
PHYSICAL REVIEW B VOLUME 28, NUMBER 8 15 OCTOBER 1983

Inelastic tunneling through optical barriers
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Tunneling of electrons through optical potential barriers gives rise to an increase in current densi-

ty. This is due to the imaginary part of the complex potential, which absorbs more flux into the bar-

rier and, as a result of a continuity equation, a larger current is transmitted. This is corroborated by

experiments on metal-insulator-metal junctions.

where b is the width of the barrier, Vp is the height, and
Wp the corresponding imaginary part. In the three re-
gions of interest, the solutions to the Schrodinger equa-
tions are'
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Hitherto a number of theoretical attempts have been
made to evaluate the tunneling current. ' ' These include
the approximation of the barrier by a series of square
wells, use of a mean barrier height, ' ' parametrization
of the effective mass m* of the electron, ' and the as-
sumption of a low density of isolated traps in the barrier.
Caldeira and Leggett" have included the effect of dissipa-
tive forces in which friction plays an important role. In
all these papers, only qualitative agreement with experi-
ment has been obtained.

The purpose of the present paper is to make an interest-
ing observation: An increase in tunneling current is possi-
ble if the barrier is represented by a complex potential. In-
troduction of a small negative imaginary part W(r) in the
potential term of the wave equation for the penetrating
particle is shown to increase the current. ' The optical po-
tential theory is a well-established theory to treat the
metastable (or quasistationary) states in which particles
move "inside the system" for a considerable period of
time. The quasidiscrete energy spectrum of these states
will consist of a series of broadened levels, and the energy
itself is a set of complex values:

E =Ep+i AE .

The imaginary part of the potential introduces a real
momentum inside the barrier which is used to evaluate the
tunneling time and a value of 10 ' sec is obtained. '

This is in agreement with the experimental value.
Let us for simplicity consider a rectangular barrier de-

picted in Fig. 1:
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k2 ——R cos(a/2),

k3 ——+R sin(o, /2),
where
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and

0, =tan
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D'D=C*Ce (5a)

where

C =2ik, /[ —k2+i(k ~ +K3 i] . (5b)

In region II the fluctuating part due to k3 (see Fig. 1) is
superimposed over the attenuating function exp( —2k2x).
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Here we use the atomic units A'=1, m = —,', e =2. The ef-
fect of an applied external voltage will be considered later.

It may be observed that Eq. (2b) is an approximate ex-
pression but valid for treatment of tunneling through thin
films. The sign + for k3 corresponds to the sign + of
Wp. It can be easily shown' with the use of the perturba-
tion theory that the energy spread is, which is twice the
width AE of the outcoming electron spectrum, is very
much smaller since
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1C= Tl BE=1 2 Wp pdx (4)

By matching the wave functions at x =0 and b, we get the
transmission coefficient
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where k& ——~E, and k2 and k3 are, respectively, the ima-
ginary and real parts of the momentum inside the barrier.
The momentum spread b,k due to the inelastic processes
inside the barrier is very small:

FIG. 1. Rectangular barrier with a complex potential. The
wave function within the barrier is a decaying function with a
superposition of an oscillator function.
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FIG. 2. Distorted barrier for the metal-insulator-metal junc-
tion when a potential eP is applied across the insulator.

F reasons mentioned below only the negative sign foror re
f8' is meaningful. This proves that the imaginary part o0

the potential inside the barrier can augment the magnitude
of the current. Physically we explain it as follows: The
reflection coefficient B'B (see Fig. 1) is given by

k2+(k1 —k3)
(6)B*B=

k2+(k1+k3)
—'l0
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The imaginary potential absorbs more flux into the barrier
and as a result of continuity equation, a larger current em-
erges at x =b. On the other hand, when the imaginary
part is positive, k3 is negative, resulting in the increase of
B*B. Also when 8'o ——0, k3 ——0 and the tunneling current
becomes equal to the usual elastic tunneling current.

Introduction of i8'o in the potential changes the equa-
tion of continuity slightly. Using the wave equation for a
particle moving through an optical potential and its com-
plex conjugate, we get the following continuity equation:

(P'P)=i V —(P*Vti —/VS*)+2iWpf*f .
at

For a one-dimensional barrier this reduces to

=i V„(/*VS PV Q*+i2IW—pg*fdx)
at

= —V .(J1+iJ2) ~
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FIG. 3. Applied voltage vs the logarithm of the current densi-
ty for A1203 films of thickness b.

the current density falls off. This is the usual flux absorp-
tion effect of 8 0 that we come across in inelastic reac-
tions.

We are now in a position to address the problem of tun-
neling of electrons through metal-insulator-metal junc-
tions under an applied external field. Let us consider an
oxide film of thickness b across which a voltage P is ap-
plied. The barrier is distorted to assume a trapezoidal
form as depicted in Fig. 2. The transmission coefficient T

17, 19is calculated using the WKB approximation,

The inelastic processes introduce an imaginary current
J2. We hasten to add that the effect of 8 o is in both J]
and J2 through the wave function li.

In the present problem, we get the current density J at
x )b from Eqs. (2)—(5) as

T=exp — [( Vp E) + Wp ] cos-4b 2 2 3/4 3P
3eg 2

with

(10)

J=k](D*D),
where we have omitted Ak which is negligibly small corn-
pared to k1.

It is obvious from Eq. (3) that as 8'o increases, a and
k3 increases. The barrier attenuating factor exp( —2k2b)
grows in magnitude and changes the flux. The situation,
however, is entirely different when E) V. The imaginary
part of the momentum in this case becomes k3 and the
real part is k2. Then gz ——C exp[(ik~ —k3)x], assuming
Wp to be negative. As

~
Wp

~

increases, k3 increases and

13=tan
8'o

Vo —E

It is easily seen from the above equation that when
8 0~0 the usual expression for the transmission coeffi-
cient T is recovered. More realistic forms for the poten-
tial barriers could be used. Also a treatment using Airy
functions ' can be carried out to make a comprehensive
study.

A typical calculation for Al-0-Al junction is carried out
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FIG. 4. Comparison of experimental values (dotted) of the
tunneling current densities taken from Ref. 2 with calculated

0

values for a thickness 80 A of the oxide film.
FIG. 5. Applied voltage vs tunneling time for different

thicknesses (b) of the oxide film.

with the values of Vo and E taken from Ref. 10. The
values of Wo are indicated in Figs. 3—5. It is usually
around 2 eV which is just a fraction of the value of Vo.
The agreement between the theoretical and experimental
values is good.

In conclusion, we claim that a straightforward method
of treating inelastic tunneling of electrons has been
evolved. An important observation is made in the present
study: An optical potential for barriers leads to a current
density higher than the usual tunneling currents.
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