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The model of dilute resonant scatterers in a constant—density-of-states metal is extended to the
case where the conduction band is parabolic as is the case for a semiconductor near its band gap.
Within this model a self-consistent formulation of the density of states is evaluated with the use of
both standard numerical methods and an analytical integration technique recently proposed for par-
abolic bands. In the limit of weak scattering the two methods agree reasonably well, but the analytic
method fails badly as the scattering strength increases. In the course of the analysis, we (i) develop a
coherent-potential approximation for the self-energy, (ii) display densities of states projected both on
the localized scattering impurities and on the initial conduction-band states, and (iii) discover that
the analytic method implicitly (and necessarily to maintain its simplicity) assumes a zero-range po-

tential and hence cannot lead to an impurity band.

I. INTRODUCTION

The resonant-level model (RLM) [also known as the
virtual—bound-state model (VBM)] describes a localized
state in a continuum; the conduction electrons make tran-
sitions between the localized level and the conduction
band thus forming a scattering resonance. By varying the
parameters of the model one can adjust the position of the
scattering resonance with respect to the Fermi level thus
displaying a variety of physical phenomena.

Since its introduction,”? numerous applications for the
RLM have been found. These include discussions of resi-
dual resistivities due to transition-metal impurities in sim-
ple metals,”> magnetic susceptibilities of virtual—bound-
state alloys,>* and static® and dynamic®’ aspects of chem-
isorption. Owing to its convenient mathematical proper-
ties the RLM has often been employed as a model interac-
tion in cases where an analytic treatment has been desired.
As an example, we mention recent studies of high-
electric-field quantum transport.?

In metal physics it is commonplace to make the so-
called constant—density-of-states approximation, i.e., the
momentum summations are performed according to the
prescription
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where f(K) is an arbitrary function of the momentum.
Here N (e€g) is the density of states which, for example,
would have a characteristic square-root dependence on en-
ergy for free electrons. To our knowledge, until quite re-
cently all work on the RLM has been within the

28

constant—density-of-states approximation. The reason is,
of course, the enormous technical complications one
might expect to arise from a more realistic choice for the
density of states. However, Pankratov® has succeeded in
carrying out the analysis with the free-carrier density of
states N (€;)~1"€x. Such a density of states occurs near
the band gaps of semiconductors in contrast to metals
where a constant density of states often is more appropri-
ate. The main technical novelty in Ref. 9 is the applica-
tion of contour-integration techniques: Use is made of the
branch-cut properties of the square-root function arising
due to the free-electron density of states.

Unfortunately the final results in Ref. 9 are misleading.
The point is that, in the self-consistent determination of
the self-energy functional, the author of Ref. 9 arbitrarily
truncates the perturbation series after the first two terms.
In fact (see Sec. IIB), it is possible to carry out the sum-
mation exactly to all orders. After this has been done it is
interesting to compare how well the results obtained with
the analytical technique [which requires a somewhat
ad hoc cutoff procedure (see Sec. III)] agree with numeri-
cal calculations. It is found that in the weak coupling lim-
it the two calculations are in reasonable agreement,
whereas in the strong coupling limit the analytical method
fails badly in the sense that it can never lead to an isolated
impurity band. This failure can be traced precisely to the
cutoff procedure implicit in the analytical method.

The organization of this paper is as follows. We first
review the technique of impurity averaging as it applies to
the resonant-level model. We then introduce the analyti-
cal method suggested by Pankratov® and apply it to the
coherent-potential-approximation (CPA) equations for the
self-energy. We present numerical calculations corre-
sponding to the analytical results and conclude by proving
that in the Pankratov scheme no isolated impurity bands
can arise. An explanation for this behavior is provided.
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II. IMPURITY AVERAGING: THE RESONANT-LEVEL
MODEL

A. General remarks

The problem is defined by the Hamiltonian
— t t
H= ; €E5d 30 +E %baba
P
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Here ag is the destruction operator for an electron in a
state P, and b, is the destruction operator for the local-
ized state at the location I_ia. The energy E defines the po-
sition of the localized level with respect to the conduction
band and V(P) is the hybridization matrix element be-
tween the localized level and the conduction band.

The objective is to calculate the density of states with
the formula

p(e):—%TrIm@(e) , 3)

where G is the impurity-averaged retarded Green function.
In the calculation of the Green function we follow the
standard procedure: The equation of motion for the
Green function is iterated and impurity averaged term by
term. Finally, an infinite partial resummation is carried
out in order to construct a self-energy functional which
can be used in (3). In what follows, we give a rather de-
tailed treatment because this allows the introduction of the
notation used in later sections in a convenient way.

B. Construction of the self-energy functional

In this paper we need to consider only the following re-
tarded Green functions:

G(B,Bs1)=—i0n({as(0,a%.0)), “
gla,a’;t)=—i0(1){ {bal(t),bl(0)}) (5)

for the conduction electrons and the localized levels,
respectively. In (4) and (5) the curly brackets indicate an
anticommutator and ©(t) is the unit step function. The
equation of motion for G is obtained in the standard
fashion; after Fourier transforming with respect to time,
one obtains the following integral equation for G.

G(P,p ’;e)=83’3,Go(f)’,e)+ Go(P,€e)V(P)gole)
> e—i(i’—?)-i’a

=
k,a

—

XV*(K)G(K,B ";e) .
(6)

In (4) we have used the noninteracting Green functions for
the conduction electrons and the localized level, respec-
tively,

Go(b’,e)=(e—e?+in)“1 , 7

4629

gola,e)=(e—E +in)~". (8)

Note that before impurity averaging the translational in-
variance is broken and two momenta are needed to
describe the Green function.

The next step is to iterate (6), to average it term by
term, and to arrange the result into the form of a diagram-
matic perturbation theory. The details can be found, for
example, in the review article by Elliot, Krumhansl, and
Leath!®; see especially their Sec. IIIA 3. It is therefore
sufficient to state their main results modified so as to cor-
respond to the resonant-level model.

The simplest possible choice for the self-energy would
be the so-called averaged—z-matrix approximation (ATA)
where one chooses

SATA () c[V(K)]
k =112 — :
e—E—3 | V(4)]*Go(d,e)
q

In (9), ¢ denotes the concentration of the resonant impuri-
ties. Next, the CPA is obtained by summing the same
single-site diagrams as leading to (9) but with the full

9

impurity-averaged Green function inserted self-
consistently in the internal lines. The result is
)12
S (€)= c[V (k)] (10

k e—E—3 | V(§)|%*G(d,e)
T
As it stands, (10) implies multiple counting of certain dia-
grams; this can be corrected by subtracting the multiply
counted terms and determining the self-energy from the
following self-consistent equation (see Ref. 10 for details
and references to the original papers):

2g’pA(e)= C[V(E)]Z .
k €e—E— 3 ([V(@P—(e—E)2F™e)}G(d,e)

¢ 11

It should be noted that (11) requires rather an involved
self-consistent solution because the impurity-averaged
Green function appearing in (10) or (11) itself depends on
the unknown self-energy via

(—;(a,e)=[e—ea.—2‘.a.(e)]“] . (12)

It would also appear that the momentum dependence of
the self-energy might complicate the matters. However,
the separable character of the resonant-level interaction fa-
cilitates the following simple analysis.

In order to simplify the notation let us introduce

A(e)=J [V(KPG(K,e) ,

k

B(e)= 3 3.()G(K,e) .
¥

(13)

(14)

Then the self-consistent solution involves the iteration of

the following two coupled equations:
cA(e)

(e—E)—A(€)+(e—E)B(e) ’

B(e)= (15)
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V(q)?
_ cV(q)?
9 €—E—A(e)+(e—E)B(e)

A(e)= 3
q

€—E€

(16)

Once a convergent solution for (15) and (16) has been
found, the self-energy is finally computed from

c[V(@]?
€e—FE —A(e)+(e—E)B(e)

27;’(6)=

=[V(g)lg(e) . (17)
In the second part of Eq. (17) we note the connection be-
tween the conduction-electron self-energy and the
resonant-level propagator g (€), Eq. (5).

Let us examine now some limiting cases of the above
self-energy functionals. For the case ¢ =1 the system con-
sists only of resonant levels. Therefore the solution

V12
206 | = LEEL
which follows from (11) by inspection, leads to the correct
expression for g (e) when substituted in (17).

Next, in the dilute concentration limit ¢ << 1 the full
CPA equation (11) reduces to (10). It should be noted,
however, that even (10) contains all powers of the concen-
tration through the self-consistent solution for the
impurity-averaged Green function. In what follows we
will confine ourselves to the dilute limit. Hence in all our
calculations the simplified expression (10) is used.

Pankratov® uses in his work the first two terms of the
series expansion of (11),

(18)

SP.(e)=c[V(K)]’go(e)+c[V(K))’g5(e)d (e) ,  (19)
where the auxiliary quantity A4 (e) was defined in (13).
This is clearly inadequate: The very nature of the
resonant-level model requires an infinite summation of the
quantity go(€) in order to build in the resonant form for
the imaginary part of the self-energy [see also Eq. (20)
below]. It is therefore no surprise that Pankratov’s final
results involve unphysical features: (i) his “impurity
band” vanishes as the interaction is made stronger (which
is the opposite to what one expects), and (ii) in the weak
coupling limit his result for the density of states does not
reduce to a narrow resonance superposed on the unper-
turbed conduction band (see also Fig. 3).

We conclude this section by pointing out that it is rela-
tively straightforward to solve the self-consistent equa-
tions (10) and (12) within the constant—density-of-states
approximation if one assumes that the momentum depen-
dence of the interaction ¥ (K) is weak. One obtains as a
final result the expected resonant structure for the ima-
ginary part of the self-energy,

c I(er)

1 ERLM —
)= N ) @—EP+ ey

, (20)

where the level width is given by
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I(e)=uN(e)V?,

and N (e) is the density of states for free electrons.

III. ANALYTICAL CALCULATION

In this section we use Pankratov’s contour-integration
technique to solve the self-consistent problem defined by
(10), (12), and (13),

=312
A@=3 14:1) ST
T e, —<@L_
4 €—E—Al(e)
We remind the reader that the choice (10) for the self-
energy implies a dilute impurity concentration. We will
assume that the interaction ¥V (q) does not depend on
direction so that the integration in (22) can be transformed
into an one-dimensional energy integration. We write the
interaction V(K) as V(E):Vov(ek), where V, is a
strength parameter with units of energy and the form, or
range, function v (€, ) is dimensionless but involves anoth-
er parameter describing the range of the interaction.
Equation (22) is then transformed into

- 1/2,2
a(w):—%\/}fo dy . (Ey)z(E )
y*(w+1)+5%

(22)

»

—a(w)
(23)
where we have introduced

w=(e/E)—1,
=A/E
a=A/E , i (24)
| DE) | 7N(E)WV§
T | 2E 2E ’
8=cV*/E?.

The model is thus defined by three parameters: y, 8 and
the as of yet unspecified range parameter. It is interesting
to note that the concentration does not appear as an in-
dependent parameter because it is involved only through 8.
However, had we used the full CPA expression for the
self-energy the concentration would appear as an indepen-
dent parameter.

The integral in (23) converges only if the range function
v(Ey) vanishes sufficiently rapidly at infinity. Impurity
potentials are often approximated by a screened Coulomb
potential for which we have

v(Ey)=(1+Ey/E*")!, (25)

where we explicitly display the range parameter E*. The
form (25) vanishes sufficiently rapidly to make (23) con-
vergent.

In Pankratov’s work® it is assumed that the interaction
is constant “in the important region of integration” and
that it vanishes (but in an unspecified way) at infinity.
Therefore, Pankratov replaces v*(Ey) in (23) by unity and
treats the now formally divergent integral as convergent.
This procedure will, however, lead to severe problems as
we shall see below. Here we proceed with the analysis as
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indicated by Pankratov.

Define
172
z %V (z)
= —_— 26
le= Je Doy 20
where the contour C is depicted in Fig. 1. We have
Ic=Ig+1_+I.+1, . (27)

In (23) we need I ; since Ix and I vanish and I_ equals
I, we get

I, =mivDo), (28)
or, going back to (23),
5 172
alw)=—-2iVy |o+l——— , (29)
o—a(w)

which can be rearranged to give
a¥w)—waHw)+4y(1+w)a(w)—4y[o(w+1)—8]=0 .
(30)

Now, in principle, one can write down the solutions of this
cubic equation but the resulting expressions are quite
unwieldy and not particularly useful for extracting quali-
tative information about the density of states such as the
existence or nonexistence of isolated impurity bands for
some particular values of the parameters. However, (30)
can directly be used to show that the density of states re-
sulting from a(w) determined by (30) cannot exhibit an
isolated impurity band, and we proceed to give such a
proof.

L
>

I = TH+I# I+,

—
+
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Y
Y
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R
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—
I

FIG. 1. Contour C introduced by Pankratov. Contribution
from the large circle vanishes due to the implicit cutoff in the
scattering interaction and the contribution from the small circle
vanishes as €é—0. Hence Ic=I,+1_=2I, =27 X(sum of
residues). The last equality leads to the result (28) used in the
text. The branch cut in (26) is placed on the positive x axis.
Pole at z=ReD (w)+i ImD (w) is placed in the lower half-plane
because we are dealing with the retarded function.
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Recall first that the density of states vanishes if the
quantity a () is real [see (3)]. Rewrite (30) as

2
2@ __ (14e)+ 31)

4y o—alw)
The question of whether the density of states vanishes or
not can now be formulated in terms of a graphical con-
struction. Equation (31) describes a parabola and hyper-
bola; if these two curves have three intercepts a (@) is real
and hence the density of states vanishes, whereas if there
is only one intercept a (w) can be chosen to be complex
which leads to a finite density of states. The first situa-
tion corresponds to the situation where the cubic equation
(30) has three real roots and the second one corresponds to
the case where there is one real and two complex roots
(which are complex conjugates corresponding to the re-
tarded and advanced Green functions, respectively). Fig-
ure 2 shows these curves for two different choices of pa-
rameters. We will focus on the right-hand branch of the
hyperbola because the left branch always leads to a real
a(w), i.e., a vanishing density of states. The behavior is
now simple indeed: As the energy is increased, the hyper-
bola moves towards the lower-right-hand corner. At a
certain critical energy, the hyperbola passes below the par-
abola. (In Fig. 2 this happens at about  ~ —1.5.) Thus
(30) possesses complex solutions (which are needed for a
finite density of states) only above this critical energy.
The center of the hyperbola moves on a straight line when
the energy is changed and hence it is not possible for the
right-hand branch of the hyperbola to intersect the para-
bola once it has moved outside of it. Thus it is not possi-

FIG. 2. Graphical representation of (36) for the cases
y=06=1 (curve 1) and y=2, =1, (curve 2), and for energies
o= —3 (dashed-dotted curve), w=—1.45 (dashed curve), and
w=1 (solid curve). Allowed energies begin when the hyperbola
moves outside the parabola; this occurs at approximately
o~ —1.5; this value is very closely the same for curves 1 and 2.
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ble to have any forbidden regions in the allowed energy
domain. In other words, (30) can never lead to an isolated
impurity band.

We can understand this behavior as follows.!! In the
Pankratov technique the potential is described basically by
one parameter only (i.e., its strength V,). This situation
can be viewed as corresponding to a potential whose
Fourier transform is a constant, i.e., a zero-range potential.
But a three-dimensional 8-function potential cannot sup-
port bound states. Therefore, it is not surprising that the
Pankratov technique, which implicitly assumes a zero-
range potential, does not lead to an impurity band. We
will show in the next section densities of states which have
been calculated either with the Pankratov technique or by
a direct numerical solution of the self-consistent equation
(23) with a suitable model interaction.

IV. DENSITIES OF STATES

A. Analytical method

In the Appendix we show that the densities of states are
given within the Pankratov technique by

ﬁcond(w)___ 2cond(w)

N(E)
= %2( o+1—Re3(w)
+{[o+1—ReZ(0)]*+[ImZ(w)]?}'7?)! /2
(32)
and
~ 1 8 Ima(w)
loc
(0)=——+= ,  (33)
P 2 V¥ [o—Rea (0)]*+[Ima (0)]?
where p°°™ and 5 correspond to the conduction electron

and localized level components of the density of states,
respectively, and 2(w) is given by (10),

S(w)= 5

T w—alw) (34)

Numerical applications of (32) and (33) are further dis-
cussed in Sec. IV C.

B. Numerical calculations

In order to solve (23) numerically one has to specify the
functional form for the range function v(Ey). To achieve
a situation which corresponds to Pankratov’s case as close-
ly as possible, we present in this paper results for a unit
step function form,

v(e)=O(D —¢;) . (35)

We have tested several values for the energy cutoff; the re-
sults are discussed further in Sec. IV C.

In the numerical solution of (23) we found it most con-
venient to separate the real and imaginary parts and then
iterate the two coupled equations. Some care was needed
in the treatment of the imaginary part of (23) because it
has a trivial solution Ima(w)=0. Our iteration scheme
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showed some tendency of being unstable towards this
trivial solution; a sufficiently good starting value was usu-
ally enough to stabilize the scheme.

C. Results

We show results for parameter values y=1/256,
8=1/16, and y=8=1 in Figs. 3 and 4, respectively. In
Fig. 3 we show results for two different values of the cut-
off parameter (D =5 and 8). The results are in reasonably
mutual agreement but it is obvious that the cutoff in the
potential does have some effect on the results, especially
the localized level density of states seems to be sensitive to
the particular choice of the cutoff. The situation is
dramatically different for the case y=8=1, which is ob-
tained from the first case by making the interaction 4
times stronger keeping all other parameters fixed [see defi-
nitions of ¥ and 8, Eq. (24)]. As discussed above, the

’F‘)’cond T T T T

— (a) —

1
o
N+

18- (b

FIG. 3. (a) Conduction-electron density of state 5 () and
(b) the localized-level density of states 5 '°(w) for weak coupling;
8=1/16, y=1/256. Solid lines correspond to a direct numerical
solution for the self-consistent equation (23) for a (w) and dashed
lines represent results obtained with the analytic integration
technique introduced by Pankratov. For comparison we display
(the dotted line) results obtained with the erroneous self-energy
used by Pankratov [Eq. (19)]. The numerical results (solid
curves) were calculated with two different model interactions
[Eq. (35)]: D=5 and 8. In the conduction-electron case the re-
sults are indistinguishable, whereas p'*(w) peaks at a slightly
lower energy for D =8. Note the different scales for p*"w)
and 5'*(w) and the break in the scale for 5 '*(w).
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Sloc
p
0.5

0.4 |-

0.2 -

FIG. 4. (a) Conduction-electron density p°"%w) and (b) the
localized level density of states p'*(w) for =1, y=1 (the in-
teraction is 4 times stronger than in the case of Fig. 3, other pa-
rameters unchanged). Solid line represents direct numerical
solution of the self-consistent equation (23) with the model in-
teraction (35) and D =5. Broken line represents results for the
analytical integration technique. Dots represent results for
Pankratov’s self-energy (19). Adding the two dotted curves leads
to a total density of states which coincides with the original re-
sults shown in Fig. 6 of Ref. 9. Note the different scale for
p%w) and 5'*(w).

analytical method fails to yield the impurity band; the lo-
calized level electrons hybridize extremely strongly with
the conduction-electron continuum. The role of the cutoff
is clearly visible: It prevents the localized level electrons
from “leaking out” into the conduction band, which is
what happens in the Pankratov case.

For comparison, we also display in Fig. 4 Pankratov’s
original results. The large gap extending from w=—1 to
+1 has nothing to do with an isolated impurity band; it
results from not summing the divergent quantity go(w) to
infinite order when constructing the self-energy [see also
the discussion following Eq. (19)]. In fact, it is easy to
show!? that the Born approximation to self-energy (19) al-
ways leads to a forbidden energy region around w=0.

V. DISCUSSION

We have evaluated the density of states for a model of a
semiconductor containing a dilute concentration of
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resonant scatterers. The calculations are carried out for a
parabolic conduction band; we use an analytical technique
suggested recently by Pankratov® and compare the analyti-
cal results to those obtained from a direct numerical solu-
tion of the CPA-like self-consistent equations. It is found
that only in the weak coupling limit are the results in
reasonable agreement; the analytical method fails in the
strong coupling limit because it implicitly assumes a zero-
range potential and hence cannot lead to an impurity
band. Therefore, we are forced to conclude that the
analytical method in its present formulation seems to have
only a limited range of applicability.

Analytical methods are always very useful in model cal-
culations, and it is therefore justifiable to ask what could
be done to improve the method outlined here to increase
its range of validity. To our mind the largest drawback of
the method is the implicit way the integral (23) appearing
in the self-consistent procedure is made convergent.
Hence we have sought a model interaction which would
allow a more rigorous application of the contour tech-
nique. Unfortunately, we have been unable to find such
an interaction. For example, the screened Coulomb in-
teraction (25) does make the integration well defined and
it is possible, in fact, to work out the residues needed in
the contour calculation. Unfortunately the resulting self-
consistent equation for the quantity a(w) is extremely
complicated, discouraging further work on it. A final as-
sessment of the analytical method cannot be made before a
detailed comparison is made between a numerical study
and the analytical method addressing precisely the same
model. It would appear to us, however, that the labor in-
volved in the analytical method might well exceed what is
needed in the numerical application.
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APPENDIX: CALCULATION OF DENSITIES
OF STATES

1. Conduction electrons

The general formula for the density of states, Eq. (3),
reads for the case of conduction electrons as

(€)=——
pe 7Y (27)}
___LN(E)
T 7 VE
Xfowdek\/e_klm 1

€—¢€x—ReZ(e)+iIm=(e)
' (A1)

In (A1) we have explicitly indicated that the retarded
Green function has a pole in the lower half of the complex
energy plane. The integral in (A1) is evaluated along the
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contour shown in Fig. 1 and the result is

p(e):—]\%%{ [e—Re3(€)+i Im3(e)]'?

—[e—ReZ(e)—i ImZ(e)]'/? .
(A2)

It is important to notice that the branch cut of the
square-root function was placed on the positive real axis
(see Fig. 1). Hence the phase angles of all complex num-
bers are restricted to the range [0,27]. Thus (A2) is of the
form

__N(E) i0s2_ ,ier—o12y_ N(E)  ~
pler=""~ Vr (e e )= vs cos(®/2) ,

(A3)
where
r ={[e—ReZ(e)*+[Im=(e)]*}1/?
and
_ —1 ImZ(e)
®=tan {e-ReZ(e) ' (A4

A simple trigonometric calculation with (A3) and (A4)
then gives

N(E

~

ple)= (e—ReZX(e)

3

+{[e—Re=(e)]*+[ImZ(e)]}}/H)1/2,
(A5)
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which is Eq. (32) used in the text (recall that o =€/E —1).
Observe that as the interaction is turned off [i.e., =(e)—0]
(AS) reduces to the free-electron value p(e€)=N (€), as it
should. It is also seen that for large negative values of €
for which Im3(e) vanishes (AS5) also vanishes, provided
that e—ReZ(¢€) <O.

2. Localized level density of states

The form of (3) appropriate for the localized levels is

11 .
Plocl€)=— e glmg(a,a,e) . (A6)
In our calculation we have [see Egs. (10) and (17)]
gla,ae)=— L — (A7)
go (€)= 3 | V(k)|*G(k,e)
I's
from which we get [note that ¢ /Emr= N (E)8/V'y]
~ 1 8 Ima ()
ocl@)="—+ R (A8)
Plod®I =3 V7 lo—Rea (@) P+ [Ima (@)

For a numerical example, see the discussion in Sec. IV.

1P, W. Anderson, Phys. Rev. 124, 41 (1961).

2J. Friedel, Can. J. Phys. 34, 1190 (1956); Nuovo Cimento
Suppl. 7, 287 (1958).

3M. Salomaa, Z. Phys. B 25, 49 (1976); M. Salomaa and R.
Nieminen, Z. Phys. B 35, 15 (1979).

4M. J. Zuckerman, Phys. Rev. 140, A899 (1965).

SD. M. Newns, Phys. Rev. 178, 1123 (1969).

6. K. Ngrskov, J. Vac. Sci. Technol. 18, 420 (1981).

7K. Schénhammer and O. Gunnarsson, Phys. Rev. B 22, 1629
(1980).

8A. P. Jauho, J. W. Wilkins and F. P. Esposito, J. Phys. (Paris)
Colloq. 42, C7-301 (1981); A. P. Jauho, Ph.D. thesis, Cornell

University, 1982 (unpublished); A. P. Jauho and J. W. Wil-
kins, Phys. Rev. Lett. 49, 762 (1982).

90. A. Pankratov, Fiz. Tverd. Tela (Leningrad) 23, 68 (1981)
[Sov. Phys.—Solid State 23, 38 (1981)].

I0R. J. Elliot, J. A. Krumhansl, and P. L. Leath, Rev. Mod.
Phys. 46, 465 (1974).

I1The authors are grateful to Dr. J. K. Nerskov for this argu-
ment.

12The proof is based on the observation that Eq. (29) with the
Pankratov self-energy (19) (i.e., §/[w—a(w)]
—8[1/w+a(w)/w?]) always leads to a real a (v=0), i.e., to a
vanishing imaginary part of the Green function.



