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From band tailing to impurity-band formation and discussion of localization
in doped semiconductors: A multiple-scattering approach
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Klauder's best multiple-scattering approximation which allows the use of a realistic interaction
potential and in which electron-electron interactions may be incorporated is shown to constitute a
sound basis for the study of the electronic structure of doped semiconductors. The implementation
of this formalism requires the solution of a self-consistent set of nonlinear integral equations. This
has been done numerically over a large impurity-concentration range. We have thus shown that as
the concentration decreases, the band tail gradually splits off from the main band, giving an impuri-

ty band. Spectral-density analysis allows one to distinguish between localized and extended states.
Compensation effects have also been analyzed. Finally, our results are discussed and compared with

various experiments.

I. INTRODUCTION

Experimentally the most studied disordered systems are
certainly doped semiconductors (DSC's). The disorder
here arises from the random position of impurities and
also from the chemical nature of these impurities (donors
or acceptors). It has been well established that DSC's un-
dergo a nonmetal-to-metal transition beyond a critical im-
purity concentration. ' Theoretically the nature of the
metal-nonmetal transition (M-NMT) is still not complete-
ly elucidated. The question is whether the M-NMT
occurs at the closing of a density-of-states gap due to
Coulomb interactions within the system (correlation gap)
or when the Fermi level crosses a mobility gap within a
continuum of states. In other words, one has to evaluate
the respective roles of disorder and of electron correlations
in this transition. Recently, the localization in disordered
systems has been the subject of a large number of theoreti-
cal studies dealing mainly with transport properties. It
has by now become evident both experimentally and
theoretically that disorder and correlation effects are both
important in the understanding of the problem of localiza-
tion. From a different point of view, in order to bring a
better understanding of the M-NMT in I3SC's and of the
nature of the localization in these systems, we propose
here to use a multiple-scattering method to study the elec-
tronic structure of DSC's as a function of the doping level
and of compensation taking into account electron-electron
interaction effects.

Since the first studies on the electronic structure of the
impurity band by Klauder and Matsubara and Toyozawa
much work has been devoted to disordered systems espe-
cially binary alloys. Most of these studies use the
coherent-potential approximation (CPA) within the frame-
work of the tight-binding model. The CPA is known to
be the best single-site approximation; however, its practi-
cal implementation involves the use of a somewhat un-
physical 5-function potential for the electron-impurity in-
teraction. With such a potential the calculations are con-

siderably simplified but one obtains a wave-vector-
independent self-energy X(E). Already in 1961, Kiauder~
proposed a multiple-scattering formalism which enables
one to account for a realistic interaction potential, eventu-
ally self-consistent. However, Klauder's theory does not
include the multiple-occupancy corrections. ' We will
show that in our system these corrections are unlikely to
modify qualitatively our conclusions. Therefore, we have
found it of interest to use this theory with a realistic po-
tential. This formalism has been numerically implement-
ed; to the best of our knowledge, this has never previously
been done. It provides us with a novel description of the
electronic structure of the M-NMT in DSC's which ap-
pears quite reasonable. We have thus shown that at high
impurity concentration, the conduction (valence) band
presents a tail extending in the band gap. As the concen-
tration is lowered, an erosion appears between the main
body and the tail of the band. This erosion becomes more
pronounced and leads finally to a separate impurity band.

The aim of this paper is (i) to give a detailed description
of our multiple-scattering treatment of electron-impurity
interaction in DSC s, taking into account electron-electron
interaction effects in an approximate way, (ii) to present
an analysis of the spectral density as a function of concen-
tration and energy that enables us to distinguish localized
states from extended ones, and (iii) to show the sizable ef-
fects of compensation on the electronic structure and on
the nature of transition. The paper is organized as fol-
lows: In Sec. II, we present and discuss electron-electron
and electron-impurity interactions. In Sec. III, Klauder's
multiple-scattering formalism is analyzed and the
multiple-occupancy corrections are discussed. Klauder's
formalism is expressed by a self-consistent set of nonlinear
integral equations the numerical solution of which is
presented in Sec. IV. The results of calculations applied to
our DSC model are detailed in the following sections: the
density of states and the formation of the impurity band
in Sec. V, the spectral density and the discussion of the lo-
calization in Sec. VI, and the compensation effects in Sec.
VII. Lastly, these results are discussed and compared with
experiment in Sec. VIII.
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II. ELECTRON-ELECTRON AND ELECTRON-
IMPURITY INTERACTIONS

We consider a DSC in which the impurities (donors and
acceptors) are assumed to be fixed and randomly distribut-
ed throughout the crystal with the average concentration

Concentration Auctuations around the average con-
centration will be neglected here but may be included in
the same way as in a previous work. It is known that po-
tential fluctuations generally yield an extension of the den-
sity of states beyond the band edges determined with a
uniform concentration. However, the fraction of states in-
volved in this process is relatively small.

In the framework of the effective-mass approximation,
the Hamiltonian of the system reads as follows:

RV; 2

i 2m ij ~lri rjl
l+J

Here rn is the electron effective mass, ~ the dielectric
constant, and r 's and R's denote the electron and impuri-
ty positions, respectively. The first term in (1) is the
Hamiltonian of the pure material. The second, third, and
fourth terms represent electron-electron, electron-
impurity, and impurity-impurity interactions, respectively.
It is known that a standard way to describe the one-
electron properties of an interacting electron system is to
use the one-electron Green function G(k, E), where k and
E are, respectively, the wave vector and energy of the
quasiparticle. ' This Green function obeys the Dyson
equation

G ( k,E)= [E ei, —X( k,E)—]

Here ek is the electron eigenenergy of the noninteracting
system and X(k,E) the electron self-energy. For the sake
of simplicity, a single conduction (valence) band with the
parabolic dispersion law ek ——A k /2m* is assumed, but it
is clear that the formalism used in this work may in prin-
ciple, include more complex band structures. On the other
hand, the electron self-energy is the sum of the exchange-
correlation (xc) and electron-impurity (ei) contributions,
i.e., &( k, E) =2„(k,E)+2„(k, E), which result from the
second and third terms in (l), respectively. To evaluate
the Green function, we need to know these contributions.
They are calculated as the sums of a perturbation series in
electron-electron and electron-impurity interactions,
respectively. It is understood that the latter interactions
are averaged over all possible impurity configurations in
the Kohn-Luttinger sense. " In the perturbation series, the
first-order Coulomb terms cancel each other due to the
overall electrical neutrality. Wolff' has shown that this
result remains exact even when the Coulomb interactions
are screened.

In the following sections, we show how the mathemati-
cal expression for X„(k,E) is obtained and evaluated nu-
merically. As for X„,(k,E), there have been a large num-
ber of studies which show that it depends only very slight-
ly on k even beyond the Fermi wave vector kF. ' '

Moreover, in the energy range of interest, the energy
dependence of X„, is also negligible. ' X„, has been ap-
proximated furthermore by its exchange part taken at the
Fermi level X„=—(e /ir)(3N/n)'r .where N is the elec-
tron (hole) concentration. This is a high-density approxi-
mation consistent with the chosen effective potential
which we will now consider.

Owing to electron-electron interactions, any charge in
the system will be screened. ' Therefore, the electron-
impurity potential u(r) which enters the expression of X„
(see Sec. III) will also be screened. To include the screen-
ing effect, we will content ourselves by taking the
Thomas-Fermi (TF) effective potential u ( r )

=+(e /iver)exp( q,—r) where q, is the inverse screening
length. The strength and the range of this potential de-
pend on the electron (hole) concentration N through the
relation

III. MULTIPLE SCATTERING

Klauder's best multiple-scattering approximation [the
fifth one, Eqs. (75)—(77) of his paper] has been used. This
approximation is expressed in the momentum representa-
tion by a self-consistent set of nonlinear integral equations
which we rewrite as follows (the exchange-correlation con-
tribution to the self-energy has been incorporated):

K(k, q;E)=
3 f d q'u(q' —q)G(k+q', E)

(2m. )'

X [NDu ( —q ')+K(k, q ',E)], (2a)

X„(k,E)=—E (k, q =0;E),
X( k,E)=X„(k,E)+X„,( k,E),
G (k,E)= [E—ek —X(k,E)]

(2b)

(2c)

(2d)

q, =2(e /a)(2m*/fi )(3N/m)'i.
The total self-energy and the Green function which we

will consider in Sec. III depend on X„and on X„. X„, in
turn, depends on the effective potential. Our approxima-
tion for the effective potential, i.e., the TF one, is certainly
correct at high concentrations. It is less accurate at inter-
mediate concentrations and even nonvalid at low concen-
trations for which a separate impurity band appears. In
the latter case, electrons are localized but a potential weak-
ening does exist bemuse of the electron polarization. '

However, the TF potential can account qualitatively for
such a weakening. It should be noted that TF potential
has the right limit at vanishing concentrations, i.e., the
bare Coulomb potential ~ In fact, it should be necessary to
have a completely self-consistent effective potential in or-
der to describe quantitatively electron-impurity and
electron-electron interactions at any concentrations. The
loml density-functional method' ' seems to be a good
tool to obtain such an effective potential. This is an ela-
borate scheme that we shall not consider at this stage.
Meanwhile, it is hoped that our approximations outlined
above are reasonable enough to help to describe at least
qualitatively how the band structure changes with doping
level. Our results would seem to confirm that this is
indeed the case.
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Here v (q) is the Fourier transform of impurity potential,
E the electron energy, ek the eigenenergy of unperturbed

system, and G(k, E) the average Green function of the
perturbed system. The vertex function EC(k, q;E) leads to
the self-energy X„ through (2b). Note that functions 6, K,
and X, are generally complex.

In Appendix A, it is shown how the best single-site
Klauder's approximation [Eqs. (2a)—(2d)] may be derived
diagrammatically. It is also shown that this approxima-
tion accounts for scattering from a given site to all orders
in v and to all orders in ND through an effective medium.

Once the Green function is determined, one may calcu-
late the spectral density as follows:

A (k E)=+ —Im6(k, E+& 0),

which is the average probability that an electron having

energy E is in the state
~

k ), and the density of states
{DOS}per unit energy and unit volume,

1D (E)= —TrA ( k,E), (4)

where Q is the volume and Tr means the sum over the k's
and the spin states. In the following we have (arbitrarily)
taken a twofold spin degeneracy in order to recover the
standard DOS for a free-electron gas. A method to solve
the set of Eqs. {2a)—(2d) will be displayed in Sec. IV.

It can be shown that Klauder's theory neglects the so-
called occupancy corrections. These corrections are easi-
ly understood if one considers for instance, two-impurity
diagrams (f) and (g) in Fig. 9. Diagram (f) occurs in the
summation leading to Dyson equation [Eq. (A3)], while
diagram (g) comes out when the bare propagator 60 in Eq.
(Al) is replaced by the renormalized propagator 6. In
both cases, one has to make sure that the impurity i is dif-
ferent from impurity j; otherwise, one obtains an unphysi-
cal diagram similar to (h) in Fig. 9 which is proportional
to ND and thus does not have to be taken into account.

At present, we find no straightforward way to include
these corrections in Klauder's formalism. However, they
may be easily included within the tight-binding Hamil-
tonian with a 5-function site potential. In this case, with
the multiple-occupancy corrections, the fourth and fifth
Klauder's approximations yield the average T-matrix ap-
proximation and the coherent-potential approximation
(CPA), respectively. In order to assess the importance of
these corrections in our problem we have calculated (in the
tight-binding model with zero-range potential) the DOS as
a function of impurity concentration and of potential
strength both with and without multiple-occupancy
corrections. This is given in Appendix B. With 5-
function potential and for usual impurity concentrations
in DSC s (typically the fraction of impurities is of the or-
der of 10 to 10 ) the conclusions are the following: (i)
At given concentration, the critical potential for the open-
ing of the gap is the same in both approximations, (ii) the
impurity band when it exists is centered in both approxi-
mations at the value given by the Koster-Slater model
whatever the potential strength, and (iii) the impurity band
broadens when multiple-occupancy corrections are

neglected. Therefore, these corrections do not seem essen-
tial in the concentration range of interest at least for a 5-
function potential. Although these conclusions do not
directly apply to the finite extension-potential case, it is
certainly interesting to use Klauder's formalism because
unlike the tight-binding CPA it does enable us to include a
realistic and eventually self-consistent potential.

IV. IMPLEMENTATION OF THE MODEL

K =XDvGv +vGK,

which gives the solution

K =NB(1 —v6)-'vGv .

(5a)

(5b)

It is clear that as
~

uG
~

becomes comparable to one, the
series expansion of Eq. {5b) in powers of vG becomes slow-
ly convergent or even divergent. Such situations occur

In order to obtain the self-energy X( k, E) and the Green
function 6 ( k, E) which characterize our system, Eqs.
(2a)—(2d) have to be solved at different concentrations XD,
different energies E, and different wave vectors k. Equa-
tion (2a) resembles a second-kind Fredholm integral equa-
tion but it is nonlinear because G depends explicitly on K
through (2d) and (2b) ~ It should be noted that to obtain
X„at given k, it is necessary to calculate the function K at
k but also at all values of q. To our knowledge these cal-
culations have only been performed so far for the 5-
function potential, in which case the integral equation (2a)
reduces to an algebraic equation for X. This has been
done by Klauder for a one-dimensional system. This
model was taken up again by Yonezawa' but in the
three-dimensional case, having recourse to an ad hoc cut-
off in 6 ( k ) in order to avoid divergence.

In the present work, we are dealing with a three-
dimensional system and a wave-vector-dependent scatter-
ing potential v(q)= —4~e /~(q +q, ). We have then to
solve a genuine three-dimensional set of integral equations.
Our system is invariant under rotation because the impuri-
ty distribution is assumed to be macroscopically isotropic
and also because ek does not depend here on the direction
of k. Therefore, the Green function 6(k,E) and the self-
energy X(k,E) depend only on

~

k
~

while the vertex func-
tion K(k, q;E) depends only on

~

k ~,
~ q ~, and the angle

they form. It follows that in spherical coordinates the in-
tegration over P can be performed analytically.

Now the set of equations has to be solved numerically.
At first glance the simplest way to do it is to use an itera-
tive process: Given a starting function 6(k,E) and set-
ting, for instance, K —=0 in the right-hand member of {2a),
one then obtains new functions K(k, q;E), X(k,E), and
6{k, E). These functions are again introduced in Eq. (2a)
until convergence is reached. However, one encounters
two major difficulties in this method which will now be
pointed out.

(i) The iterative process described above is equivalent to
a standard perturbation expansion and like the latter, it is
convergent only if the perturbing potential is weak enough
compared to the characteristic energies of the system.
This may easily be seen by writing formally Eq. (2a} under
the form
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and similarly for 6 and K. Hence one has mathematically
two limit solutions for real energies when ImX&0„ i.e.,
two solutions for the DOS, D+(E)=D(E) [Eq. (4)] and
D (E)= D(E);—only the former has a physical meaning.
One may then expect that convergence is not ensured in
the neighborhood of band edges. The latter appear as
singular values of energy. The formation of an impurity
band is an example of the general problem of bifurcation
which arises in systems governed by nonlinear equations. '

In our system the band edges are nothing but bifurcation
points.

Another method is therefore needed to solve Eqs.
{2a)—(2d). The basic ideas of the method we put forward
are the following. (i) Linearize Eq. (2a) by taking for 6 a
K-independent, fixed function, e.g., that obtained at high
energy. The integral equation (2a) is then discretized ac-
cording to the relevant values of q

' leading to a set of
complex linear equations which is solved exactly by a nu-
merical method. (ii) The solution E thus obtained leads
via Eqs. (2b)—(2d) to a new function G which in turn is in-
troduced in Eq. (2a) and the process (i) is repeated until a
self-consistent solution is reached. This method is free of
the divergence problems encountered when solving Eq.
(5b) by the simple iterative technique because in step (i)
above, for a given 6, Eq. (5b) is transformed into a set of
linear equations which is exactly solved and no iteration is
used.

In fact, both real and imaginary parts of the integrand
in (2a) exhibit strong q

' dependences which are essentially
due to 6. This makes integration calculations rather
lengthy especially if a reasonable accuracy is desired. A
substantial improvement of the method is to try to mini-
mize those parts of calculations in which these rapid vari-
ations occur. To this end, it is useful to make the follow-
ing transformations.

Firstly, the variable changes ( k + q )~q and

(k+ q ')~q ' lead to a function which we still denote by
E that obeys the integral equation in which 6 depends
only on

~

q'~:

K(k, q;E)=, f'd q'u(q' —q)G(q', E)
(2~)3

&&[N~u(k —q ')+K(k, q ',E)],

with

X„(k,E)=K(k, k;E) . (6b)

effectively for low enough concentrations (strong poten-
tial) and in energy ranges around band edges. The diver-
gence of the process is such that even if the input func-
tions K and 6 are very close to the solutions, iterated
functions deviate more and more from the starting ones.
This is evidence of the failure of this iterative process but
it does not mean that Eq. (5b) has no solution.

(ii) The functions K, X, and G being complex, it is easy
to see by taking real and imaginary parts of (2a) that if K
is a solution its complex conjugate is also a solution. The
same is true for X and G. More precisely,

ImX(E —i 0)= —ImX{E+ i 0)

Secondly, the function change,

U(k, q;E)=N~u(k —q)+ 3 f d q'u(q ' —q)
(2~)

&G(q ')U(k, q ',E),

with

(8a)

X„(k,E):—U( k, k;E)—X~v (0),
X( k, E)=X„.( k,E)+X„(k,E),
G(k, E)=[E—e'k —X(k,E)]

Formally, Eq. (8a) may be written as follows:

U=X~v+vGU .

(8b)

(8c)

(8d)

(9a)

It leads to a linearized equation in U to be solved exactly:

(1—uG)U=N~u . (9b)

It is precisely this equation we have solved numerically by
the method described above. Here the operator (1—uG)
does not depend on k in contrast to the corresponding
term in (5b) and numerical calculations are performed
once and for all when k is varied. Moreover, the right-
hand member of Eq. (9b) is simply proportional to the ef-
fective potential while that of Eq. (5b) requires a cumber-
some integration which leads to less accurate results. Let
us emphasize that the solution is independent of the input
function G.

Finally, as noted above, in the complex energy plane
(E iE'), the imaginary parts of G, U, and X, when finite,
are discontinuous functions on the real axis. It is often
necessary, especially around band edges to perform calcu-
lations at complex energies and then extrapolate for
E'=0 For a given. set of parameters (No, E, and E') the
solutions G(k, E) and K(k, q;E) are obtained after only a
few iterations ( ( 10). In the following sections, we
present and discuss our results and compare them with ex-
perimental data.

V. DENSITY OF STATES

The set of integral equations (8a)—(8d) is solved for dif-
ferent concentrations Xz over 5 orders of magnitude cov-
ering in particular the M-NMT concentration range.
Then at given concentration, calculations are made for dif-
ferent energies around the bottom of conduction band
(CB) [or respectively, the top of valence band (VB)]. Last-
ly, at given concentration and energy, the set of equations
is solved for an appropriate sampling of vectors k and q.

In the following, energies, lengths, DOS's, and concen-
trations are, respectively, given in units of effective ryd-
berg R =m'e /2R ~, of effective Bohr radius
a0 ——A a/m~e, states per Rao, and (m. /3)(4a0) . The
l3QS's thus obtained are plotted in Fig. 1 as functions of
energy for different impurity concentrations X~. As can

U(k, q;E)=K(k, q;E)+X v(k —q),
leads to the integral equation for the function U as fol-
lows:
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FIG. 1. DOS's as functions of energy for different impurity
concentrations ND. The insets show the impurity-band DOS's
(enlarged scales) for several concentrations. Regions I, II, and
III delimited by dashed lines are domains of existence of local-
ized, hybrid, and extended states, respectively (see Sec. VI).

CB

be seen, at high concentrations the CB shows a tail extend-
ing towards low energies. A concavity change in the DOS
appears with the beginning of the band tail. As XD de-
creases, the latter shrinks and the concavity change leads
finally to the formation of an impurity band (IB) split off
from the CB by an energy gap. The latter appears at
AD=0. 1 (i.e., XD ao —0. 12 in usual units). The gap
widens out as ND decreases (see Fig. 2) and tends towards
the hydrogenic limit (1R). This is noteworthy because the
states of the unperturbed system are those of free electrons
with positive energies. This result attests to the value of
the present multiple-scattering method. At very low con-
centrations, the CB DOS is found to be practically equal
to that of free-electron gas [v E /(2~ )] as expected. Let
us point out that our method leads without an a priori hy-
pothesis to two different kinds of states (IB and perturbed
CB ones).

Let us now set out the main features of IB. (i) Its DOS
is asymmetric. It falls off on its high-energy side while it
decreases smoothly on its low-energy side and vanishes at
a definite energy. This asymmetry has been obtained by
other authors using various methods: Matsubara and Toy-
ozawa by using a diagrammatic method in site represen-

tation for the tight-binding Hamiltonian, Yonezawa'
whose model has been outlined above (see Sec. IV),
Gaspard and Cyrot-Lackmann by using the tight-
binding model and moment expansion of the Green func-
tion. It should be noted, however, that the IB asymmetry
becomes less apparent as the IB moves off from the CB
(see Fig. 1). (ii) We have checked for all explored concen-
trations that the integrated DOS over the IB when it exists
is equal (to within a few percent) to the impurity concen-
tration as it should be. Such a property is satisfied only if
no spin degeneracy is assumed over the IB spectrum. This
sum rule is one of the fundamental properties which fol-
low from the analyticity of Green function. It has been
demonstrated in various models. It can easily be under-
stood by considering the spectral density operator which
leads under certain conditions to the sum rule for the spec-
tral density defined by Eq. (3):

f A (k, E)dE =1,
where E j and F2 are the IB edges. It is clear that if in Eq.
(4) the summation over spin variables is omitted, the DOS
obeys the sum rule

f D(E)dE =AD .

This sum rule implies that states forming the IB or the
band tail are extracted from the main band because the to-
tal number of states must be invariant. One then would
expect a crossing of the perturbed and unperturbed DOS's.
Such crossing points do not appear in Fig. 1; they are
pushed away at higher energy because our perturbed CB's
are shifted towards low energies as a result of the
exchange-correlation term. Finally, it should be noted
that other analytic properties of the Green function as de-
fined by Nakanishi et al. are satisfied in the present
model.

Before concluding this section, it is interesting to com-
pare the DOS's obtained by scattering calculations to all
orders in potential on a site (present calculations) and
those obtained in the high-density approximation (see Ap-
pendix A). This is illustrated in Fig. 3. At high energies,
both approximations lead to the same results. This con-
firms that in this energy range multiple-scattering effects
are negligible. In contrast, at low energies, in the high-
density approximation (dashed curves) there is no concavi-
ty change in the DOS at high concentrations nor split-off
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FIG. 2. Energies of conduction-band (CB) and impurity-band
(IB) edges as functions of donor concentrations.

FIG. 3. DOS's for three typical concentrations in the present
approximation (full lines) and in the high-density approximation
(dashed lines).
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IB at low concentrations; finally, the l3OS is less extended
towards low energies than in the present approximation.

VI. SPECTRAL DENSITY
AND LOCALIZATION STUDIES

E= 0.0

200-

LLI
C3

I—.

LU
Q
tf)
OC

10

Let us recall that our multiple-scattering method leads
to a wave-vector-dependent self-energy X(k,E) [Eq. (2c)].
It follows that the study of the spectral density A(k, E)
[Eq. (3)] which is the average probability that an electron
having energy E is in the state

~

k), may bring further in-
formation on the electronic structure of our system.

Curves of Fig. 4 show for three typical donor concen-
trations the variation of A (k,E) as a function of k at dif-
ferent energies. At low enough concentrations (e.g.,
XD ——5)&10, in Fig. 4) for which a split-off IB exists,
A (k,E) exhibits two kinds of behavior: in the CB (E =0),
it has a narrow Lorentzian shape with a peak at k&0
while in the IB (E = —0.5) it presents a broad maximum
at k =0 and extends widely in the k space. The former
behavior is what is to be expected for a quasifree electron.
The most probable wave vector is that of the maximum of
A(k, E) and the narrow width Ak shows through the un-

certainty relation Ak. Ar =const that the corresponding
state is indeed extended in real space. In contrast, the
latter behavior is typical for a localized state (the most
probable wave vectors are centered at k =0 and the width
hk is large). At the concentration for which the IB just
touches to the CB (XD =0.08, Fig. 4) the spectral densities
in the IB (E = —0. 15) and in the body of CB
(E =+0.25) have, respectively, the same shape as above.
However, in the CB but near its edge (E=—0.05), it
shows an intermediate shape: A(k, E) is finite at k =0,
has a broad peak at k&0, and is asymmetric. This shape
may be interpreted as a result of hybridization between lo-
calized and extended states. For higher concentrations
(e.g., ND ——0.5, Fig. 4) for which there is no gap in the
DOS, one still observes the three kinds of behavior
described above. Thus starting from the band edge one
finds successively localized, hybrid, and extended states as
energy increases. The degree of localization may be es-
timated by the ratio R =A(k =O,E)/A(k, E) where k

is the value of k for which A (k,E) is maximum. Domains
of existence of the various kinds of states are displayed in
Fig. 1. Region I is the domain of localized states, i.e., cor-
responding to energies for which the ratio R =1. For
higher energies, R varies continuously from one to zero.
The shape of this variation (which resembles a finite-
temperature Fermi-Dirac distribution function) suggests
that one can distinguish between two regions: region II
for which R &10%, corresponds mainly to hybrid states
and region III (R (10') corresponds to extended states.
As can be seen in Fig. 1, region II, which does not exist
when a DOS gap exists, widens out as XD increases.

This discussion of localization which is based on the
spectral density-shape analysis has certainly to be con-
firmed by calculations of ensemble-averaged wave-
function extension as a function of energy and also by mo-
bility calculations which require the knowledge of a two-
particle Careen function.

In order to calculate the Fermi level, one has to ask the
question of spin degeneracy. As in our model, the interac-
tion potential does not depend explicitly on spin, it is
necessary to make assumptions on this degeneracy. For
low concentrations with a split-off IB, we assume, as it is
likely the case, that an impurity binds only one electron so
that the IB is fu11 at zero temperature. Consequently the
IB's DOS's in Fig. 1 must be divided by a factor of 2 [cf.
the text after Eq. (4)]. In contrast, the CB states which
are quasifree should be spin degenerate (region III in Fig.
1). For concentrations with no gap we assume that elec-
tron states of region I (Fig. 1) which have identical spec-
tral density to those of IB's, are not spin degenerate. It
should be reasonable to assume that in region II, the spin-
degeneracy factor varies continuously from one to two as
energy increases. If this variation of spin degeneracy with
energy is accounted for, the band-tail DOS in Fig. 1

should be modified accordingly. In keeping with the
above considerations, it is found that when no gap appears
the Fermi level lies approximately near the boundary be-
tween regions II and III. It should be noted that for con-
centrations slightly higher than that for which the IB just
merges with the CB, the spectral density at Fermi level
A (k,E+) still shows a broad peak in k space. This means
that the average charge density around an impurity is far
from being uniform.

The pseudodispersion curves are plotted in Fig. 5 for
two concentrations with and without gap, respectively.
This is achieved by associating with every energy E the
most probable wave number k . The values k+ and k
defined by A (k,E)=

~ A (k,E) allow one to estimate the
broadening Ak =k+ —k . As can be seen, this broaden-
ing decreases as energy increases in the CB, as a result of
weaker scattering. It should be noted that the broadenings
in region I for both concentrations are comparable. In
conclusion, it is important to note that even if there is no
DOS gap, a non-negligible fraction of electrons is local-
ized.

0 0.5 1.0 1.5
WAVE NUMBER k f ao~}

FIG. 4. Comparison of the spectral densities A {k,E) {times
m) as functions of k at typical energies and for three typical con-
centrations.

VII. COMPENSATION EFFECTS

In this section the compensation effects on both CB and
VB electronic structures within the effective-mass approx-
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u(q' —q)

I

G(q')
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~ UD(k, q';E), (10a)

imation are studied. Our system is now characterized by
the concentrations ND and N~ of donors and acceptors,
respectively. At given donor concentration ND, as the
compensation ratio E=Nz /ND is increased several effects
may be qualitatively predicted: The total concentration of
scattering centers increases; the impurity potential be-
comes less screened because the carrier concentration
N=ND —Nq decreases; finally the Fermi level is lowered
so that it may be in the lower part of the band tail where
the states are localized.

We have first considered an uncompensated system with
a concentration ND such that the (negative) potential is
strong enough to form a split-off IB near the bottom of
CB. We have changed the potential sign. As expected, no
IB appears in this energy range and the CB's DOS
remains practically unchanged. Changing the sign of the
potential amounts to describing the effect of donors (ac-
ceptors) on VB's (CB) assumed to have the same effective
mass. This effect is thus negligible for such a concentra-
tion. However, for higher concentrations (ND & 1), a tail
appears at the top of the VB and extends more and more
into the gap as ND increases. This effect can be easily un-
derstood: The second-order term in interaction, which re-
sults in both VB's and CB's extending inside the gap, be-
comes the leading term at high concentrations. However,
at usual high doping levels, the VB-tail extension is small-
er than that of the CB tail. For instance, at ND ——10, the
latter amounts to 2.5R whereas the former amounts to
only 0.65R.

In order to describe CB electronic states in a compensat-
ed system, the multiple-scattering equations [Eqs.
(Sa)—(Sd)] may be generalized as follows:

X Ug(k, q;E), (lob)

XD(k,E)—= UD(k, k;E)+ND
I
v(0)

I

X„(k,E)=Up(k, k;E) Ng —
I
u(0)

I

X„(k,E)=XD(k,E)+Xg(k,E),
X(k,E)=X„(k,E)+X„,(k,E),
G(k, E)=[E ek —X(k—,E)]

(10c)

(10d)

(10e)

(10fl

(10g)

The subscripts D and A in Eqs. (10a)—(10e) refer to
donors and acceptors, respectively. Equation (10e) defin-
ing the electron-impurity interaction self-energy X„ is de-
picted by the sum of two series of diagrams similar to that
of Fig. 9 in Appendix A, one for donors and the other for
acceptors. As before, because of electrical neutrality, there
is no first-order Coulomb term in the interaction. Equa-
tions (10a) and (10b) are coupled nonlinear integral equa-
tions through the perturbed Green function 6 which de-
pends on both Uu and U~ [see Eqs. (10c)—(10g)]. This
involves the inclusion among others of diagrams such as
that illustrated by Fig. (9d) in which impurities i and j are
now two donors, or one donor and one acceptor, or two
acceptors. Crossed diagrams such as that of Fig. 9(e) are
excluded. As before (see Sec. III), this is a single-site ap-
proximation and neglects any correlation between impuri-
ties.

To describe VB electronic states, it suffices to exchange
ND and Nz in Eqs. (10a)—(10g) and to invert the energy
axis. The physical quantities are then expressed in the re-
duced units appropriate to VB's. It should be noted that
in n- (p-) type systems, the exchange-correlation contribu-
tion to the self-energy in Eq. (10fl is negligible for VB
(CB) states.

%'e have so1ved the set of equations (10a)—(10g) in ex-
actly the same way as described in Sec. IV, for different
donor concentrations ND and for different compensation
ratios E.

We have considered the question of whether the corn-
pensation which reduces the carrier concentration and
thus the screening effects, would lead to the opening of the
gap. To this end, we have solved Eqs. (10a)—(10g) at the
onset of the IB splitting (i.e., at ND ——0. 1) for different
compensation ratios. The results are shown in Fig. 6. As
can be seen, no gap opens even at K=0.99 but one ob-
serves a stretching of IB toward low energies, this being
more pronounced the higher the compensation. It has
been checked that the integrated DOS over the IB is equal
to ND whatever the compensation. To single out the
respective effects of potential strength and of the presence
of acceptors, we have kept the screening length constant
and varied the compensation ratio. The donor band is
then pushed towards high energies (over about 0.2R for
E=0.99). Therefore, the two effects are opposite as could
be anticipated qualitatively.

The curves in Fig. 7 depict the effects of compensation
in a more doped system (ND ——2). Here again one observes
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Within the TF approximation for the potential, the Fer-
mi level for uncompensated systems lies either in the gap
between IB's and CB's at low concentrations or almost
within the extended states' energy range when no gap ap-
pears. However, the situation may be quite different if the
potential range is increased. For example, for XD ——1, if
the screening length is doubled, there is still no gap but the
Fermi level is now in the intermediate region (region II)
very close to the localized states' energy range. In this
case, according to our discussion of localization (see Sec.
VI), an activation energy would be needed to promote elec-
trons to a higher mobility energy range. On these
grounds, one cannot ascertain whether the M-NMT occurs
at the closing of a DOS gap or once the Fermi level enters
an energy range within a continuum, where states are
mobile enough. The above example clearly shows that
conclusions concerning the nature of the transition depend
on the model potential. A definite answer to this question
necessarily presupposes the use of a completely self-
consistent, spin-dependent potential. Moreover, such a po-
tential would enable us to see whether the D band (as de-
fined within the Mott-Hubbard scheme ) exists or not and
if it exists ' how it merges with the IB {D band) and CB
in the M-NMT range.

Let us now discuss how our results compare with some
experimental data. Theoretical analyses of differential
conductivity in DSC-metal tunnel junctions may, with
some simplifying assumptions, lead to the DOS of DSC
around the CB (VB) edge. Such DOS's have been experi-
mentally obtained in various n- and p-type semiconductors
at impurity concentrations close or higher than X~. Al-
though the concentration for which the IB just merges
with the CB is in our calculations an order of magnitude
lower than the experimental value (see discussion above), it
is noteworthy that the shapes of calculated DOS's (Fig. 1)
closely resemble those of experimental ones. However, the
experimental band tail is somewhat more extended in the
gap than that calculated. This may be ascribed at least
partly to statistical concentration fluctuations which are
omitted here (see Sec. II).

It is well established that heavily DSC's show a substan-
tial gap shrinkage. This phenomenon has particularly
been studied in p-type gallium arsenide especially by pho-
toluminescent experiments. It is genera1ly admitted that
the gap shrinkage EEg approximately obeys a one-third
power law in concentration EEg =—CNz (Xz ). The
experimental values of the constant C obtained for p-
type gallium arsenide lie between 1.6 and 2.4&10 eV
cm. Our model is well suited to the calculation of the gap
shrinkage in the relevant concentration range (XD,X~ ~ 1}.
The shrinkage arises from both CB and VB shifts inside
the gap. However, in the case of gallium arsenide, the VB
effective mass is about 10 times larger than the CB one so
that for a given {high) acceptor concentration the shift of
the CB is negligible compared to that of the VB (see Sec.
VII). The shift of VB (CB) results from two contributions
of comparable importance: the exchange-correlation term
and the electron-impurity interaction term. Our calcula-
tions lead to a total band-edge shift approximately obeying
a X~ law: AEg ——1.2' in reduced units. When ap-
plied to the case of' p-type gallium arsenide these calcula-
tions lead to the gap shrinkage EEg (eV}= —2.5 & 10 Xz (cm ') with standard values for effec-

tive mass and dielectric constant. As in the concentration
range of interest the use of the TF potential is fully justi-
fied, the agreement between theory and experiment is not
surprising. The above conclusions are valid to the extent
that the VB effective mass is large enough compared to
that of the CB. If the two masses are comparable, one has
to account for the shifts of both bands. Practically speak-
ing, consider an uncompensated n-type DSC with equal
VB and CB effective masses. This should be approximate-
ly the case of n-type silicon or n-type germanium. It is
found that the gap shrinkage in reduced units is given by
the relation AFg- —1.2%D —0. 18ND . The first term
is the same as before while the second term describes VB
shift. It should be noted that in the high-density approx-
imation (see Sec. V) in which the electron-impurity poten-
tial sign plays no role, both terms in the above relation
should be equal. In the present approximation, although
the tail extension of the VB is smaller than that of the CB
in the concentration range of interest, it should be
remarked that the VB tail DOS is approximately twice as
large as that of the CB starting from respective band
edges.

Various experiments' ' have clearly shown that the
physical properties of semiconductors around the critical
concentration for M-NMT cannot be merely interpreted
with simple models either of bound states on the insulat-
ing side or of free states on the metallic side. Our method
is well suited, despite certain imperfections, to the study of
electronic structure of DSC's at all usual impurity concen-
trations. It allows one in principle to calculate quantities
such as specific heat and magnetic susceptibility in partic-
ular in the vicinity of M-NMT. However, the results
which would be obtained with a not completely self-
consistent scattering potential (present model) would have
to depend heavily on that potential, and could not validly
be confronted with experiment. Nonetheless one may
within the present model propose a qualitative interpreta-
tion of the observed behavior of electronic specific heat in
the vicinity of M-NMT. An electronic specific heat de-
pending linearly on temperature, C, =yT, has been ob-
served experimentally in phosphorus-doped silicon for
concentrations below the critical value for M-NMT over
at least half an order of magnitude. If the coefficient y in
the above relation is assumed to be essentially proportional
to the DOS at Fermi level, then one must admit that the
Fermi level lies in a continuum of localized states in that
concentration range. Under these conditions, the activa-
tion energy observed in conductivity experiments in the
same concentration range may be interpreted as the aver-
age energy needed to promote some localized electrons ly-
ing near the Fermi level to higher energies for which the
mobility is higher. No such situation is found for uncom-
pensated systems in our model as it is. However, it may
occur for compensated systems or when the TF potential
range is arbitrarily increased.

Electrical conductivity in highly doped, compensated,
n-type germanium samples (ND —10—50) for a given ND
shows an activation energy which increases with increas-
ing compensation. These results may be interpreted in our
model as follows: As the compensation ratio is increased,
the Fermi level is lowered so that it penetrates well into
the localized states' energy range (see Figs. 6 and 7). This
interpretation seems to be supported by the fact that the
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Hall mobility at helium temperature decreases over 3 or-
ders of magnitude but continuously as the compensation
increases.

IX. CONCLUSION

We have used a multiple-scattering method to calculate
the electronic structure of doped (and compensated) semi-
conductors in a large impurity concentration range. We
have shown how the band tail is transformed into a split-
off impurity band below a certain concentration. The
ability of this method to include a realistic impurity po-
tential and electron correlation effects, allows us to give a
description of electronic properties of these systems in
reasonable agreement with experiment.

Spectral density analysis allows one to distinguish be-
tween localized and extended states and provides elements
for a discussion of localization and its connection with the
nature of metal-nonmetal transition. However, a definite
answer to this question will undoubtedly involve the in-
clusion of a completely self-consistent, spin-dependent

I

scattering potential in the theory and the corresponding
mobility calculations.
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APPENDIX A: DERIVATION OF KLAUDER'S
MULTIPLE-SCATTERING THEORY

This derivation is achieved diagrammatically in three
stages.

(i) In the first stage, one extracts from all scattering
processes those occurring on a single impurity and then
performs the sum over impurities. The average value over
all possible positions of impurities of the electron propaga-
tor is calculated in the Kohn-Luttinger sense, " the impur-
ities being considered as independent. This leads to the
following self-energy:

X„(k,E)=,f d'q' u(q') Go(k +q')v( —q')(2')'
ND+ fd q'd q "u(q')Go(k+ q')u(q" —q')Go(k+ q")v( —q")+

(2m)
oo

fd q'd q" . d q'~'u(q')Go(k+q')u(q" —q') Go(k+q )u( —q ),
p —( 77

(A1)

where Go ——(E—e~+i0) is the unperturbed Green function. It should be noted that in Eq. (A1) no linear term in v ap-
pears (see Sec. II). X„(k,E) thus determined is represented diagrammatically by Fig. 9{a). It is easy to see that the series
expansion in Eq. (A1) may be put in compact form by introducing the vertex function K defined by the following integral
equation:

IC(k, q;E)=
3 fd q'v(q' —q)GO(k+q')[NDv( —q')+lt:(k, q';E)] .

(2m ) (A2a)

It is clear that
X„.( k, E)=K( k, q =0;E), (A2b)

as can be seen by iterating Eq. (A2a) over K.
(ii) If one accounts for all scattering processes on all

impurities contributing to the self-energy, besides the
linear terms in Eq. (A1) one has to add terms in ND, ND,
etc. For instance, the contribution to X„(k,E) of the
scattering process sketched in Fig. 9(f) is a term in NDu .
One approximate way to account for such processes is to
perform a summation of the corresponding diagrams.
This is achieved with the help of the Dyson equation
which involves a series expansion in powers of X:

G(k~E) =Go(k~E)+ Go(k, E)X(k,E)G( k,E)

=[Go '(k, E)—X(k,E)] (A3)

This equation is illustrated by Fig. 9(b) and corresponds to
the fourth Klauder's approximation [Eqs. (69)—(71) of
his paper]. X is the total self-energy defined in Eq. (2c).

(iii) Now if the bare propagator Go is replaced by the

I

dressed propagator G in the expression of X„ in Eq. (A1)
or in the expression of E in Eq. (A2a) [this amounts to
substituting the series of Fig. 9(a) by that of Fig. 9(c)] a
new class of diagrams is then incorporated. An example
of these diagrams is represented by Fig. 9(d) which clearly
shows that an electron being scattered by an impurity has
been scattered by all other impurities; in other words it
propagates in an effective medium. This corresponds to
the Klauder's fifth approximation which is expressed by
Eqs. (2a)—(2d).

In Sec. V we will compare this approximation to that
effective-medium approximation in which the scattering
on a given site is treated to second order only. The latter
is the third Klauder's approximation [Eqs. (62) and (63) of
his paper]. In this case X„ is given by the first term of the
sum illustrated by Fig. 9(c) only. It is expressed by the set
of Eqs. {2a)—(2d) with K =0 in the right-hand member of
Eq. (2a). This is a high-density approximation because it
includes terms in Ngu ~ with p=2, 3, . . . [see Figs. 9(f)
and 9(g)] but neglects terms in NDu ~ [Fig. 9(h)]. More-
over it is also a weak scattering approximation because in
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FIG. 9. Electron-impurity self-energy diagrams involved in
various approximations (see text). Interaction lines are dashed.
Thin and thick full oriented lines represent the bare and the
dressed propagators, respectively. Crosses inside small circles
represent impurities and carry a factor ND.

X„. terms in v,v, . . . are neglected. This is the reason
why this approximation is valid only at high energies.

The third, fourth, and fifth Klauder's approximations
described above are single-site approximations because in
stage (i) the averaging process has been performed assum-
ing that all impurity positions are equiprobable and that
there are no correlations between sites, and in stage (ii) the
partial summation operation does not include scattering
processes such as that illustrated by the crossed diagram
of Fig. 9(e).

0'
1.0 1.1 1.2

ENERGY (E/V/)
FIG. 10. Comparison of the CPA (full lines) and the KA

(dashed lines) for a model of 5-function impurity potential and
host-matrix semielliptic DOS the half-bandwidth of which is
taken as unit of energy: (a) Critical potential for CB-IB splitting
as a function of concentration x (semilogarithmic scale). (b) For
x =10 ', CB-edge and IB DOS's (left scale) as functions of ener-
gy for three values of potential, V=0.60, 0.75, and 0.90; the en-
ergies of the IB edges and of the Koster-Slater model (dotted
line) are also plotted as functions of potential strength (right
scale).

Here D(E) is the DOS per atom and per unit energy. For
an unperturbed semielliptic band centered at zero energy
with a half-width 8' we have

APPENDIX 8: MULTIPLE-OCCUPANCY
CORRECTION EFFECTS

Dp(E) = 2
(W —E')', iE

i
(W.~8' (B4)

xV
VF(E g~ }

(B2)

where V is the impurity potential and

(B3)

The purpose of this appendix is to study quantitatively
the effects of multiple-occupancy corrections on the DOS
of a binary-alloy model. It should be noted that DSC's
with substitutional impurities (e.g. , phosphorus-doped sil-
icon) are in fact very dilute binary alloys with concentra-
tion x (i.e., the ratio of the number of impurities to the to-
tal number of atoms) of the order of 10 to 10 . In the
framework of the tight-binding model with a 5-function
potential, the expressions of electronic self-energy with
corrections, i.e., in CPA, and without corrections, i.e., in
Klauder's approximation (KA) read, respectively:

xV
l —(V—X, )F(E —X, )

Then

F(z) = (B5)

The DOS of the alloy is

D (E)= — —ImF(E+i 0) .1
(B6)

Both CPA and KA lead to a cubic equation either for X
or for F. As its coefficients are real, this equation may
have either three real roots or one real root and two com-
plex conjugate roots. According to Eq. (86) it is clear that
the DOS is nonzero only for the latter case. Band edges
are obtained under the condition that the above cubic
equation has a double root. At given concentration and
potential strength, the band-edge energies are then the real
solutions of a quartic equation which may have either two
or four real roots. The former case corresponds to a single
band, and the latter to an IB split off from the main band.
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The DOS has been calculated numerically for different
values of x and of V within the bands thus determined, us-
ing the formula (B6) and taking the appropriate solution
of the equation obeyed by I'.

The results are illustrated in Fig. 10. As can be seen,
the critical potential V, for the opening of the gap [Fig.
10(a)] is practically the same in the CPA and KA for con-
centrations typically lower than 1&o. At higher concentra-
tions, the multiple-occupancy corrections cannot be
neglected. For a low concentration (x=10 ) we have
plotted in Fig. 10(b) the DOS per atom of the IB and of

the CB edge in the CPA and in the KA at three values of
the potential (taken positive here) high enough to open a
gap. The positions of IB edges as functions of potential
strength are plotted in the same figure in both approxima-
tions. As can be seen, the IB is somewhat wider in the
KA than in the CPA. This is a general feature. Finally, it
is worth noting that in both approximations and for low
concentrations [see Fig. 10(b)] the IB is centered on the
value given by the Koster-Slater (KS) model in the very
dilute limit: E~s ——(IV2+4V )/4V; this formula is ob-
tained by the well-known condition VF= 1.
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