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Nature of eigenstates on fractal structures
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The density of states and the nature of the eigenstates of the tight-binding (or any general quadratic)
Hamiltonian, on a d-dimensional Sierpinski gasket, are investigated. For d & 1, the spectral measure is the
superposition of two distinct parts: a pure point measure of relative weight dj(d+1), associated with
"molecular" localized states, and a pure point measure, with a Cantor set support, associated with

"hierarchical" states.

It has been recently shown' that fractals may represent,
up to the correlation length, the main geometrical features
of percolation clusters. However, this example of fractals is
not an isolated one. A linear or branched polymer, and a
random or self-avoiding walk in free space or on a periodic
lattice, are other examples of fractals. The common feature
of these structures is their dilation symmetry (scale invari-
ance), in contrast with the translation symmetry possessed
by standard Euclidean spaces. In this respect, fractals may
bridge the gap between crystalline structures and disordered
materials. In addition to the well-known fractal dimen-
sionality d, the new concept of spectral dimensionality d was
introduced recently in order to describe, among other ef-
fects, the classical diffusion on fractals. The dimensions d
and d seem also to control many other physical phenomena:
localization, self-avoidance of random walks, etc. The spec-
tral dimensionality d is naturally associated with the power-
law behavior of the low-frequency density of states (e.g. , for
elastic vibrations): p (cu) —cod '. From this viewpoint, Eu-
clidean spaces, of dimension d, are special and degenerate
cases because d = d = d in them and the energy spectrum of
electron (or vibration) states consists of bands of extended
eigenstates. In this Rapid Communication, we investigate
the spectrum of the same type Hamiltonian, on a family of
nontrivial fractal lattices: the d-dimensional Sierpinski
gaskets. '

To construct a d-dimensional gasket, we begin with a d-

dimensional hypertetrahedron Gp (triangle for d = 2) at
stage n =0. G„+~ is obtained from G„by juxtaposition of
(d+1) stage-n structures, at their external corners. The
scaling factor is 6 = 2 at each iteration and the fractal
dimensionality of the gasket is easily found:
d = ln(d + 1)/ln2. Assume now a system of identical
masses m placed at the sites of the gasket and connected by
springs of strength E. The masses are allowed to move only
in a direction orthogonal to the d-dimensional space of the
gasket. Let us denote n = m co'/K =—co /coo the reduced
squared frequency and let IUJe'"'l be the eigenstate associat-
ed with a mode of frequency cu. The set of equations of
motion for a given site is

nU;= g(U, —U, )

~here j denotes a neighboring site of i.
Of particular interest for physical applications are the na-

ture of the spectral measure, the spatial behavior of eigen-

modes, and, finally, the topological feature of the spectrum.
A first step in this program is to use the scale invariance of
the gasket in order to renormalize Eq. (1). Starting from
the equations of motion, one eliminates the amplitudes cor-
responding to the sites located at midpoint of hyper-
tetrahedron edges at the lowest scale. This decimation pro-
cedure leads to a reduced set of equations, describing the
same physics on a gasket, scaled down by a factor b = 2.
This exact renormalization leads to a renormalized frequen-
cy, and the dimensionless parameter ct. is simply replaced
by

n' —= @(0.) = (d + 3)n —n' (2)

The spectral dimensionality can then be deduced from the
slope of @(0.) as its trivial fixed point o. =0 (Ref. 2):

d —= 2d Inb/I In/'(0)
I
= 2 ln(d + I )/In(d + 3) (3)

The nature of the spectrum is closely related to the proper-
ties of the quadratic map @(n). Precise information is

gained through the diagonal Green's function, which also
gives the integrated density of states. If N(cu') is used to
denote the fraction of modes, with squared frequency less
than ~, it is well known that

N (ru') = —(2/m) 1m'&( —o)'+ I e)

where &P(Z) is defined for complex numbers Z by

N

4(Z) = ——, lim $ ln(Z +a),'„)2n-

(4)

d —1 (Z +d +3) (Z +2d +2) +'

2(d +1)' Z+2 . (6)

This nontrivial functional equation for C (Z) cannot be
solved, in general, except for d =1, where known results

Here, N„= (d + I) [1+(d + I) "1/2 denotes the total num-
ber of sites at stage n, and {cu,„l is the set of N„eigenfre-
quencies. Using a standard integral representation for
4(Z), we can derive a functional equation for 4. This
equation corresponds to a decimation, over hidden variables
associated with the integral representation, and can be writ-
ten as (the detailed algebra will be given elsewhere5)

e(Z(Z + d +3))
d+1
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for linear chains are reproduced. However, the spectrum
can be deduced from Eq. (6). For instance, the edges of
the spectrum are located at ru';„=0 and co'.,„=(2d + 2)cusp.

On the other hand, N(u) is given by the discontinuities
[Eq. (4)] of Im@(Z) on the real negative axis. This leads
to a spectrum completely determined by the boundary con-
ditions

N (y( ))
d+1

d —1
, t-)(u —2)(d+2)'

for 0 & u & (d + 3)/2, and

N( u ~ 0) = 0, N (u ) 2d + 2) = 1

and the following two iteration equations:

(7)

(8a)

d —l 2N(u) = —— [0(u —2) —0 (u —d —3) —(d + 1)()(u —2d —2) ] +
(d +1)' d+1

N(@( ))
d+1 (8b)

for (d+3)/2 & u & ~, where O(x) is the step function
[O(x) =0, if x (0, O(x) =1 if x ) 0]. Equations (7) and
(8) suggest a natural procedure, illustrated in Fig. 1, for the
determination of N(u), which is a non-negative monotoni-
cally increasing function but constant almost everywhere on
the real axis. The behavior of this highly singular function
is dictated by the properties of the map u —@(u), and its
reverse f'+ defined by (5 = d + 3)

f+( ) =[&+(&'—4 )'"]/2

For instance, we deduce from the first iteration,

N(u) =2/(d+1), for (d+3) ( u ( 2(d+1) . (10)

I

A first jump, ot height b, '= (d —1)/(d + 1), occurs at the
upper edge of the spectrum. The next iteration shows the
presence of another jump of N (u) at u = d + 1. The height
of this jump is Ao ——(d —1)/(d + 1)'. The knowledge of
N (u) on the interval [O,d+ 3] is then reached by repeated
application of f +. At each stage of the iteration, every
jump 6; gives rise to two new jumps, of equal magnitude
3;+1=3,;/(d+1). The above construction thus generates a
pure-point spectral measure, supported by a Cantor set of
Lebesgue measure zero. The eigenfrequencies are located
at o. = 2d+2, and at o. = d+1, and its successive images by
f+. This part of the spectrum is self-similar by construc-
tion, and its relative weight is given by the sum (d ) 1)

~'+ g2'/, =d/(d+1) .
i-0

The localized eigenstates associated with these frequencies
are obtained iteratively, using f + (see Fig. 2). The ampli-
tudes are nonzero only on a finite number of sites. We call

N (oc.)

4
I

2/3—

&meal

1/3

0 .i t I I

0 oc

FIG. 1. Behavior of the integrated density of states N(0. ) ob-
tained, as explained in the text, from the map $(a). Here, n
denotes n =co /coo, the reduced squared frequency for the Sierpinski
gasket at d = 2.
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FIG. 2. Examples of "molecular" localized eigenmodes of the
Sierpinski gasket at d = 2. Only nonzero amplitudes are shown: (a)
n=6; (b) n=3.
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L(y( ))=L( )/2 . (12)

This length diverges at low frequency like L (c0) —c0

when the lower edge of the spectrum is approached.
The second part of the spectrum, of relative weight

1/(d+ 1), is given by the Julia set' associated with the map
This spectrum is invariant under the map $ and its rev-

erses f +. The spectrum (Cantor) is supported by a Cantor
set C~ of Lebesgue measure zero, The associated eigenfre-
quencies are coded naturally as

such states "molecular" modes. Their spatial extension can
be measured, with a "localization" length L (n), such that
L (n) corresponds to the "occupation volume" of the asso-
ciated mode. A simple scaling argument gives the following
relation for L (n):

where @'"' denotes the kth iterate of the map ct. This set
of polynomials is appropriate for the dilation symmetry of
the gasket, and is then the counterpart of Block ~aves in
translation invariant systems. Equation (18) exhibits clearly
this property. In particular, the (P„} reduce to the well-
known Tchebyshev polynomials (T„} at d = 1, where dila-
tion and translation symmetries coexist. In this case, the
spectrum is absolutely continuous (one band 0 (n ~ 4)
and the eigenmodes can be expressed either as linear com-
bination of polynomials (T„) or of Bloch waves.

In a similar manner, eigenmodes (U„) on the gasket are
expressed as a linear combination of polynomials (P„). Of
particular interest is their spatial behavior. For instance, if
we choose a particular site, on an external edge of the
gasket, as origin, it is easy to show using Eqs. (18) and
(14):

n ( (o.) ) = —+ cr p[)c + o-, ( lc + o, ) 'i'] 'i'
2

(13) U, l, (n) = U„(@'"'(n))= U„(n(T"( (n}))) (19)

where {o.) = ( o.p, cri. . ), , .cr; = + 1, and A. = 5 /4 —5/2 ~ 2.
For instance, n = 5 (n = 0) corresponds to the sequence

cr, = + 1 ( —1). To this spectrum [Eq. (13)] is associated a
pure-point spectral measure of relative weight 1/d+ 1 [the
sum of 2'5; as in Eq. (11)].

The above coding of eigenfrequencies exhibits the follow-
ing properties:

@(n(n)) = r(n)

f+(n((o))) =n( +, (o))

(14a)

(14b)

expressing the invariance under ct and f+. In Eqs. (14) we
have used the shift operator T:

7 (crpi crli ~ ~ ~ ) ( cr li cr2 cr3i ~ ~ ) (ISa)

and

( +, {cr) ) = (+, —o.p, o, , . . . ) (15b)

Further properties of this spectrum can be found in the
mathematical literature. To our knowledge, this kind of
spectrum was first encountered in physical problems by
Belissard, Bessis, and Moussa. These authors have studied
a one-dimensional crystallographic model: the "quadratic
mapping Hamiltonian" which is almost periodic and admit-
ting a spectrum similar to (13). Some results obtained in
Ref. 8 were used here to obtain the eigenmodes associated
with the second part of the spectrum of the gaskets. For
this we use the sequence (P„) of polynomials, defined by
the three-term recursion relation

Pp = 1, P i
= —n + 5/2,

P„(+ i)=n—(n —8/2)P„(n) —R„P„(n)

where R„ is defined recursively by

Rp=0, R i= h. , R~= Rp~Rz~ &, Rg~+Rg~+] = & . (17)

With the use of Eqs. (14), it is easy to check the following
property:

(18)

where n denotes positions of sites along the chosen edge.
This result is closely related to the scale invariance of the
gasket and holds everywhere for a convenient labeling of
sites.

Equation (19) can be used to obtain the set of eigen-
modes corresponding to different o. 6 C~. For instance,
starting from the uniform mode (n = 0), amplitudes associ-
ated with n=8= j'i(0) are easily obtained. The remaining
eigenmodes are deduced iteratively in a similar way. In gen-
eral, U„s vanish outside a finite region surrounding a hole
arbitrarily chosen among the hierarchy of holes generated
inside the gasket. For a fixed o. , the relative degeneracy of
each eigenstate decreases when the hole size increases.
Therefore the eigenstates associated with C~ can be viewed
as localized modes with a hierarchy of localization lengths
(hierarchical modes), standing from the lowest to the
highest length scale on the gasket. However, if an "aver-
aged" localization length is defined for each o. C C~, then a
finite length is obtained which diverges only if o. 0.

In conclusion, we believe that some results obtained in
this Rapid Communication are of generic nature and that
similar features will be found to occur on other fractal struc-
tures. The map @(n) is expected to be a general rational
function. It will also be quite useful to study other fractal
structures, as simple as the gaskets, where d would not be
restricted to values smaller than 2.

After this work was submitted, we received a report of
work prior to publication by Domany, Alexander, Bensi-
mon, and Kadanoff. ' Using a different approach, they
study the cases d = 2 and d = 3, on finite systems. , for which
their main conclusions agree with those presented here.
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