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Spin relaxation of triplet excitons in molecular crystals
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The primary electronic spin relaxation mechanism for triplet excitons in many molecular crystals

arises from hopping transport between two orientationally inequivalent sites and is the source of
both EPR linewidth and level equilibration. A generalized stochastic theory of resonance linewidth

due to Blume which was previously applied to this mechanism and shown in its random-phase ap-

proximation (RPA) to yield the exciton EPR linewidth spectrum is here shown to give a comp/etc

formulation of both linewidth and equilibration rate. The method employs the averaged time-

development superoperator of Blume's theory in the RPA in order to construct an equation of
motion for the appropriately averaged spin-density matrix from which these two can be extracted.

We show associations between this work and related studies by Kubo and Suna. Comparison is

made between rates calculated for anthracene and values of T) deduced by Haarer and Wolf from a

Bloch analysis of their EPR saturation measurements.

I. INTRODUCTION

This paper presents a general quantum-mechanical for-
mulation which describes spin-relaxation processes of trip-
let excitons in molecular crystals. The analysis derives
from Blume's stochastic theory of magnetic resonance
linewidth' and applies to the class of lattices that have
two orientationally inequivalent sites in the unit cell (e.g. ,
such organic solids as the familiar aromatic hydrocar-
bons). While the theory was shown recently to account
for the EPR linewidth spectrum of triplet excitons in the
dimer lattice at room temperature, we will show here that
it is also conceptually broad enough to provide the basis
for a more general treatment of exciton spin dynamics.
The results are suited to obtaining directly resonance
linewidths and the rates of spin relaxation that leads to
equilibrium of the spin levels.

To appreciate the applicability of the Blume theory it is
helpful to have a qualitative picture of the manner in
which spin relaxation of triplet excitons is related to the
nature of the transport. The primary fact is that propaga-
tion in organic molecular solids at room temperature is
diffusive (incoherent transport) and thus approximated by
a hopping model. Since all molecular sites of a given
orientation excited to the triplet state define a single
molecular spin Hamiltonian, the random hopping between
the two subsets of differently oriented molecules induces a
stochastic time dependence in the exciton spin Hamiltoni-
an which is then the relaxation perturbation. This
description underlies the use of a purely stochastic theory,
such as Blume's, in treating the hopping regime. Thus in
the stochastic formalism the effective "hopping rate" be-
tween stochastic states (orientations) is introduced a priori
as a phenomenological system parameter without any
reference to a specific dynamical model. This means, in-
cidentally, that the details of the transport will not be ap-

parent in experiments that solely reflect the relaxation
process, a fact which was discussed in our earlier applica-
tion of the formalism. We shou1d point out here also
that, while the primary theory was developed by Blume, it
was later specialized by Dattagupta and Blume to a
random-phase approximation (RPA) which turns out to be
the appropriate form for the exciton system.

The process we have sketched provides a relaxation to
equilibrium as well as a mechanism for homogeneous line
broadening. This result is an automatic consequence of
our analysis which is not apparent from the original
linewidth formalism. The presence of a common mecha-
nism for linewidth and relaxation is not to be understood,
however, as implying a lifetime broadening of the reso-
nance. Also, although other mechanisms may be present
which do not fix both linewidth and relaxation simultane-
ously, the EPR linewidth studies in anthracene,
naphthalene, ' pyrene, and tetracene show that the hop-
ping mechanism is the dominant one in the lattices inves-
tigated so far.

Before tuning to the theoretical development we should
like to describe the context of this paper as it relates to
other theories and to a number of experimental observa-
tions. As far as theory is concerned, although other au-
thors have treated either the problem of relaxation or
linewidth for these lattices, the inherent relationship be-
tween the two, as we shall demonstrate it, has not been an
express concern in any previous work. Reineker s investi-
gations of linewidth' do not include an explicit treatment
of relaxation. SUna, on the other hand, developed a theory
of relaxation for his analysis of the magnetic field depen-
dence of delayed fluorescence from molecular crystals"
but was not concerned with the problem of EPR
linewidth. ' With regard to experiment, although the
EPR linewidth of triplet excitons in several aromatic lat-
tices mentioned have already been explained, there is a
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specific need for relaxation rates since they figure in the
analysis of several recent investigations. These include the
field dependence of fluorescence from crystalline tetra-
cene' and naphthalene, ' the spin polarization in the EPR
spectrum of triplet excitons in tetracene, ' and the analysis
of anthracene in an optical method for the direct measure-
ment of rates. ' The only published experiments devoted
to a direct determination of relaxation in the aromatics at
room temperature are the EPR saturation measurements
of Haarer and Wolf on anthracene and naphthalene. We
shall compare their conclusions with a theoretical predic-
tion in the last section.

In Appendix A we show the equivalence between the
Blume and Kubo formulations of the stochastic model,
while in Appendix 8 we discuss the relationship between
the stochastic methods of this paper and Suna's theory of
spin relaxation.

II. THEGRY

Blurne's theory treats a class of problems in which the
Hamiltonian undergoes random transitions among a set of
noncommuting operators that represent different stochas-
tic states. These conditions are satisfied in the case of
triplet excitons in the systems we discuss, since spin Ham-
iltonians associated with differently oriented molecular
sites are noncommuting. In essence the theory addresses
the basic problem of diagonalizing a Hamiltonian in
which quantum-mechanical and classical (stochastic) de-
grees of freedom are strongly coupled. Blume's approach
is to consider the time-development operator of the system
rather than particular quantities that are closer to observa-
tion but more specialized or intricate in structure. The
value of the theory lies in this methodology and for the
purpose of evaluating a general linewidth expression,
Blume has shown how to obtain an averaged time-
development operator when the stochastic transitions are
governed by a stationary Markov process. We shall adopt
this basic strategy but recast the formalism and its
development, the goal being the derivation of an asymp-
totic equation of motion for the density matrix of the sys-
tem from which both relaxation rates and linewidth may
be extracted. ' In the process certain results from the
original theory will be recovered but in a form that facili-
tates our generalization. Since we are concerned with the
particular application to triplet excitons, the analysis does

not require the primary Blume theory but invokes at an
early stage the RPA which is incorporated naturally in
our reformulation.

%'e turn first to the problem of determining the aver-
aged time-development operator induced by a generalized
Blume Hamiltonian that we write as

H(t) = V&~, ~

where g(t) represents a random process over a set of in-
dices Ig;} that are chosen to label the given stochastic
manifold. Following Blume we exploit the advantages of
a superoperator formalism and thus note that (1) generates
the time-development superoperator

U+(t)=exp +i f H (t')dt' (2)

where the Liouville operator H is defined by
H"A = [H,A] for any operator A. The double sign appears
in (2) for the purposes of generality. That is, while the
Heisenberg representation (+ ) would be invoked for
dynamical variables, we shall ultimately be concerned
with the time dependence of the density matrix, thus re-
quiring the Schrodinger representation ( —). We will
maintain the double sign until this point is reached. In us-
ing superoperators we adopt the standard notational con-
ventions underlying the formalism. ' ' Ordinary opera-
tors are assigned to a Hilbert space, 3~

I
3), with inner

product (B
I
A) =—Tr(8 A ) and represented in any ortho-

normal basis as

IA)=g (m IA
I
n) Im, n),

where
I
m, n) =

I
m ) (n

I
and I I

n ) } is a complete set of
states. With this notation our defining identity above for
the Liouville operators is completed as

H"A~H" IA) .

Our goal can now be stated: to obtain for the general
operator A the time dependence given by

(&(&))=(U (&))& —= U+(&) I&),
where the angular bracket ( ) denotes the average over
stochastic processes in the interval (O, t). The latter is de-
fined in general as a term-by-term average of the time-
ordered development of (2). That is

00

U (t)= 1+ g ( i) f dt„. . . f dt) g g . QP„+2(g, t;g„,t„;.. .;g'), t),'g'0, 0)V~ . .
Vg, ,

n=I &o

(4)

where V~ is the value of H(t) at i =r;, and where all relevant information about the process g(t) is contained in the
hierarchy of joint probabilities P„(g„,t„;.. . ;g&, t~) of the values g(t„)=g„,. . .,g(t~)=g& at epochs t„)t„&& . . . ) r&

for n = 1,2, 3, . . . . For a stationary process, P&(g~, t& ) =P(g&) =pg where p& is identified with the a priori or equilibrium
probability of finding the system in stochastic state g'. For the particular case of a stationary, first-order Markov pro-
cess, which we assume here, the joint probabilities are decomposed into products of conditional probabilities according to

2(k r'0 r ' 'ki ri'ko 0)=P(k r
I k r ) P(ki ~i

I ko 0)pg

where P(g;, i;
I g; &,t;, ) is the probability that g(t)=g'; at i =i; given that g(t)=g; &

occurred at the earlier time
i =t; &. The right-hand side of (4) is then immediately resummed as
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U (t)=g g(U (t) ~g(t)=g, f(0)=go)pq, ,
40

where the conditional average on the right satisfies
t

(U+(t)
~

g(t)=g', g(0)=go) =P(g, t
~

g'O, 0)+i f dt) QP(g, t
~

'g'), t()Vg (U+(t()
~

g'(t))=g), g'(0)=g'o) .

(6)

(7)

The evolution of the conditional probabilities is deter-
mined by a master equation

d, P(g, t
~

g",0)=g 8'(g, g')P(g', t
~

g",0),
4'

Then the inverse of U+[p+A, ] may be expanded in
powers of the deviation superoperator k~. To second or-
der one has (we drop the explicit RPA designation)

U+[p]= Ip+i~+[p]I
in which the transition matrix W(g, g') now incorporates
all model-dependent information and fulfills the condi-
tions

IV(k 0')pg = IV(P k)pg

g IV(g, g') =0,

where

H+[p] = V"+i I +[p]

and

r.[p]=gp, ~",[(p+~)1+iV"]-'~", ,

(17)

(18)

for detailed balance and conservation of probability,
respectively. For the special case of the RPA (strong-
collision limit) developed by Dattagupta and Blume, the
transition matrix has the form

W (g, g') =Apg(1 —5~~ ) —A(1 —pg)5gg,

where A. is the single rate parameter of the model. In par-
ticular, for g~g', we have W(g, g')=Xp&, independent of
the initial stochastic state g' (recall that here temporal or-
dering is to the left). Using (10), the RPA solution of (8)
is readily found to be

which becomes exact for X»
~ hg

~

. This completes the
construction of the averaged time-development operator
and we turn now to the primary goal of determining the
asymptotic form of the averaged density matrix.

The density matrix evolves in general according to

~

p(t))=U (t)
~
p(0)) .

Because the longtime behavior of the system is indepen-
dent of its initial specification we may however take

~
p(0))=

~
p(0)) without loss of generality (i.e., complete

ignorance of the initial stochastic state). Thus we will
analyze

)=p~+(~~&.—p~)e "
~
p(t)) = U (t)

~
p(0)) . (20)

The RPA result for U+(t), which is obtained by combin-
ing (6), (7), and (11), is expressed simply in terms of the
Laplace transform, using the notational convention
f[p]:f dt e ~'f(t):—W(f(t))—

U+ [p] = U+ [p +k] I 1 —A U+ [p +k] I ', ( l2)

In order to incorporate the results (16)—(18) into (20) we
note that

WB,
~

p(t))=(pU [p] —1)
~
p(0))

= —i(V"—il [p]) lp[p]»

U+ [p+A]=gp~[(p+A)1+iV(] (13)
so that with the aid of the convolution theorem

&,
~

p(t)) = —i V"
~

p(t))

[The result for general W(g', g') is found in Eq. (21) of
Ref. 1 which we also exhibit in Appendix B.]

Following Ref. 4 we introduce the average Hamiltonian

—f, «gpg~~e ' +" '&;~p(t r)) . (22)—

(14) Then with the transformation

and the associated deviation
~
p(t)) =e ' '~ o(t))

(15) we obtain from (22)

(23)

B,(n, m
~

o(t))= —g g f dre ' "' ' " gpg(n, m
~
bg ~

l, l')(l, l', Ag ~

n', m')
l, l' n', m'

i (E„—E„. )(t —r)
&&e

" " (n', m'
~

o(t —r)) (24)
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in the eigenbases
I
n, m ) of V", i.e., where

V"
I
n, m)=(E„E—)

I
n, m)=E„

I
n, m) .

The asymptotic analysis of (24) has two components.
First, only those states

I
n', m') which minimize the

second exponent in (24) contribute to
I
cr(t)) as t~ oo, re-

gardless of the value of A, . Thus for n&m we retain

I

n', m')=
I
n, m) only, since then E„E„—=O. We

neglect the influence of degenerate pairs
I
n', m')&

I
n, m ),

which in the triplet spin resonance problem corresponds to
the coincidence of the two transitions at isolated values of
magnetic field. (There is no evidence that degeneracy ef-
fects have an observable consequence even within the re-
gion of overlap of transitions in the EPR spectra of triplet
excitons in anthracene, ' pyrene, tetracene ' or
naphthalene. ~) For the case n =m we require n' =m '

without further restrictions since E„„=0 automatically.

The terms that are retained in (24) imply that in the
asymptotic regime the off-diagonal matrix elements of

I P(t)) evolve independently of each other and also become
decoupled from the evolution of the diagonal matrix ele-
ments. The neglect of the degeneracies just described af-
fects the first of these behaviors only; the decoupling of
diagonal from off-diagonal evolution is accomphshed
quite generally by the ansatz which isolates contributions
that make E„—E„vanish. (We ignore the possibility
that E„=O for n&m, which is of no interest in the usual
resonance context. )

The second component of the analysis takes account of
the value of A, . Since the first exponential in (24) provides
the integrand with a natural cutoff r =-0 (k '), for
t »A, one may extract

I
o(t —r)) from the integral as

I
o(r) ). The combination of these procedures produces the

result

|3 (n, m Ip(t))= tE„—(n, m Ip(t)) —(1—$„)K„,„(p &'E )(n m Ip(r)) —Q„QK„„.„.„.(p)(n', p'
I
p( )),

1l

where we have also inverted (23) using (25) and defined
the tetradic

(n, m
I

b,
g I

I, I')(l, l'
I gg I

n', m')K„.„(A,) =g p~
I, I' +I 11'

(27)

which satisfies the sum rule

gK„„„.„.(X)=0.
n'

In order to express (27) in terms of the ordinary operators
A~ we use the decomposition

and obtain

K„„.„„(k)=

for n'~n,
while for n&m

(29)

(30)

)=X&~ —(
I

&&
I ~g I

~ &
I

'+
I &m

I ~g m & I

' —2&~
I ~g I

n &&m
I ~g I

m &)

i(E„E,—) &&~„~ A—i (E„EI), — A, —i(E— E~)—(31)

as obtained from (31), and where

(33)

One sees from (26) that dissipation (relaxation, line
broadening) is incorporated into the real parts of the
tetradics. Isolating these contributions we have (asymp-
totically)

B,(n, m
I
p(t)) I g;„——(1 —6„)R„„(n,m

I
p(t)).

+5„g R„„.„„[(n',n'Ip(r))
n'~n

—(n, n
I p(t))],

R„„.„„=-—K„„.„„(A,), n &n'

from (30), defining A„„.„„—:0. According to the remarks
following (18) and (24)„(32) becomes exact if
A, »max

I &n
I 4~I n & I

and r &&A, '. In actual practice
the description in (32) is likely to be valid in many typical
experimental situations, even when the above conditions
are not strictly met. (The EPR spectrum of triplet exci-
tons in pyrene offers a good example of a case in which
the nominal perturbation condition on A, is not met
strongly, but the theory provides an accurate description
of the observable linewidths. )

With Eq. (32) we complete the formal development
from the Blume theory in the RPA of the required equa-
tion for the density matrix. The identification of the pa-
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rameters in (32) follows at once from its form. The
R„„„„determine the rate of equilibration of the level
populations N„(t) =(n, n

~

p(t)) = (,n
~
p(t)

~

n ) and are
thus identified with the spin relaxation rates. [Strictly
speaking, the stochastic theory corresponds to the limit of
infinite temperature, in which the equilibrium level popu-
lation is distributed uniformly; this condition is satisfied
in room-temperature triplet exciton resonance studies. If
required, Boltzmann factors may be introduced into the
definition of the infinite time limit (n, n

~

P(t)) according
PE„to (nn

~

p(t))~e "(n,n
~ pp) where pp is the canonical

distribution. ] The R„.„~ give the resonance linewidths
as we can see in the following way. Note first that in ei-
ther the Heisenberg or Schrodinger representations the ab-
sorption intensity for the linear response regime (no sa-
turation) is proportional to the real part of

hand side of (38) from (34) for anthracene to compare
with the values of Ti deduced from the experiments. An-
thracene was chosen because its EPR spectrum is more
fully characterized and understood, ' including the effect
of orientational disorder on the crystals used by Haarer
and Wolf. Since the disorder caused an excess contribu-
tion to the linewidth in the original experiments, thereby
distorting the values of T& calculated from the Bloch
equations, we have corrected these values to conform to
the known homogeneous widths. The final comparison is
shown in Fig. 1 for the magnetic field in the ac plane of
anth racene.

From the figure it is obvious that the saturation
analysis based on the Bloch equations is inconsistent with
the calculated rates in the comparison made through Eq.
(38). In view of the limited applicability of the Bloch
model, the result is not surprising.

F[+i co] = (Sy
/

U+ [+in)]
/
Sy ) (35) ACKNOWLEDGMENT

(n, m
~

U+(t)
~
n, m)-e

It follows that

) n~Sy~m ['R„
n, m~n (~ +nm ) ++nm;nm

(36)

which describes a set of Lorentzian lines having widths
R„.„.[We have ignored in (36) the shift of the spec-
trum E„ that results from IinK„„(A, iE. „).—]

It is thus clear that in the stochastic formulation based
on Blume s theory there is no mechanistic distinction be-
tween relaxation and homogeneous broadening. Both
manifestations of dissipation have the same source in the
temporal fluctuations of the model Hamiltonian.

III. EXAMINATION QF EPR SATURATION
MEASUREMENTS

with (n, n ~S&)=0. Under the conditions leading to (32)
only the elements (n, m

~
U+[p]

~

n, m) occur in (35), and
thus (32) predicts

One of the authors (J.R.) acknowledges partial support
from the Radiation and Solid State Laboratory of New
York University, through a grant from the U. S. Depart-
ment of Energy, Contract No. E[11-1]2386.
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It is a straightforward exercise to calculate relaxation
rates from Eqs. (30) and (34) (the matrix elements have
been evaluated for a general crystal system in the Appen-
dix of Ref. 2) and such values have already been used in
the analyses of Refs. 13, 15, and 16 mentioned above. For
our present discussion the EPR saturation measurements
of Haarer and Wolf on anthracene and naphthalene at
room temperature offer data which probe the relaxation
rates in these molecular crystals. The results have been in-
terpreted by the authors as obeying the Bloch equations
and therefore the analysis yields a relaxation time T] rath-
er than the rates we have been discussing. ' It is possible
however to relate the two quantities if one accepts the ap-
plicability of the standard relationship for a three-level
system ' given by

where W~ and 8'2 are the rates for the AM =1 and 2
transitions, respectively. We have calculated the right-

I

4k-

I I I t I t 5 I

20 40 60 80
FIELD ORIENTATION {deg)

FIG. 1. Comparison between values of T& given by Haarer
and Wolf (Ref. 5) for field variation in the a -c plane of anthra-
cene at room temperature and relaxation rates calculated with a
hopping rate I ~

——3200 G (Ref. 6). The solid curve is W~+2W'2
as in Eq. (38) and closed circles are from Ref. 5 after correction
for disorder broadening as discussed in text. 0' marks the y*
(principal) axis of the excitonic fine-structure tensor.
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APPENDIX A: EQUIVALENCE OF BLUME
AND KUBQ FORMULATIONS QF THE

STOCHASTIC MODEL

Equation (3) of the text can be rewritten as

ville equation [(D2) of Ref. 11]

(),p(R;)= iH—"(R;)p(R;)—gD;; jjp(Rj),
J

(Bl)

where

A (g, t ) = ( U+(t)
~

g(t) =g)A

and

(A2)

D;; jj =(I.i6;j —4(Rj —R;) .

In (Bl) p(R;) and H(R;) are the density matrix and spin
Hamiltonian, respectively, of an exciton at site R;, and in

(82) %(R) is the hopping rate between sites separated by
R;

(U (t)
~

g(t)=g)=g (U (t) g(t)=g, g(0)=g', )pg .
kp

From (7) one finds that the conditionally averaged opera-
tor A (g, t) satisfies

t
A(g, t)=pgA+i J dt) QP(g, t

~
g„t))VgA(g), t))

so that

aA(g t) =i VgA (g t )+( g W(gg )A (g', t) .
f

In obtaining (A5) from (A4) we have used the fact that
P(g, t

~
g„t)=5gg Equati. on (A5) was first derived by

Kubo " using an argument that makes explicit use of the
property

This condition is implied by the two conditions in (9).
Thus the formulations of the stochastic model developed
independently by Blume and Kubo are equivalent.

is the total rate of hopping from any one site to all the
others. We consider crystals composed of two sublattices
3 and B which define the stochastic states of the system.
While the spin Hamiltonian takes on only two distinct
values

H (R;)= Vq, q =A, B

depending on which of the two sublattices the site R re-
sides, the lattice diffusion portion of (Bl) includes "ir-
relevant" transport that does not induce transitions be-
tween them. We thus average out this intralattice hopping
by introducing the quantities

p(q) =g p(R; ), q =A,B
i(q)

where the indices i (A) and i (8) refer only to sites on the
indicated sublattices. Then combining (81)—(85) and
after some algebraic manipulation, we have

(),p(q) = i V~p(—q)+ g W(q, q')p(q'),
q'

APPENDIX B. RELATION OF THIS STUDY
TQ SUNA'S THEORY QF SPIN RELAXATION

QF TRIPLET EXCITQNS

In a paper concerned with the kinematics of exciton-
exciton annihilation in molecular crystals and its role in
explaining the magnetic field dependence of delayed
fluorescence, Suna (Appendix D of Ref. 11) developed a
theory of triplet exciton spin relaxation which is
equivalent to the one presented here. Specifically,
g'„„'=R„„.„„,g„'

' =R„.„,and f( —,'G)=A, , where the
symbols on the left of each equality are Suna's. The phys-
ical significance of the rate parameter g„'

' was not ad-
dressed, however, and it does not appear to be generally
recognized that Suna's formula anticipated Reineker's
equivalent expression for triplet exciton EPR linewidth
which, as we have noted, was derived starting from the
Haken-Strobl formalism. Since we have already discussed
elsewhere the relationship between Reineker's theory and
Blume's formalism, we use this opportunity to establish
the connection between Suna's approach and the stochas-
tic method of Dattagupta and Blume.

Suna begins his development with the stochastic Liou-

IV(q, q') =(1 25q q )%gt)—

X D!(&)((A);j(B)j(B)
i(A)

i(A)i(A);j(A)j(A)
i(A)

(88)

(),P(t) = i g V,"F—,+ IV P(t),

where F is the projector into the stochastic state having la-
bel q. This immediately produces

p(t) = U (t)p(0),

where

(810)

is the total hopping rate from any site to all sites of the
other sublattice. In terms of Blume's convention of writ-
ing stochastic functions in explicit matrix form (denoted
by a tilde) (86) is
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r

U (t)=exp i—g VqFq+ W t
which is the form of the general solution of (7) with W at
once in the form specified in the RPA, since (87) may be
recast as (10) with pz ——ps ———,

' and

(811) where %'d ——0'[ —,(a+b)] as in Ref. 11.

is identified with the conditional average
( U (t)

~

g'(t) =g, g(0) =go }of (6) since in (810) stochastic
states are specified at times t =t and t =0. Thus

—1

U [p]= p 1 —W+i g VqFq
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