grains. Now imagine a cubic sample with
periodic boundary conditions, and let the vector A be uni-
form and in the z direction (the periodic boundary condi-
tions are necessary in order to prevent the sample from el-
iminating the vector potential via a redefinition of the
phase variables). The helicity modulus y is then easily
shown to be

Here the primes denote that the sums are to be carried out
over bonds parallel to the z axis, and C,J is the coupling
between grains i and j [Cj——m ,TpRp(/168, )j]. The large
angular brackets in Eq. (2) denote a thermodynamic aver-
age. Such averages are evaluated according to the

where a is the separation between adjacent grain centers,
and A=A, z. Since the Josephson current density in the z
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direction is

c BF
2V BA

where c is the speed of light, it follows that

BJ, n,y= 2Nba c BA y no ~'g
where no ——V/Xb and we have used the second London
equation, J =(n, e* /m c)A, expressing the linear relation
between current density and field in a superconductor. By
a similar argument we can express the Josephson penetra-
tion depth into the superconducting array as

1 4m e*

(hc)

tial A, i.e., thermodynamic fluctuations in the vacuum-
electromagnetic-field energy. For a type-I superconduc-
tor, Halperin, Lubensky, and Ma have shown that these
fluctuations convert the superconducting transition to a
weakly first-order one, although the effect is evident only
over a few microdegrees. In the type-II limit, it appears
(Dasgupta and Halperin ) that the superconductor has an
inverted XY transition. Boyanovsky and Cardy have
treated the effect of impurities on this transition, within
the e expansion. In principle, such fluctuations should be
included in our partition function, and it would probably
be possible to do so within our Monte Carlo approach. It
is quite difficult to predict their effect on measurable
quantities in granular superconductors, without such cal-
culations.

B. Some exact results

Note that A& is quite different from A,g, the penetration
depth of individual grains within the superconductor.
The latter are assumed to be much larger than the grain
size in the present model.

The other quantity studied in the present work is y2, the
second term in Eq. (2). Since the Josephson current be-
tween links i and j is I~ =Ci~sin(P; —P~. ), we can rewrite
the second term in expression (2) as an equal-time
current-current correlation function,

dx dx Jz xyO Jz x O
1%a 1 + +

T g*2 V

V being the volume of the sample. This quantity ~ay be
connected to the Josephson fluctuation conductivity via
the Kubo formula. In the classical limit (fico«kiiT),
the Kubo formula gives (assuming an isotropic conduc-
tivity)

Reo(q =0;co)

f f dx dx' f dt cos(cot) (J, ( xt)J, ( x '0) ),T V

and hence

OO

y2 —— „2 f Reo(~)des .
me

Evaluation of the fluctuation conductivity itself, rather
than just its frequency integral, cannot be done by a
Monte Carlo calculation such as in this paper, but would
require a full dynamical calculation. Note also that the
conductivity defined by (10) must be added to any other
contributions to the conductivity, in particular, the
normal-state conductivity.

It should be pointed out that our basic (1) does not in-
clude the path integral over the fluctuating vector poten-

I

The quantity on the right-hand side of Eq. (12) is simply
(to within a constant factor) that portion of the energy
which is sensitive to phase coherence. Assuming that am-
plitude fluctuations are irrelevant, this energy varies near
T, (p) as

yi —(T —T, )' (13)

where a is the specific-heat exponent for the three-
dimensional x-y model (current estimates give a-0.01,
corresponding to a cusp in the specific heat). Equation
(12) represents a sum rule for the fluctuation conductivity.
It is amusing that Eq. (13) is identical to the behavior pro-
posed by Fisher and Langer for the dc conductivity in a
ferromagnet near the magnetic ordering transition, al-
though there appears to be no deep reason for the connec-
tion.

We turn next to the behavior of n, near T=O in diluted
simple cubic lattices. The lattices will be assumed to be
N&N)&N and we will obtain y by considering the free
energy (1) in the presence of a constant vector potential in
the z direction, requiring periodic boundary conditions
and taking A to be sufficiently small that the sum of the
shifts A,j in the z direction is much less than m./2. Near
T=O, adjacent phases will certainly be nearly equal if they
are connected by nonzero bonds, and so the cosine factors
in (4) can be expanded in powers of their arguments. The
resulting free energy takes the form

A number of exact statements can be made about both
y and the fluctuation conductivity based on the above ex-
pressions. Our previous Monte Carlo studies' have
shown that the free-energy functional [Eq. (1)] has a phase
transition in the T-p plane to a state with long-range phase
coherence. Above the temperature T, (p) of this phase
transition, y vanishes. This implies that for T & T, (p),

(12)

+= —T» f / y~d ~@; exp

r

i c0 I i&j lJ

d; exp 0&+~ g)
ij

(14)
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TABLE I. Parameters describing superconducting lattices studied by Monte Carlo simulation.

Sample no.

I
II
III
IV
V
VI

Concentration p

1.0
1.0
1.0
0.9
0.75
0.5

Size parameter 6

0.01
0.01
0.01
0.01
0.01
0.01

Intergrain
resistance R /Ro

0.1

1.0
10.0
1.0
1.0
1.0

We may estimate the second integral very accurately at
low temperatures by replacing

I g; I
by its average. Then

the phase and amplitude integrals in the free energy can
be carried out separately, and the two terms in the free en-

ergy decouple. The first term is independent of 3 and
does not affect y. The second integral can be rewritten by
a change of definition of the phase variables,

where z; is the z coordinate of the ith particle, with the
new boundary condition

0, z;=0
p(x;) =,

eXa A, z;=%a .
Ac

(16)

In the limit T~O, the second term of Eq. (14) contributes
to the free energy an amount

sr=min T„
l,J

(17)

where min[ ] denotes the minimum value of the quantity
in large parentheses subject to the constraints (16). If we
interpret Na(e" /hc)A as a potential drop in the z direc-
tion, then (17) is simply the Joule heating in a random-
resistor network in which the phases play the role of po-
tentials, and the couplings C;J correspond to conductances.
We have

III. RESULTS

10

X a
X

Ro =0
~ R/Ro = 1.0

R/Ro = 10 0

We have calculated y and y2 for a number of lattices,
both ordered and site diluted, using the Monte Carlo tech-
nique described in our previous papers. Computations
were carried out on lattices varying in size from 5&(5)&5
to 12)& 12 & 12, with periodic boundary conditions. Typi-
cally 2000 but sometimes as many as 10000 passes were
made through the entire lattice. The parameters investi-
gated in detail are listed in Table I.

Figure 1 shows the helicity modulus y as a function of
temperature for several ordered lattices of superconduct-
ing grains (p= 1) with varying intergrain resistances. In
all cases shown, the size parameter 6=0.01; this corre-
sponds to spherical particles of radii about 200 and 130 A
for Al and Pb, respectively. (Results for other values of 6
are qualitatively similar. ) All the curves show a progres-
sive departure from bulklike behavior as R increases. For
the smallest value shown (R =O. 180), j' is almost perfect-
ly proportional to (

I P I
), the superfluid density of a

bulk superconductor. For R =R0 and 10R0, the two
differ considerably, and the phase-ordering transition tern-
perature T, (indicated by arrows in Fig. 1) decreases.
Near T„y varies as (T, —T)+~, with g= —,(2 —a) ——, ;
this exponent is not inconsistent with our results although
our samples are far too small to test them properly. The
corresponding behavior of the penetration depth Az is

«J = T 0(~~16)(+o~+J )
I 0 I I WJ I

.

Since the Joule heating, in the presence of a given poten-
tial drop, is proportional to the effective conductance o(p)
of the network, it follows that y, which is proportional to
the second derivative of (17), satisfies the simple relation

~(p) o(p)
y(1) o(1)

I—

II

CL

5
CI

Cg

QC

CQ

X e

This relationship is equivalent to the one obtained by
Kirkpatrick' between conductances of diluted-resistor
networks and the spin-wave stiffness constant of diluted
Heisenberg ferromagnetics. It is valid for basically the
same reason: y is essentially the "spin-wave stiffness con-
stant" of the granular superconductor.

0
0,0 1.0

T/T p

FIG. 1. Effective scaled spin-wave stiffness constant or heli-
city modulus 8Ry/m. R0 as a function of temperature for an or-
dered lattice of superconducting grains {p =1) and three values
of intergrain normal-state resistance.
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FIG. 2. Scaled helicity modulus 8Ry/m. RO divided by mean-
squared energy gap parameter (

~ g ~

2) for the same cases as in
Fig. 1.

0.0 0;5 1.0

as compared to the mean-field BCS result
A,Bcs ~ ( T —T)

The low-temperature behavior of y is in part an artifact
of the present model. The Ginzburg-Landau functional
(1) tends to cause the squared average wave function to
decrease linearly with temperature, even at low tempera-
tures. The true BCS squared wave function, of course,
varies at low temperature as

~

@(T)
~

2
~
q(0)

~

2 Ae 2a(0)/T— (20)

where A is a constant independent of temperature.
Nonetheless, even if this exponential behavior were prop-
erly included in our model, y would vary at low tempera-
tures as

FIG. 3. Real part of the integrated fluctuation conductivity
8y&/m for the same cases as in Fig. 1. Solid lines are drawn to
guide the eye.

10.0

~ p =1
p = 0.9

x p =075
w p=0.5

y(T) =y(0) A' T, — (21)

where the linear term arises from the "spin-wave excita-
tions" of the phase variables. To show this linear term,
we plot in Fig. 2 the helicity modulus normalized by the
mean-square wave function,

(22)

I—
5.0—

CL

CO

Note that if a quantum-mechanical (finite-capacitance)
term had been included in the free-energy functional, this
linear dependence would have been replaced by a T varia-
tion, as in Ref. 30.

Figure 3 shows the integrated fluctuation conductivity
y2 for the same cases plotted in Figs. 1 and 2. The most
striking feature of these results is the peak near T, . This
peak remains finite at T, as we have confirmed by calcu-
lating the height of the peak for various sizes of lattice.
Nevertheless, its position serves as an excellent means of
fixing T, ; we find it is easier to locate T, this way than
from finding the point at which y vanishes. Note also
that the half-width of the peak progressively increases as
R/Ro increases, as does the height of the peak. This sug-

X
X 0

0.0
0.0

0 ~
X 0

X

X
a

Ih ~V
1.0

FIG. 4. Helicity modulus 8y/~ as a function of temperature,
for several values of the site-occupation probability p. In all
cases R /Ro ——1 and the size parameter 5=0.01.
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1.0

a(p)/a

1.0—

C)
II

I—

CO

0.0 0.5 1.0

FIG. 5. Helicity modulus y(p) at zero temperature normal-
ized to the value at p=1 for the case R/Ro ——1 and 5=0.01.
Solid line is the effective conductance o(p) of the same lattice in
its normal state, normalized to p=1, as calculated by Kirkpa-
trick (Ref. 13).

gests that fluctuation paraconductivity will be noticeable
over a greater temperature range for samples with a
higher normal-state resisitivity than for better-conducting
lattices. Measurements on many superconducting com-
posites tend to confirm this rough rule of thumb, although
our result is strictly applicable only to the frequency-
integrated conductivity.

We turn next to results for site-diluted lattices. Figure
4 shows the helicity modulus corresponding to R/Ro ——1

and 5=0.01, for several values of p. The percolation con-
centration for this geometry, i.e., the value of p above
which the sites first form an infinite connected cluster (in
the limit of an infinite sample) is p, =0.316. ' As is clear
from the figure, T, decreases monotonically with increas-
ing p. The value of y(p) at T=O very closely obeys Eq.

0.0
0.3

I

0.6 1.0

(18) as is shown in Fig. 5, where we plot y(p)/y(1) and
a(p)/cr(1) for a simple cubic lattice.

We plot the results of Fig. 4 a different way in Fig. 6,
where we show T, (p) as a function of normal-state lattice
conductivity I/(Ra)—=o~ for ordered lattices, and as a
function of p for the disordered lattices studied. In the
case of ordered lattices, the transition temperature fairly
well obeys a relation derived by treating the phase order-
ing within a molecular-field approximation,

1.5

FIG. 7. Reduced zero-temperature penetration depth
X~(T =0;p) =[gy(T =0;p)lvr]', as a function of site occupan-
cy p

log (R/R )

1.0
)

C)
V

I—
V

CO

0.0
0.0

I
l

Tc(R/Ro) p = 1

~ Tc(p) R/Ro 1
I

I I I I

1.0

0.5

p

FIG. 6. Phase-ordering transition temperature T, as a func-
tion of R/Ro for p=1 and as a function of p for R/Ro ——1.
Solid curve represents the molecular-field prediction of the tran-
sition temperature [Eq. (23)]; dashed curve is merely to guide the
eye.

0.0
0.0 1.0

T/T 0

FIG. 8. Real part of the integrated fluctuation conductivity
(8/m. )y2(T,p) as a function of temperature for various site occu-
pancies p. In all cases R /Ro ——1 and 6=0.01.
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Tc

Tc0

1 R'=0. 106 R .8

1+(R /R 0) 3m
(23)

For disordered samples, we have not found a simple ana-
lytic relation expressing T, as a function of p.

Figure 7 shows the reduced penetration depth
k& ——y

' for the site-diluted samples at T=0, as a func-
tion of p. From Eqs. (8) and (18), the penetration depth
obeys the relation A~ cc ~p„at T=O. This is the same re-
sult long known for dirty bulk superconductors, but it is
here derived in a totally different way, for granular,
Josephson-coupled superconductors. Also, since
p„~ (p —p, )

' at concentrations p close to p„with t —1.7
in three dimensions, it follows that Az (p, 0) varies as
(p —p, )

'~ . This result was previously proposed by
Stroud and Bergman on the basis of a scaling argument

l

near percolation, but it is here derived as the T=O limit of
a Josephson-coupled disordered superconductor.

Figure 8 shows the integrated fluctuation conductivity
y2 for various values of p and for R/Ro ——1, 5=0.01. In
this case disorder has a striking qualitative effect:
Whereas the peak in y2, for ordered samples, is narrowly
confined to a temperature region around T„ the analog
for diluted lattices is superimposed on a broad background
which persists to T=O. The background is due to site di-
lution, and presumably arises from chanced phase fluctua-
tions in the vicinity of the removed sites. Crudely speak-
ing, these modes can be understood as the superconduct-
ing analog of impurity modes in the vicinity of vacancies
in the lattice. The vanishing of the background for an or-
dered lattice can be understood by writing y2, in a fashion
valid at low temperatures (assuming amplitude variations
in the order parameter can be neglected),

'V2 =
T

f rI« g'«Jsin(P; PJ) e—xp Pg C,J l g l (P; P&)—
. (ij)

1)J
XG

f + d4; exp P g «& l 0 l

'(0 0&
)'— (2&)

where
l P l

is the expectation value of any of the
at T=O and p=1/T. For an ordered NXNXN lattice
with periodic boundary conditions, we expand the sine in
a Taylor series in the phases. The first term in this expan-
sion vanishes, and the first nonvanishing term is the cubic
one, which can be shown to contribute to y2 an amount
varying as T . In the diluted lattice, the leading term is
temperature independent, leading to a contribution to y2
which remains finite at T=O.

IV. DISCUSS ION

Of the quantities calculated in this work, the most
readily comparable to experiment is the penetration depth

Recent detailed experiments have been carried out for
A& as a function of temperature in a disordered granular
superconductor, by Raboutou et al. These workers ob-
tain Az —( T, —T) rather than the behavior
Az —( T, —T) which can b' e a'pproximately inferred
from our ordered and even our disordered samples. We
can, however, bring our results into agreement with exper-
iment if we make the additional assumption that varying
T is somehow equivalent, in the samples of Raboutou
et al. , to varying p. Then T, is the point at which p =p„
the percolation concentration. Our results then lead to
Az —(T, —T) ' where t —1.7 in three dimensions. This
result is in reasonable agreement with experiment.

How might p be effectively a function of temperatures
Two possibilities may be suggested. One is an explicitly
temperature-dependent p, as, for example, in a hypotheti-
cal granular superconductor in which different grains
have different T,o's. There is some reason to imagine that
this situation might hold in granular Al. If the grains

l

were very strongly coupled together, then kz should vary
as (T, —T)

A second possibility is suggested by the Harris cri-
terion for the homogeneity of a phase transition in a disor-
dered system, according to which the phase transition has
the exponents of the pure system if the specific-heat ex-
ponent of the pure system o. ~O. In the present case, o. is
that of the d=3 x-y model. It is believed to be negative,
but only by a small margin. If o, were for some reason
positive in granular superconducting composites, the ex-
ponents characterizing the transition might be percolative
rather than x-y —like, hence producing a penetration depth
varying in the manner observed by Raboutou et al. It
would be interesting, however, to have measurements of
A&(0) vs p, in order to test the present theory directly.

Another possibility, not considered in this paper, is that
the anomalous variation of penetration depth with tem-
perature has something to do with fluctuations in the vec-
tor potential, as mentioned in Sec. II. If true, this would
be a remarkable confirmation of the importance of these
fluctuations in granular superconductors.

One of the more striking predictions of this work is the
existence of two distinguishable contributions to the fluc-
tuation conductivity cr~(co), one associated with thermo-
dynamic fluctuations, and one with composition fluctua-
tions (i.e., with disorder or impurities). The former is con-
spicuous only near T = T, (p) and, from our data, tends to
be concealed by the second type of contribution except at
small values of 1 —p. The disorder contribution is prom-
inent at all temperatures and all values of p other than

p —1. Unfortunately, our calculations provide no infor-
mation about the frequency distribution of cr~(co), but only
about its integral so that an unambiguous comparison of
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this result to experiment would be very difficult.
To summarize, we have calculated in this paper both

the effective superfluid density n, (as well as the penetra-
tion depth implied by it) and the real part of the integrat-
ed fluctuation conductivity of a model granular supercon-
ductor, using Monte Carlo simulation in conjunction with
some analytic results. We have considered both ordered
and site-diluted samples. Our results suggest certain
characteristic temperature and concentration dependences
of the penetration depth in granular superconductors, as
well as distinct effects in the fluctuation conductivity aris-
ing from both thermodynamic and composition fluctua-

tions. It will be most interesting if a comparison between
our results and experiment could be made in carefully
controlled superconducting composites which approxi-
mately realize the assumption of our model.
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