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Competing electron-phonon interactions and the Peierls instability
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We consider a general one-dimensional tight-binding model of interacting phonons and electrons. From
this model, we derive the adiabatic potential-energy functional for a system which is not commensurability
2. Terms that have been neglected in previous studies of the Peierls state are found to result in a competi-
tion between two types of electron-phonon interaction. This competition can eliminate the Peierls instabili-

ty or lead to a first-order commensurate-to-commensurate structural phase transition.

In this paper we report on the results of a careful study of
the zero-temperature properties of a linear-chain system of
interacting phonons and electrons. To simplify the problem,
we will consider only systems in which the direct electron-
electron interactions are sufficiently small that they can be
ignored, and we assume that the ions are sufficiently mas-
sive that the problem can be treated in the Born-
Oppenheimer approximation. Thus, we can "integrate out"
the electrons and obtain an effective Hamiltonian H'""(u)
involving only lattice degrees of freedom, in which the total
electronic ground-state energy plus the purely elastic poten-
tial energy, Er(u), for each lattice configuration u plays the
role of the effective (adiabatic) potential energy in H'"".
Such a procedure was first adopted by Lee, Rice, and An-
derson' and later extended by Rice et aI. ' Ho~ever, we
consider a more general model than previous authors which
includes the possibility of a competition between different
types of electron-lattice interactions. In order to obtain an
analytically tractable expression, we restrict ourselves to
considering only lattice configurations which differ from the
ground-state (Peierls-distorted) configuration by at most the
presence of a long-wavelength distortion. Nonetheless, we
find some new features of the adiabatic potential which can
have important physical consequences for ground-state and
low-energy excited-state properties of the Peierls system.

We consider a nearest-neighbor tight-binding model with
one electronic orbital per site,

H = $g[ —t„(u ) (c„,c„+), + H.c.)

+ e„(u)c„',c„,]+H„,(u)

where c creates an electron of spin s on site n, u rep-
resents schematically all the lattice degrees of freedom, and
H~„(u) is the lattice (elastic) part of the Hamiltonian. As
indicated, the hopping matrix elements t„(u) and the site
energies e„(u) are functions of the lattice configuration u.

Our results are applicable generally to systems of the form
of Eq. (1). However, it is instructive also to consider as a
concrete example a specific simple case, the "linear model":
Here there is only a single important lattice degree of free-
dom per site, u„. Furthermore, with lattice displacements
assumed small compared to a lattice constant, we expand t„

and e„about the undistorted state to first order in u„:

t„(u) = tp+ a(u„—u„+))
&n(u) &p+P(un —1 un+I)

(2)

where Q = 2kFa, as above, and t is the average value of the
hopping matrix element (the average value of e„can be ab-
sorbed into the chemical potential). The two phases @p and

are, in general, determined by the form and relative
magnitudes of the various electron-lattice couplings.
determines the relative magnitude and @t the relative phase
of the spatially modulated on-site and hopping energies.
For instance, in the linear model, if we let

u„= u sin(Qn + 8 —g/4)

z =2u [P'sin'(g) +ex'sin'(g/2)]'t', (4)

then

@p=tan '[(n/P) sin(Q/2)/sin(Q)]

~here we have kept explicitly the only linear terms coupling
nearest-neighbor sites which are consistent with the transla-
tional symmetry of the molecule. The term proportional to
o. reflects the fact that the hopping matrix between sites n

and n +1 decreases as they move apart; P measures the
change in site energy if the neighboring atoms compress
around that site (most probably it increases, P ) 0).

Our first step in constructing the adiabatic potential is to
compute the energy of the uniformly Peierls-distorted state.
Thus, we consider a configuration in which the lattice dis-
tortion produces a new periodicity a/Q = (2kF) . We
characterize the magnitude of this distortion, and hence of
the spatial modulation of the tight-binding matrix elements
by a dimensionless amplitude z, and by an angle 0, which
determines the phase of the electronic charge density wave
(CDW) which adiabatically follows the lattice distortion rela-
tive to the underlying lattice. Hence, to first order in z,

(e„/t) = z cos($p) cos(Qn + 8+ @t/2)

(t„/t) = 1+z sin(gp) cos(gn + 8 —@t/2)
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and @~= —Q/2. Notice that for this model, @~ is indepen-
dent of the magnitudes of the coupling constants n and P.
In more complicated models, this need not be so.

The sinusoidal dependence on position of e„and t„ in Eq.
(3) is the correct leading behavior for small z; larger z first
brings in more general periodic behavior and can ultimately
lead" to such interesting and qualitatively new effects as pin-
ning of an incommensurate CDW and aperiodic spatial
dependence. Here we confine ourselves to the more usual
case ~z ~

&& 1. We also exclude the special case of a nearly
half-filled band, kq ——7r /2a, which must be treated separate-
ly.

From the calculated self-consistently determined electron-
ic dispersion relation e(k), we can find the total ground-
state energy, or effective potential energy, V'":

V' (z, 8) = 2 g e(k) + E„,(z, 0)
/k/ ~kF

where E~„ is the lattice (elastic) energy. The 0 dependence
of these energies is largely determined by the general form
of Eq. (3). If the system has commensurability m, that is if
kj;a = m(n/m), where n and m are relative prime integers,
then the system is invariant under 8 9+ (27r/m), and
hence all the energies must be periodic functions of 0. In
particular, V""can be expanded in a Fourier series,

[ V' (z, 8) —V'""(z =0) ]/r

tice that it is not possible to continue the same reasoning to
2mth order, since ~k + mQ) —= ~k) and hence cannot appear
as an intermediate state. The higher harmonics [such as
c os(2 mH)] which appear in the Fourier series for the ener-
gy [e.g. , Eq. (6)] are generated by the self-consistency con-
ditions with the m th-order expression for the energy put
into the energy denominator. Note that for k near + Q/2,
one of the energy denominators in the mth-order term in-
volves the state on the other side of the Fermi surface, and
is therefore vanishingly small. Thus, for k within z of k&,
the 9-dependent term has magnitude of order z

We can use these results to calculate the total energy,
V'"", according to Eq. (6). The contribution from the lattice
(elastic) energy is, in general, an analytic function of the
lattice displacement (and hence of z), whose leading term is
of order zz and contributes a constant part to Fp(z) in Eq.
(6); it is necessarily positive. The other contribution to V'""

is the sum of electronic energies. The largest part of this
contribution comes from second-order perturbation theory.
As is true of all second-order corrections to the ground-state
energy of a system, this term is necessarily negative.

Near k = + Q/2 the energy spectrum is e(k )= —(x + 5 ) ', where x = u~(k —k~) and uf: is the Fermi
velocity. Then from the integral over k near the Fermi sur-
face at + Q/2 we pick up a logarithmic contribution of the
form Aolnho, or z lnz, to the total energy. Overall, then,
we find that the coefficient of z' in Eq. (6) is

= z'F p(z ) + $ z" F„(z)sin [nm H + e„(z)], (6)
n 1

where we have included explicit powers of z for later con-
venience. To obtain the z dependence of the single-particle
energies and of the total energy we will exploit the fact that
~z ~

&& 1 and evaluate the terms in perturbation theory.
Since the perturbation introduced by the lattice distortion

H'~ z cos(gn + n) connects degenerate states across the
Fermi surface, we use self-consistent (Brillouin-Wigner)
perturbation theory for the calculation of the distorted elec-
tronic band structure e(k). As is well known, the Peierls
distortion opens an energy gap at the Fermi surface, of
magnitude 2A(), with

1 i (2qb1+ Q )/2
kp/r = )z ) ) 2 cos@p+ 8 sln@p) + 0 (z )

where only terms through second order in z have been writ-
ten explicitly.

We note that the second-order expression for the energy
is independent of H. This is because the 0 dependence of
the matrix element that carries us from the initial to the in-
termediate state, (k + g ~H'~k), exactly cancels the depen-
dence of the matrix element which carries us back,
(klH'Ik +g). Indeed, it is clear that aside from umklapp
terms, no 0 dependence occurs in any order of perturbation
theory, since each term contains as many matrix elements
between states which differ by + Q as by —g. The physics
behind this is clear; it is precisely the umklapp terms which
depend on the underlying lattice periodicity. The first um-
klapp term occurs in mth order, with the (m —1) inter-
mediate states at k + g, k + 2Q, . . . , k + (m —1)Q. By de-
finition of m, the commensurability, mg is a reciprocal lat-
tice vector, and the states

~
k + mg ) and

~
k ) are identical.

Because this process occurs in mth order, it depends on
e'™,and hence has the required periodicity in 0. Also no-

F (z) = —A p($p, @~) ln(1/z) + Bp(@p, @~) + 0 (z ), (8)

where Ao) 0 is determined solely by the electronic part of
P:

1 ~
i (2@

1
+ 0)/2

~ z cos@p+ (sin@p)e
P(@P~ 41)

2
. (g/2) (9)

F,(z) = —3 (@o, @ ) ln(l/z) +B (@o, @ ) + 0(z ), (10)

where again A1 is determined solely by the electronic contri-
bution and B1 depends on both the electronic and lattice en-
ergies. The full expression for At is easily obtained (see
Ref. 5). It is a rather complicated polynomial of degree 2m

I @o i cubi'1

in e and degree m in e '. For example, for the linear

and Bo contains a contribution from the sum over electronic
energies and a contribution from the elastic energy. (A de-
tailed derivation of this and the following results, as well as
the explicit evaluation of the rather complicated expression
for Bp, will be contained in a forthcoming communication. )
For small values of z the logarithmic term dominates the
energy. Thus, it is always energetically favorable for the
system to develop a lattice distortion of magnitude
zp = exp[ —(Bp/A p) —

2 ] in its ground state. This is, of
course, just the familiar Peierls instability. The mean-field
transition temperature is, in similar fashion, of order
kT, /r —zp.

The first 8-dependent term in Eq. (6) is mth order in z
[z Ft(z)] and so is small compared to the second-order
term. However, since it is the leading-order term in the
pinning of the charge density wave, it is nonetheless impor-
tant. The elastic energy contributes a constant term to F1.
The same considerations that applied to Fo lead to the con-
clusion that the electronic contribution to F1 consists of a
logarithmic term and a constant term in addition to higher-
order terms in z. Hence
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model with m =3,

A ~
= (—cos$p+ sin$p) (cosset p

—sinQp)
1 2

The phase 8~(z) which appears in Eq. (6) is also complicat-
ed but can be determined in a straightforward way. In the
linear model, 8~(z) =0 for all z and @;. Note that, unlike
the case of the second-order term Fo, there is na constraint
on the sign of either A ~ or F~, in general, the sign of F~
depends on the values of rt p and @~.

To complete our discussion of the adiabatic potential, we
imagine that z and 8 are slowly varying functions of position

I

and calculate the first terms in the gradient expansion of
V'". If we assume that the pure lattice potential is relatively
short ranged, then the characteristic length which enters the
gradient expansion is the electronic correlation length,
gp= a (2r sin(Q/2)/hp). The gradient expansion is useful so
long as the characteristic wavelength I over which z or 8
vary, is much less than gp. The energies involved in vary-
ing the amplitude of the CDW (z) are much larger than
those involved in varying H.

Thus, for the purposes of the present communication we
will ignore amplitude excitations (such as the amplitude sol-
iton in Ref. 6) and consider only the variation of the phase.
The resulting effective Hamiltonian is

~dx m'" 2

r

~'"'=
J~ 8 (x,r)+ V'"(z, 8(x, r)) + — 1+0 gp0 2 2 Bx Bx

This expression for the adiabatic potential is our principal
new result. From it, it is possible to deduce several new
and interesting effects. First we notice that it is possible for
Ao to vanish for suitable choice of parameters. For in-
stance, this occurs in the linear model when a =P. At this
point the Peierls instability, per se, disappears. More impor-
tantly, there is a finite (indeed large) region of parameter
space over which the competition between the two types of
interaction produces a substantial reduction of the magni-
tude of Ao. Since the ground-state magnitude of z and the
Peierls transition temperature depend exponentially on 3 o,
this results in an enormous suppression of the Peierls tran-
sition. This is possibly a partial explanation of the observed
lack of a Peierls transition in the organic superconductors
such as (TMTSF) 2 X (di-tetramethyitetraselenafulvalene-X).
Secondly, if we consider a commensurate system and con-
fine ourselves to a region of parameter space where the sys-
tem does develop a Peierls distortion (A p W 0), we can ex-
plore the consequences of F~ changing sign. If F~ & 0 the
energy is minimized when 8 —8~(z) =Tr/2+nQ while for
F~ (0, the energy is minimized when 8 —8t(z) = —m/2
+nQ. If one can change the relative strengths of the vari-
ous coupling constants, say by applying pressure to the sys-
tem (for instance, in the linear model we expect a to be
more strongly pressure dependent than P), then one can

drive the system from the region of parameter space where
F~ & 0 to the region F~ & 0. The result is an abrupt, first-
order transition between two inequivalent commensurate
ground states. At the point at which the transition takes
place, the pinning energy is of order z' rather than the
usual z when F~ ~ 0. This has important consequences for
the excitation spectrum. For instance, Rice et al. have
shownz that the lowest-energy (fractionally) charged excita-
tions of a commensurate Peierls system are sine-Gordon
phase solitons with creation energy E, of order (E,/r) —z
and width of order (I/a) —z I2. From Eq. (12) it follows
that in the vicinity of the point F~ = 0, the solitons have a
slightly more complicated structure, a much smaller creation
energy, (E,/r) —z2, and a correspondingly much greater
width, (I/a ) —z . As far as we know, a commensurate-
to-commensurate transition of this sort has never been ob-
served. Finally, it can be shown that the inclusion of weak
electron-electron interactions does not affect any of the
present conclusions.
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