Parametric analysis of the energy levels of U^{4+} in D_{2d} and limiting D_2 sites in incommensurate ThBr₄

P. Delamoye, K. Rajnak,^{*} and M. Genet

Laboratoire de Radiochimie, Institute de Physique Nucléaire, Boîte Postale No. 1, F-91406 Orsay, France

N. Edelstein

Materials and Molecular Research Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (Received 18 July 1983)

Below $T_c = 95$ K, U⁴⁺:ThBr₄ exists as an incommensurately modulated structure. The U⁴⁺ ions occupy a range of sites which vary from D_{2d} to a limiting D_2 site. The D_{2d} and limiting D_2 sites have been identifed spectroscopically. We report a parametric analysis of the U^{4+} energy levels in both sites. For 26 levels in the D_{2d} site the root-mean-square deviation $\sigma=36$ cm⁻¹ and $F^2=42253\pm127$, $F^4=40458\pm489$, $F^6=25881\pm383$, $\zeta=1783\pm7$, $\alpha=31\pm1$, $\beta=-644\pm75$, $\gamma = 1200$, $B_0^2 = -1096 \pm 80$, $B_0^4 = 1316 \pm 146$, $B_4^4 = -2230 \pm 85$, $B_0^6 = -3170 \pm 379$, and $B_4^6 = 686 \pm 246$, all in cm⁻¹. For 38 D_2 levels $\sigma = 39$ cm⁻¹, and those parameters which occur in both symmetries are only slightly changed. The additional parameters which occur only in D_2 symmetry are $B_2^2 = -78 \pm 30$, $B_2^4 = 318 \pm 122$, $B_2^6 = 136 \pm 101$, $B_6^6 = 123 \pm 125$, all in cm⁻¹. F^2 is 81% of the free-ion value. This decrease in F^2 is more like that found for 3d than that found for 4f electrons.

INTRODUCTION

The spectra of single crystals of U^{4+} :ThBr₄ and a preliminary analysis of the energy levels in D_{2d} site symmetry were published several years ago.¹ The rms deviation σ . between calculated and experimental energy levels was 140 $cm⁻¹$, which is comparable to that obtained in other analyses of tetravalent actinides in cubic²⁻⁴ and D_{2d} (Refs. 5) and 6) symmetries. All such results are very unsatisfactory when compared with those for the trivalent actinides⁷ and lanthanides, 8.9 where σ 's are generally of the order of 20 and 10 cm⁻¹, respectively. The large value of σ was not the only problem with the previous analysis of U^{4+} :ThBr₄; there were several experimental facts which remained unexplained:

(1) Even at 4 K there are more lines than can be explained by zero-phonon transitions obeying D_{2d} selection rules.

(2) At 4.2 K sharp lines (width \sim 1 cm⁻¹) are expected, irrespective of polarization, but for U^{4+} :ThBr₄, σ transitions are 40–80 cm⁻¹ wide while π transitions are \sim 8 cm^{-1} wide.

(3) The line profiles have a form^{1,10,11} not seen previously in lanthanide or actinide spectra. The lines rise and fall very steeply (edge singularities) with a small dip inbetween. σ lines usually have an additional peak located within the dip; π lines do not.

(4) Selective-excitation experiments produce fluorescence lines whose energies vary continuously with exciting wavelength.¹¹ wavelength.¹¹

All of these features have now been explained by the fact that, at $T_c \leq 95$ K, ThBr₄ exists as an incommensurately modulated structure,¹² in which a sinusoidal distortion modulates the Br^- ion positions and reduces the ac-

tinide site symmetry. The line-shape analysis¹⁰ and selective-excitation experiments¹¹ (hereafter referred to as () showed that the U^{4+} ions in ThBr₄ occupy a range of sites which vary continuously from D_{2d} to a limiting D_2 symmetry. This allowed division of the observed peaks into those associated with U^{4+} in the D_{2d} and the limiting D_2 sites. Thus we are now in a position to analyze the energy levels of U^{4+} in both of these sites.

ANALYSIS QF THE DATA

The levels were fit by simultaneous diagonalization of the free-ion and crystal-field Hamiltonians H_f , H_c , and H'_c , treating all radial terms as parameters¹³

$$
H = H_f + H_c + H'_c
$$

where

$$
H_f = \sum_{k=2,4,6} f_k F^k + \zeta_f \sum_i \vec{s}_i \cdot \vec{1}_i + \alpha L(L+1)
$$

+ $\beta G(G_2) + \gamma G(R_7) + \sum_{k=2,4,6} p_k P^k + \sum_{k=0,2,4} m_k M^k$,

$$
(\mathbf{1})
$$

$$
H_c = \sum_{k=2,4,6} B_0^k C_0^k + \sum_{k=4,6} B_4^k (C_4^k + C_{-4}^k) ,
$$
 (2)

$$
H'_{c} = \sum_{k=2,4,6} B_{2}^{k}(C_{2}^{k} + C_{-2}^{k}) + B_{6}^{6}(C_{6}^{6} + C_{-6}^{6}).
$$
 (3)

 H_c' is the perturbation of the crystal-field Hamiltonian H_c when the symmetry is lowered from D_{2d} to D_2 . Those parameters which occur in both D_{2d} and D_2 symmetries [Eq. (2)] may have different values in the two cases. In D_{2d} symmetry the crystal-field states are either singlets

28 4923 61983 The American Physical Society

		and D_2 representations.							(a) D_{2d}		
			D_2 character table ^a				Γ_{1}	Γ_2	Γ_3	Γ_{4}	Γ_{5}
	E	C_2^z	C_2^y	C_2^x						π	σ
									π		σ
Γ					\overline{z}			π			σ
Γ						Γ_4	π				σ
Γ_{4}					$\mathbf x$	Γ_5	σ	σ	σ	σ	
			D_{2d} to D_2 decomposition						(b) D_2		
D_{2d}		Γ_{2}	Γ_3	Γ_{4}			Γ_1	Γ	Γ_{3}		
D ₂		Γ	Γ_1	Γ_2	$\Gamma_3 + \Gamma_4$	Γ		π	σ	σ	
^a H. Eyring, J. Walter, and G. E. Kimball, <i>Quantum Chemistry</i>						Γ_{2}	π		τ	σ	
(Wiley, New York, 1944).					l ı	σ	σ		π		
							σ	σ	π		

TABLE I. D_2 character table correspondence between D_{2d}

TABLE III. Observed and calculated energy levels (cm⁻¹) for U^{4+} :ThBr₄ in D_{2d} sites [results of calculation (A), Table V].

 $(\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4)$ or doublets (Γ_5) . The presence of the additional Hamiltonian [Eq. (3)] lifts the degeneracy of the Γ_5 states so that the D_2 levels are all singlets. The D_2 character table and the correspondence between the two symmetries are shown in Table I.

The electric dipole radiation selection rules for D_{2d} and D_2 symmetry are shown in Table II. In this table π and σ . polarizations represent radiation with the electric vector, respectively, along and perpendicular to the C_4 axis of the crystal (the c axis in the high-temperature structure) which is preserved even below the transition temperature. These tables are used below to determine the symmetry of the ground state.

In the following analysis we take as the D_2 levels those found in I by selective excitation to be associated with the A site and as the D_{2d} levels those associated with the B site. In addition, in the near-infrared region, we have identified the D_{2d} component in the σ lines by comparison with the spectrum¹⁴ of U^{4+} :ThCl₄.

The line shapes in the U^{4+} :ThCl₄ spectrum are the same as those of U^{4+} :ThBr₄ except that in σ polarization there is no third peak associated with the D_{2d} site. Thus the D_{2d} lines of U^{4+} :ThBr₄ are those for which there is no corresponding line in the U^{4+} :ThCl₄ spectrum.

Several D_{2d} transitions were also identified via magnetic circular dichroism (MCD) experiments.¹⁵ For those few π transitions where it was impossible to choose between the D_{2d} and D_2 peaks, the center of the line was chosen. Since the π transitions are narrow, the error is at most a few cm⁻¹. The D_{2d} levels are given in Table III and the D_2 levels in Table IV.

Since the few previous analyses of tetravalent actinides in crystals were not very satisfactory, we had few guidelines regarding the expected values of the free-ion parameters. Initial F^k and ζ values were obtained by scaling pseudorelativistic Hartree-Fock values (HFR) obtained with the program of Cowan and Griffin.¹⁶ The calculated free ion F^2 is 74 300 cm⁻¹; we expected to find

Γ	$E_{\rm calc}$	E_{obs}	$\Delta E^{\rm a}$	Eigenvector ^b	g_{calc}
3	11 137			91 ${}^3H_6+6~{}^1I_6$	
2	11 142			91 ${}^3H_6+7~{}^1I_6$	
1	11451			84 ${}^3H_6+7~{}^1I_6$	
5	11828			87 ${}^3H_6+7~{}^1I_6$	-10.254
3	14313			$51^{-1}D_2 + 31^{-3}P_2$	
$\overline{4}$	14 3 5 8			47 ${}^{1}D_{2}+38$ ${}^{3}P_{2}$	
1	14 3 9 2	14 3 6 8	24	41 ${}^{3}P_{0}$ + 19 ${}^{1}D_{2}$ + 17 ${}^{3}P_{2}$ + 7 ${}^{1}G_{4}$	
5	14632	14654	-22	48 ${}^{1}D_2 + 35 {}^{3}P_2$	-2.101
1	14940	14899	41	45 ${}^{3}P_{0}+27$ ${}^{1}D_{2}+19$ ${}^{3}P_{2}$	
1	15229	15204	25	$47^{3}F_4 + 40^{1}G_4$	
5	15389	15412	-23	$47~^{1}G_4+48~^{3}F_4$	-1.936
$\boldsymbol{2}$	15587			51 ${}^1G_4+38$ 3F_4	
1	15821			48 ${}^{1}G_{4}+41$ ${}^{3}F_{4}$	
4	15867			52 ${}^1G_4+41$ 3F_4	
5	16052	16003	49	51 ${}^1G_4 + 42 {}^3F_4$	2.256 ^c
3	16667			$57~^{1}G_4 + 35~^{3}F_4$	
2	17001	16997	4	94 ${}^3P_1+4~{}^3F_4$	
5	17313	17335	-22	97 ${}^3P_1+1$ 1D_2	-3.015 ^d
$\mathbf{1}$	19285	19311	-26	88 $^{1}I_{6}+8~^{3}H_{6}$	
5	19344	19341	3	91 ${}^{1}I_{6}+8$ ${}^{3}H_{6}$	0.017
3	19433			84 $^{1}I_{6}+6$ $^{3}H_{4}$	
5	19991	19970	21	93 $^{1}I_{6}+7~^{3}H_{4}$	-2.000
4	20023			81 $^{1}I_{6}+12~^{3}P_{2}$	
2	20027			91 $^{1}I_{6}+6$ $^{3}H_{6}$	
5	20387	20382	7	92 $^{1}I_{6}+6$ $^{3}H_{6}$	-4.091
1	20446	20460	-14	91 ${}^{1}I_{6}+5{}^{3}H_{6}$	
$\overline{3}$	20827			63 $1I_6 + 22$ $3P_7$	
4	20938			85 $^{1}I_{6}+6$ $^{3}P_{2}$	
3	21558			$38^{-3}P_2 + 35^{1}I_6 + 23^{1}D_2$	
5	21813	21842	-29	$61 \ ^3P_2 + 35 \ ^1D_2$	-2.634
1	22229	22 2 2 0	9	57 ${}^3P_2 + 37$ 1D_2	
4	22 3 0 6			40 ${}^3P_2 + 35$ ${}^1D_2 + 20$ 1I_6	
1	38 5 22			93 ${}^{1}S_0+7$ ${}^{3}P_0$	

TABLE III. (Continued.)

 $\Delta E = E_{\rm calc} - E_{\rm obs}$.

 E ^bEigenvectors are given with the percentage of each *SLJ* level. Enough components (at least 2) are given to account for 90% of each state.

 $\begin{array}{c} c \ | \ g_{\rm expt} \ | = 2.1. \ d \ | \ g_{\rm expt} \ | = 2.6. \end{array}$

 $F^2 \sim 55-60\%$ of this value. [For U^{3+} :LaCl₃, F^2 =0.56
 $\times F^2$ (HFR), for example.⁷] Similar reasoning led us to $\times F^2$ (HFR), for example.⁷] Similar reasoning led us to expect $\zeta \sim 1770 \text{ cm}^{-1}$. We initially set α , β , and γ at the U^{4+} free-ion values.¹

Diagonalization of the free-ion levels with these parameters showed that the ${}^{3}P_1$ is well separated from other levels but the ${}^{3}P_0$, ${}^{1}D_2$, and ${}^{1}G_4$ are close together and likely to be mixed by a large crystal field. Thus we can establish the D_{2d} level at 17335 cm⁻¹ as the Γ_5 component of the ${}^{3}P_1$ multiplet.

The position of the Γ_2 component of 3P_1 multiplet was established as follows. There is a temperature-dependent established as follows. There is a correlated with a absorption at 16996 cm^{-1} which is not correlated with a temperature-independent line.¹⁴ We assume that this absorption line corresponds to a transition, allowed from the D_2 level at 10 cm⁻¹, but forbidden from the D_{2d} ground state. The corresponding fluorescence lines to both the 10-cm⁻¹ level and to the D_{2d} - Γ_5 at 78 cm⁻¹ are observed (see I). Since the ${}^{3}P_1$ is the only multiplet in this energy range, we assign the absorption at 16996 cm⁻¹ to its D_2 - Γ_2 component. The corresponding D_{2d} level at 16997 cm⁻¹ is assigned to the Γ_2 of the ³ P_1 multiplet

We can now determine the symmetry of the D_{2d} ground state. We know from I that the ground state is a singlet and the lack of a π transition to ${}^{3}P_{1}$ rules out Γ_{3} (see Table II). To choose between the $\Gamma_{1,2}$ and the Γ_4 levels one must look at the J-mixed group corresponding to ${}^{1}D_2$, ${}^{3}P_0$, and ${}^{1}P_4$ multiplets. For a $\Gamma_{1,2}$ ground state we expect two π transitions; for a Γ_4 ground state we expect four. Four intense transitions are observed. Therefore, we conclude that the ground state is a Γ_4 level. This is the same ground state chosen in Ref. 1, but it was previously chosen because U^{4+} has a Γ_4 ground state in other crystals of D_{2d} symmetry. In D_2 symmetry the ground state becomes Γ_2 (see Table I).

D_{2d} SYMMETRY CALCULATIONS

Using the estimated free-ion parameters, we initially diagonalized the matrices with various values of B_0^2 . Only agonalized the matrices with various values of B_0 . Only
 $B_0^2 \sim -1000 \text{ cm}^{-1}$ gave approximately the correct separation between the ${}^{3}P_1 \Gamma_2$ and Γ_5 levels. Given this B_0^2 value, we tried various values of B_0^4 ; only $B_0^4 \sim 1000 \text{ cm}^{-1}$ gave the Γ_4 and Γ_3 states (degenerate in this approxima tion) as the ground state with the Γ_5 state at almost the same energy. A negative B_4^4 along with a positive B_4^6 gives a Γ_4 ground state, whereas changing both signs changes Γ_4 to Γ_3 without changing the energies. Thus we were led rather quickly to the signs and order of magnitude of these parameters. The calculations plus polarization studies could then be used to make further assignments of Γ_1 and Γ_5 levels and to refine the least-squares fit.

Since the large spin-orbit and crystal-field interactions cause considerable mixing of states and F^4 and F^6 are frequently not well determined, we tried initially to prevent spurious results by fixing ratios $F^4/F^2 \sim 0.85$ and F^6/F^2 ~ 0.56–0.6 as found for the trivalent actinides⁸ and $f''/f'' \sim 0.56-0.6$ as found for the trivalent actinides^o and for the U⁴⁺ free ion¹⁷⁻¹⁹; the fits were always very poor, σ > 100 cm⁻¹. But as soon as the F^k's were allowed to vary independently the fit improved greatly.

Initially we used the recent U^{4+} free-ion results¹⁷ to fix ν and the P^k and M^k parameters. In the crystal the value of γ is determined by the position of the ³ P_0 level through its $\sim 2\%$ ¹S₀ component). The P^{k's} determine the relative splittings of the ³ $P_{0,1,2}$ levels. Fitting γ will make the ${}^{3}P_0$ fit very well but the value of γ depends on the values used for the P^{k} 's. When we fixed γ at 800 cm^{-1} and all of the P^{k} 's at 500 cm⁻¹ (approximately their free-ion values), we obtained for 26 levels a rms deviation σ of 41 cm⁻¹. Increasing γ to 1200 cm⁻¹, closer to the values found for the trivalent actinides in crystals, gives σ =36 cm⁻¹. If γ is allowed to vary freely, it is ~2000 cm^{-1} but σ is decreased by only ~ 1 cm⁻¹. Without the position of the ¹S₀ we must regard both the P^k and γ parameters as only approximately determined.

The energy levels in Table III (calculated with $\gamma = 1200$ cm^{-1}) show that the strongly fluorescing ${}^{3}P_{0}$ level at 4368 cm^{-1} is not the level immediately above a large energy gap. The unobserved Γ_3 and Γ_4 components of the ${}^{1}D_{2}$ - ${}^{3}P_{2}$ multiplet lie lower. Since it is always the lowest evel in a group which fluoresces, the Γ_3 and Γ_4 levels are calculated at too low an energy. All of these levels are quite sensitive to the values of γ , the P^k's, and ζ . At the moment we cannot rule out the possibility that if the position of the ¹S₀ were known so as to establish γ , values of the other parameters could be found which would put the ${}^{3}P_0$ below the ${}^{1}D_2$ - ${}^{3}P_2$ levels.

The results given in Table III show that while many levels fit very well, there are five levels for which the deviation between experimental and calculated levels is greater than 36 cm^{-1}. Four of these five levels have eigenvectors which are mixtures of ${}^{1}G_4$ and ${}^{3}F$ or ${}^{3}H$ components, and the largest deviations are for levels which are nearly equal mixtures of 1G_4 and 3F_4 .

The conjecture that somewhat different parameters are needed for the ¹ G_4 level than for the ³H and ³F levels led us to consider an extension of the crystal-field Hamiltonian as suggested by Judd²⁰ and Newman et $al.^{21}$ They have shown that spin correlation and some covalency effects can be accommodated simply by making the following replacements in the reduced matrix elements of the crystal-field operators:

$$
(\psi || U^{(k)} || \psi') \!\!\rightarrow\!\! (\psi || U^{(k)} || \psi') \!+\! c_k [S(S+1)/(2S+1)]^{1/2} (\psi || V^{(1k)} || \psi')
$$

 (4)

(Ref. 20) or

$$
(\psi||U^{(k)}||\psi') \to \{1 + [-\frac{3}{4} \pm \frac{1}{2}(S_M + 1)]c_k\}(\psi||U^{(k)}||\psi') + c_k\{[S(S+1)/(2S+1)]^{1/2}(\psi||V^{(1k)}||\psi')\pm (S_M + 1)(\psi||U^{(k)}||\psi')\},
$$
\n
$$
(5)
$$

 I

 $\overline{\mathbf{4}}$

 -43
 -40
 -31
 -50

 $\begin{array}{c} -8 \\ -5 \end{array}$ $\begin{array}{c} 3 \\ 1 \\ 2 \end{array}$

 $13 \mid 1$

TABLE IV. Observed and calculated energy levels $(cm⁻¹)$ for $U⁴⁺:ThBr₄$ in the limiting $D₂$ sites.

(Ref. 21), where S_M is the maximum spin of f^N and the upper signs refer to less than half-filled shells. The parameters c_k have been estimated at a few tenths for the lanthanide cases considered.^{20,21} The signs of the c_k 's de-

> which we designate $B_q^k(S)$ and $B_q^k(T)$. The lack of q dependence in (4) and (5) requires the restriction that

$$
\frac{B_q^k(T)}{B_q^k(T)} = \frac{B_q^k(S)}{B_q^k(S)}.
$$
\n(6)

 -6

 838 220

pend on the particular mechanism being considered.

Since the reduced matrix elements of $V^{(1k)}$ are zero for

singlets of f^2 and proportional to those of $U^{(k)}$ for triplets, both of the replacements (4) and (5) have the effect of allowing singlets and triplets to have different parameters,

The parameters of Table V show $B_4^6/B_0^6 = -0.22$ and The parameters of Table V show $B_4/D_0 = -0.22$ and $B_4^4/B_0^6 = -1.69$. With B_4^6/B_0^6 fixed at various values between -0.1 and -0.4 , singlet and triplet states were al-

		U^{4+} :ThBr ₄		Free ion ^a		
	Calc. (A)	D_{2d}	\boldsymbol{D}_2			
		Calc. (B)		Calc. (A)	Calc. (B)	
F^2	42253 ± 127	41800 ± 87	42264 ± 84	51938 ± 39	51 294 ± 35	
\mathcal{F}^4	40458±489	40488 ± 445	41 159 ± 407	42 708 ± 100	42414 ± 108	
\mathcal{F}^6	25881 ± 383	28069 ± 218	26018 ± 237	27748 ± 68	29907 ± 66	
$\boldsymbol{\xi}$	$1783 \pm$ $\overline{7}$	1783 ± 5	1774 ± 5	1968 \pm $\overline{2}$	1968 ± 2	
α	31 _± $\mathbf{1}$		(31)	35.5 ± 0.4		
β	-644 ± 75		(-644)	-664 ± 25		
γ	$(1200)^{b}$		(1200)	744 ± 26		
α'		(24.6)			28.4 ± 0.3	
β'		(-15.86)			-31 ± 3	
γ'		(102.3)			$72 + 2$	
M^0	(0.99)	(0.99)	(0.99)	(0.99)	(0.99)	
M ²	(0.55)	(0.55)	(0.55)	(0.55)	(0.55)	
M ⁴	(0.38)	(0.38)	(0.38)	(0.38)	(0.38)	
P^2	(500)	(500)	(500)	573 ± 66	574 ± 66	
P ⁴	(500)	(500)	(500)	524 \pm 144	524 ± 144	
P^6	(500)	(500)	(500)	1173 ± 321	1174 ± 320	
B^2_{04} B^2_{04} B^2_{06} B^2_{12} B^2_{24} B^2_{06}	-1096 ± 80	-1.096 ± 63	-1108 ± 65			
	1316 ± 146	1316 ± 134	1358 ± 137			
	-2230 ± 85	-2231 ± 77	-2219 ± 76			
	-3170 ± 379	-3170 ± 327	-3458 ± 267			
	$686 + 246$	684 ± 216	694 ± 195			
			-78 ± 30			
			318 ± 122			
			136 ± 101			
			123 ± 125			
Number of						
levels	26		38	13	13	
σ	36		39	9.8	9.8	

TABLE V. Parameters (cm⁻¹) for U⁴⁺:ThBr₄ in D_{2d} and limiting D_2 sites and for the U⁴⁺ free ion.

'From Ref. 17.

Parameters in parentheses were held fixed in the fitting procedure.

lowed to have different values of B_0^6 . σ quickly increased as the ratio departed from -0.22 and $B_0^6(T)$ remained nearly equal to $B_0^b(S)$. Similar results were obtained when $B_0^4(S)$ and $B_0^4(T)$ were allowed to be different but with B_4^4/B_0^4 fixed at values between -1 and -2 . Thus it seems that any new pararnetrization of the form given by Eq. (4) or (5) cannot account for the large differences between some of the experimental and calculated levels of U^{4+} :ThBr₄.

D₂ SYMMETRY CALCULATIONS

Since the effects of the incommensurate structure which lowers the symmetry from D_{2d} to D_2 are presumed to be small, we adopted the following strategy to determine the D_2 crystal-field parameters.

(1) The D_2 levels were treated as D_{2d} by fixing the parameters of Eq. (1) and fitting those of Eq. (2) to the D_2 Γ_1 levels and the centers of gravity of the Γ_3 - Γ_4 pairs (Γ_5) in D_{2d}).

(2) Each experimental Γ_3 - Γ_4 pair was adjusted to give the calculated centers of gravity so that the variation of the parameters in H_c' [Eq. (3)] would fit only the Γ_3 - Γ splittings and not the centers of gravity. The initial B_2^2 was chosen to give approximately the correct splitting for

the ${}^{3}P_1$ Γ_3 - Γ_4 pair. The other parameters were initially zero. A change in the sign of B_2^2 results in a sign change for all of the other parameters. B_6^6 was poorly determined, consistent with zero.

(3) With the parameters of step (2) as initial values, the Slater parameters, ζ , and all of the crystal-field parameters were allowed to vary. This resulted in $\sigma = 39$ cm⁻¹ for 38 levels as shown in Tables IV and V.

For both the free-ion and crystal-field parameters of Eq. (2) the differences between the D_2 and D_{2d} results are much smaller than the rms errors on the parameters. The D_2 parameters of Eq. (3) are all very small, \sim 10% of the D_{2d} parameters, as expected from the small amplitude of the modulation.¹² As in the D_{2d} case, the levels which fit poorly are mixtures of ${}^{1}G_{4}$ and ${}^{3}F_{4}$. The largest deviation for the Γ_3 - Γ_4 splittings is 73 cm⁻¹ (Table IV). In general the calculated splittings are too small.

DISCUSSION

For ions with d^N configurations, the F^k 's are usually replaced by the Racah parameters B and C ; free-ion (FI) and crystal values of the Racah parameter B are often compared²² via the ratio $\beta = B_{\text{cryst}}/B_{\text{FI}}$. We introduce here the equivalent ratios $\phi_k = F_{\text{cryst}}^k / F_{\text{FI}}^k$, $Z = \zeta_{\text{cryst}} / \zeta_{\text{FI}}$,

and also $r_{42} = F^4/F^2$. For U⁴⁺:ThBr₄ we find $\phi_2 = 0.81$, $\phi_4 = 0.95$, and $\phi_6 = 0.92$, i.e., F^2 is reduced much more than F^4 and F^6 on going from the free ion to the crystal. We can compare these results with the $Pr³⁺: LaCl₃$ we can compare these results with the FI EaCl₃
case,^{8,19} where ϕ_2 =0.93 and ϕ_4 =0.97. For U⁴⁺:ThBr₄, $Z = 0.91$ whereas for $Pr³⁺: LaCl₃$ it is 0.98. For U^{4+} :ThBr₄, r_{42} is increased to 0.96 (compared to 0.82 for the free ion); the equivalent ratios in Pr^{3+} :LaCl₃ are 0.73 and 0.70. The effect of the transition from free ion to crystal on the parameters of U^{4+} is much greater than it is for Pr^{3+} .

For d transition-metal ions in various crystals, the values of r_{42} are increased from the free-ion values and values of ϕ_2 ~ 0.8 are commonly found. Our U⁴⁺ values are similar to those found for $Cr^{3+}(3d^3)$ in emerald or K_2 NaCr F_6 or Co²⁺(3d⁷) in CoCl₂.^{23,24} The range of r_{42} and ϕ_2 values for 3d transition-metal ions in crystals is very large, however, with r_{42} increasing and ϕ_2 decreasing as the ligand changes from F⁻ to Cl⁻ to Br⁻.²³⁻²⁵ Our values for U^{4+} with a bromide ligand are similar to those for a trivalent $3d$ ion with fluoride ligands or a divalent ion with chloride ligands. (Since there are no free-ion analyses for $5f^N$ in the fourth spectra of the actinides, we can make no comparison between trivalent and tetravalent actinides.)

In discussions of d^N spectra, β (here ϕ_2) less than 1 is commonly attributed to effects of covalency.²² Newman²⁵ has argued that the variation in F^2 from host to host should rather be correlated with the ligand polarizability α and that the mechanism for the decrease in F^2 is the same for the d transition metals, lanthanides, and actinides. Morrison²⁶ has given an expression (corrected by Eremin and Kornienko²⁷) for the decrease in the Slater parameters due to the polarizability of the ligands:

$$
\Delta F^{k} = -e^{2} \sum_{i} \frac{\alpha_{i} Z_{i}}{R_{i}^{2k+4}} \langle r^{k} \rangle_{f}^{2}(k+1) , \qquad (7)
$$

where Z_i is the number of ligands of polarizability α_i at a distance R_i from the metal ion. Equation (7) does qualitatively predict $\phi_2 < \phi_4 < \phi_6$. Eremin and Kornienko²⁷ have shown that ligand polarizability accounts for only a 0.4% decrease in F^2 compared to a 10% observed decrease for $Ni²⁺ (NiF₆⁴⁺)$ and $Mn²⁺ (MnF₆⁴⁺)$ in fluoride crystals. From Eq. (7), the Dirac-Slater $\langle r^2 \rangle$ ⁺⁺ value of Lewis et $al.^{28}$ (chosen to give the maximum effect), and with all $R_i = 3$ Å,²⁹ we find $\Delta F^2 \approx -660$ cm⁻¹ for U⁴⁺:ThBr₄. This is only 7% of the observed decrease from the free-ion value.

From empirical correlations Newman²⁵ found, for $Pr³⁺$ and U^{4+} , $\Delta F^2 = -968\alpha$ and $\Delta F^2 = -1530\alpha$, respectively, i.e., $F²$ is much more sensitive to ligand polarizability for U^{4+} than for Pr³⁺. For U^{4+} :ThBr₄ this relationship predicts $\Delta F^2 = -6365$ cm⁻¹, 66% of the observed effect. But this result is questionable because of the uncertainties in the U^{4+} analyses from which Newman's equation was derived. (All of the rms deviations are too large to guarantee that the correct set of parameters has been found.)

We see that while the empirical correlation with ligand polarizability seems to account for the trend and the order of magnitude of the decrease in F^k , Eq. (7) gives an effect which is much too small.

Judd et al .³⁰ have recently defined new configuration interaction parameters α' , β' , and γ' whose matrix elements are orthogonal to those of the Slater integrals. Except for nonlinear effects arising from spin-orbit coupling, the parameters are then all independent. Thus the Slater parameters will not change with the inclusion or exclusion of γ as they do in the usual parametrization scheme. Use of α' , β' , and γ' should reduce the rms errors in the parameters and thereby facilitate the extrapolation from one ion to another.

The old and new parameters are related bv^{31}

$$
\alpha' = \frac{4}{5}\alpha ,
$$

\n
$$
\beta' = -4\alpha - \beta/6 ,
$$

\n
$$
\gamma' = \frac{8}{5}\alpha + \beta/15 + 2\gamma/25 .
$$
\n(8)

The Slater parameters, particularly F^6 , depend on which set of configration interaction parameters are used. The D_{2d} calculation was repeated with α' , β' , and γ' fixed by Eq. (8) in order to establish the differences in the Slater parameters. The results are shown as calculation (B) in Table V. The corresponding free-ion results are also shown for comparison. Use of these parameters changes the ratios discussed above by less than 0.01 and makes no difference in the conclusions.

CONCLUSIONS

We have used the crystal-field model to successfully interpret the energy levels of U^{4+} in both D_{2d} and D_2 sites in a modulated structure. The results are somewhat poorer than for trivalent actinides and, as in those cases, there are some rather large deviations between calculated and experimental levels. Most of these are associated with levels in which there is strong mixing between ${}^{1}G_{4}$ and ${}^{3}F$ and H levels. The spin-polarization mechanism previously suggested to account for some large deviations in the lanthanides will not account for the large deviations found here.

Further work is needed to provide a detailed understanding of the reasons for the larger deviations from the crystal-field model for the actinides than for the lanthanides.

Both the large spin-orbit and crystal-field interactions result in a great deal of mixing between SLJ states, and the crystal field cannot be regarded as a perturbation of the free-ion states. Changes in either the crystal-field or free-ion parameters may have similar effects on the energy of a level, although the eigenvectors may be different in the two cases. Unless there is a systematic variation of the free-ion parameters, and/or their relationships, from host to host, the results of any single fit are quite possibly spurious, especially when σ is large (greater than or equal to 100 cm^{-1}). It is clear that the relationships which hold for lanthanides and trivalent actinides are not applicable to the tetravalent actinides.

The large differences between crystal and free-ion

values of F^2 and r_{42} indicate that in ThBr₄ the U⁴⁺ 5f electron is more like a 3d than a 4f electron. Thus the tetravalent actinides may prove to be a suitable system in which to test the various models which have been proposed to explain the changes in the free-ion parameters as the ion is placed in different hosts. The actinide variations are similar to the smallest effects seen for the 3d transition-metal ions and the spectra are much more amenable to a detailed analysis.

'Permanent address: Kalamazoo College, Kalamazoo, MI 49007.

¹M. Genet, P. Delamoye, N. Edelstein, and J. Conway, J. Chem. Phys. 67, 1620 (1977). A smaller, unweighted σ not comparable to that used here was quoted. We define

$$
\sigma = \left[\sum_i \left(E_{\text{obs}}^i - E_{\text{calc}}^i \right)^2 / (N_l - N_p) \right]^{1/2},
$$

where N equals the number of levels and N_p equals the number of parameters varied.

- 2W. Wagner, N. Edelstein, B. Whittaker, and D. Brown, Inorg. Chem. 16, 1021 (1977).
- ³E. R. Bernstein and T. A. Keiderling, J. Chem. Phys. 59, 2105 (1973).
- 4R. A. Satten, C. L. Schreiber, and E. Y. Wong, J. Chem. Phys. 78, 79 (1983).
- ⁵D. J. Mackey, W. A. Runciman, and E. R. Vance, J. Chem. Phys. 11, 211 (1975).
- ⁶E. R. Vance, and D. J. Mackey, J. Chem. Phys. 18, 185 (1978).
- 7H. M. Crosswhite, H. Crosswhite, W. T. Carnall, and A. P. Paszek, J. Chem. Phys. 72, 5103 (1980). What was called the mean error in this reference is actually the rms deviation σ .
- ⁸H. Crosswhite, in Spectroscopie des éléments de transition et des éléments lourds dans les solides, Colloques internationaux du Centre National de la Recherche Scientifique, Paris, Xo. 255 (Editions du CNRS, Paris, 1977), p. 65.
- ⁹N. C. Chang, J. B. Gruber, R. P. Leavitt, and C. A. Morrison, J. Chem. Phys. **76**, 3877 (1982).
- ¹⁰P. Delamoye and R. Currat, J. Phys. (Paris) Lett. 43 , L655 (1982).
- ¹¹P. Delamove, J. C. Krupa, John G. Conway, and N. Edelstein, preceding paper, Phys. Rev. B 28, 4913 (1983), referred to as I.
- ¹²L. Bernard, R. Currat, P. Delamoye, C. M. E. Zeyen, S. Hu-

ACKNOWLEDGMENTS

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098. We wish to thank Hannah Crosswhite for the M^k and P^k matrix elements and B. R. Judd for helpful discussions and for the relationships given in Eq. (8).

bert, and R. de Kouchkovsky, J. Phys. C 16, 433 (1983).

- ³See W. T. Carnall, H. Crosswhite, H. M. Crosswhite, Jan P. Hessler, N. Edelstein, J. G. Conway, G. V. Shalimoff, and R. Sarup, J. Chem. Phys. 72, 5089 (1980) for definitions of the terms in the Hamiltonian.
- ¹⁴C. Kahn Malek and J. C. Krupa (unpublished).
- ¹⁵B. Briat, P. Delamoye, J. C. Rivoal, S. Hubert, and P. Eveque (unpublished).
- ${}^{6}R.$ D. Cowan and D. C. Griffin, J. Opt. Soc. Am. $66, 1010$ (1976).
- ¹⁷C. H. H. VanDeurzen, K. Rajnak, and J. G. Conway, J. Opt. Soc. Am. (in press).
- ¹⁸J. F. Wyart, V. Kaufman, and J. Sugar, Phys. Scr. 22, 389 (1980).
- ¹⁹Z. B. Goldschmidt, Phys. Rev. A 27, 740 (1983).
- ²⁰B. R. Judd, Phys. Rev. Lett. 39, 242 (1977).
- 21 D. J. Newman, G. G. Siu, and W. Y. P. Fung, J. Phys. C 15, 3113 (1982).
- ²²A. B. P. Lever, *Inorganic Electronic Spectroscopy* (Elsevier, New York, 1968).
- ²³D. L. Wood, J. Ferguson, K. R. Knox, and J. F. Dillon, Jr., J. Chem. Phys. 39, 890 {1963).
- 24 J. Ferguson, D. L. Wood, and K. Knox, J. Chem. Phys. 39 , 881 (1963).
- ²⁵D. J. Newman Austr. J. Phys. 30, 315 (1977).
- ²⁶C. A. Morrison, J. Chem. Phys. <u>72</u>, 1001 (1980).
- ²⁷M. V. Eremin and A. A. Kornienko, Opt. Spectrosc. (USSR) 53, 45 (1982).
- ²⁸W. Burton Lewis, J. B. Mann, D. A. Liberman, and D. T. Cromer, J. Chem. Phys. 53, 809 (1970).
- ²⁹D. Brown, T. L. Hall, and D. T. Mosley, J. Chem. Soc. Dalton Trans. 6, 686 (1973).
- ³⁰B. R. Judd, J. E. Hansen, and A. J. J. Raassen, J. Phys. B 15, 1457 (1982).
- $31B.$ R. Judd (private communication).