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We report the measurement, at 0.51 K and up to 28 T, of the magnetoresistance and Hall resistance of a

dilute two-dimensional electron system with 6 x100 cm

=2 carriers in a GaAs-GaAlAs heterojunction. The

. . . . . 1
existence of an anomalous quantized Hall effect for a fractional Landau-level filling factor of 3 Wwas con-

firmed. The magnetoresistance showed a substantial deviation from linearity above 18 T and exhibited no

additional features for filling factors below % down to

quantum liquid to a crystalline state may take place.

The discovery of the quantized Hall effect (QHE), first in
Si inversion layers! and later in GaAs-GaAlAs, InGaAs-
InP, and InAs-GaSb heterostructures,?™* has spurred a large
number of experimental and theoretical studies,>!! and it is
now reasonably well understood. Recently, an anomalous
QHE was observed by Tsui, Stormer, and Gossard,!? for
two-dimensional (2D) electrons at a GaAs-GaAlAs inter-
face. The Hall resistance p,, was quantized when -i— or % of
the lowest Landau level was occupied and this quantization
was accompanied by a corresponding minimum in the
transverse magnetoresistance p, which, at sufficiently low
temperatures, tends to vanish. An elegant theory by Laugh-
lin'3 has been able to account for these results on the basis
of the formation at high magnetic fields of an incompressi-
ble quantum fluid with fractionally charged excitations. He
has predicted a series of ground states characterized by the
variational parameter m (m =3,5, ...), decreasing in densi-
ty and ending in a Wigner crystal. The Hall plateau at the
Landau-level filling factor v = -;— (and its complementary %)
would then correspond to the highest-density ground state
m =3. Most recently, Stormer et al.'* have observed new
structures in py at v == T :, 3o T 5 and % , and, for the

2 .
case of V=1, it has a corresponding feature in p,,. These

results suggest that the anomalous Hall effect occurs at ex-
act rational fractions n/m (n=1,2,3,4, ...). While the %

2 ;
and T structures can be seen as the electron-hole symmetric

states of m =3, proposed by Laughlin,'? no such interpreta-
. . 3 2

tion seems possible for the T 5 and < structures. Storm-
er et al.'* have speculated that many-particle ground states
underlying fractional quantization exist not only for 1/m but
also for their multiples. As a result of experimental limita-

tions, the crucial region covering v—— and below has hith-

erto remained inaccessible.

In this Rapid Communication we report investigations of
the magnetoresistance and Hall resistance in a 2D electron
gas dilute enough so that Landau-level filling factors as low

as T can be covered at fields below 30 T. Our results con-

firm the anomalies observed previously corresponding to
v=% and % and provide evidence of a new structure
around l— at a temperature of 0.51 K. However, no trace of
7 s 9 , or 'tlT has been found. While the ob-

1 1 .
servation of structures at 5 or 4 may be argued to require

any structure at —

28

1 "
0 The results suggest that a transition from a

lower temperatures, the lack of structure at =, at tempera-

tures and fields for which the = structure has been ob-

7
served in more dense systems,'* is suggestive that a transi-
tion from a liquid to a crystalline state may be already oc-
curring.

The samples studied were epilayers grown by molecular-
beam epitaxy on semi-insulating GaAs substrates. Special
care was taken, in terms of substrate preparation and system
cleanliness, to ensure very-high-quality layers. Following a
growth procedure reported elsewhere,' it was possible to
evaporate undoped GaAs films with a residual carrier con-
centration (p type) of — 1-2x10'" cm™3. The structures
of this work consisted of a 2-um undoped GaAs layer, an
undoped Gag;Alp3As spacer, 400- A si- doped Gag;Alp3As,
and 100-A Si- doped GaAs. Hall patterns were photolito-
graphically delineated and Ohmic contacts were made into
the epilayers.>'> The concentration of the 2D electrons
confined at the undoped GaAs-Gag;Alyp3As interface was
varied in different samples by varying the spacer thickness
d. For the two samples A and B discussed in this paper, d
was 200 and 520 & respectively. Carrier concentration and
Hall mobility at 4 K were 2.8x10'" ¢cm~2 and 4x10°
cm?/Vsec for sample A, and 0.6 x10'' cm~2 and 4.1 x10°
cm?/Vsec for sample B. The latter sample, with its ex-
tremely low carrier concentration, was the focus of the
present study. The magnetotransport experiments were per-
formed at the National Magnet Laboratory, with a field up
to 22 T with a Bitter coil alone, or up to 28 T by placing a
Bitter coil inside a superconducting magnet.

Figure 1(a) shows the magnetoresistance for sample A at
two different temperatures. The data at 4.2 K exhibit al-
ready zero-resistance states for fields as low as 3 T (corre-
sponding to v=4), as a result of the high electron mobility.
The quantum limit (v =1) is reached at 12 T, beyond which
no additional structure, up to 22 T, is observed at this tem-
perature. On the other hand, at 1.3 K, a clear minimum is
developed, at 18 T, corresponding to a filling factor of %
This temperature dependence agrees with that reported by
Tsui et al'?> for v=+, which occurred at similar fields in

more lightly doped samples. The additional feature at 8 T is
similar to the one originally assigned to V=—;-,12 but it was
later shown to be a doublet corresponding to % and %.‘4 It
is worth noting that, in Fig. 1(a), the zero-resistance regions
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FIG. 1. (a) Magnetoresistance vs magnetic field, at two different
temperatures, for a GaAs-Gag ;Alj3As heterojunction with an elec-
tron concentration of 2.8x10!! cm~2 (sample A). (b) Magnetic
field dependence, up to 9 T, of the magneto and Hall resistance, at
0.51 K, for a heterojunction with an electron concentration of
0.6x10'! cm =2 (sample B).

are relatively narrow even at the lower temperature. This is
again a consequence of the high sample quality: As the ori-
gin of the zero-resistance regions (as well as the Hall pla-
teaus) is the pinning of the Fermi level to the localized
states (due to impurities, defects, etc.) between Landau lev-
els, a decrease of those states should decrease the width of
those regions. The same is observed in Fig. 1(b), which
shows the magnetoresistance and Hall resistance for sample
B at 0.51 K. Because of the very dilute electron gas, the
quantum limit is reached at 2.55 T and a clear minimum is
observed at 7.7 T, for v=—;—. A corresponding plateau, still
in its developing stage, is evident in p,,. The Hall plateaus
show their expected values h/ve’. Weak features corre-

sponding to v=%——§— at 1.7 T and v=% at 3.9 T are barely

visible because of the magnetic field dependence of their
amplitude.

Shown in Fig. 2 are the results for sample B for fields up
to 28 T, covering the range of filling factors from % to 57,
as indicated on top of the figure. The upper trace (py)
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FIG. 2. High-field magneto and Hall resistance of sample B at
0.51 K. The insert corresponds to the derivative with respect to the
field of the magnetoresistance. The minimum of the curve in the
insert is indicated in the main figure by a broken arrow.

varies with the field essentially linearly after the initial

feature at v=;—. The lower trace (p,), exhibiting no pro-

nounced structure throughout the field range, behaves ini-
tially in a similar manner in accordance with the free-
electron theory.!> However, it contains a faint curvature
change near 12 T, and departs significantly from linearity
beyond 18 T. These are amplified in the insert of Fig. 2 by
plotting the derivative of p, with respect to B. The
minimum shown therein corresponds to the curvature
change in py as marked by a broken arrow. It occurs at a
filling factor of 0.21, suggesting that the feature may be as-

sociated with v=%. The surprisingly low intensity of this

feature would then imply that the underlying mechanism for
its appearance has begun to be modified.

Stormer et al.'* have observed the %, —g—,
at low fields, and also the % structure at 20 T, only 2 T

above the field where the % structure is conspicuously ab-

sent in Fig. 2. Their experiments were carried out at the
same temperature and with samples having similar mobili-
ties to ours. The only apparent difference lies in the
number of carriers, at least twice lower in the present case.
In such a dilute system the average distance between elec-
trons is 400 A, versus 2000 A for the residual impurity dis-
tance. It is possible that, with such a large electron spacing,
a field in the vicinity of 18 T is sufficient to induce a transi-
tion from a liquid to a crystal, so that many-particle ground
states could not exist. This would account for the weakness
of the feature at % and the absence of features at % as well
as their associated multiples at low fields. The departure
from a linear behavior of p,,, beyond 18 T, also suggests
that some type of transition is taking place. For instance, in
narrow-gap semiconductors, in the quantum limit, a kink in

4
and < structures
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px has been interpreted as caused by a Wigner condensa-
tion.'® From Laughlin’s theory one cannot determine the
crystallization point, although a crude interpolation of his
ground-state energies'® converges to the energy of the
charge density wave near m =10, If, in fact, the transition
occurs at m =7, as our results seem to suggest, a reduction
in the sample temperature below 0.5 K would not be expect-
ed to produce any significant effect in the magnetoresis-
tance.
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