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Fracton interpretation of vibrational properties of cross-linked polymers,
glasses, and irradiated quartz
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The density of states for thermal vibrations on a fractal is calculated with careful attention paid
to the normalization condition. It is found that at the crossover between Debye-type excitations
(long wavelength) and "fracton" excitations (short-length scale) the density of states is discontinu-
ous. The size of the discontinuity is related to the ratio of the fracton dimensionality to the Euclide-
an dimensionality. Application is made to percolating structures. A set of missing modes is identi-
fied which may be the origin of the two-level systems hypothesized for amorphous structures. The
specific heat of epoxy resin exhibits a crossover from a Debye-type region (T(8 K) to a region
(8—50 K) where the vibrational density of states depends linearly on the frequency. Over the same
frequency regime, the thermal conductivity exhibits an effective phonon mean free path of the order
of (or less than) a lattice constant. We interpret this behavior in terms of quantized fractons, with
an energy range 8—50 K, and we suggest that these fracton states are localized. This is consistent
with the usual interpretation of a precipitous drop in the phonon mean free path at the crossover en-

ergy of 8 K. Analogous behavior is argued for the thermal properties of glasses which exhibit a
similar structure in the thermal conductivity. Recent neutron-irradiated quartz experiments tend to
confirm this interpretation.

I. INTRODUCTION

Two of us have suggested that the concept of fractals'
can be applied to the vibrational properties of macro-
molecules and have derived the vibrational density of
states for fractal structures. We found that the usual
Debye-type density of states crosses over to a "fracton"
density of states for length scales less than some charac-
teristic length (L), corresponding to frequencies greater
than a crossover frequency co„. We denote the Euclidean
dimensionality by d, and call the density dimensionality of
the fractal d (the so-called Hausdorff dimensionality).
(Thus the mass increases with increasing length r as
r ). The exponent giving the dependence of the diffusion
constant on distance is denoted by 0, such that

D(r) ccr

Alexander and Orbach show that the density of vibra-
tional states in the regime of fractal behavior can be writ-
ten as

X(co) cc co

where d is the fracton dimensionality,

d =2d/(2+8) .

In Euclidean space, N (co) cc co '. The crossover frequen-
cy scales as

relevant to the predictions of Ref. 2. We shall describe
the relevance of these experiments to fractal behavior
below, but first it is necessary to make explicit the cross-
over from phonon (long-length scales) to fracton (short-
length scales) density of states. In particular, we need to
derive the normalization coefficients which make the
above Eqs. (I)—(4) quantitative.

II. PHONON AND FRACTON DENSITY
OF STATES

We wish to normalize the long-wavelength phonon den-
sity of states to a volume I.". This is because the phonon
character of the elementary vibrational excitations ter-
minates at the (minimum) length scale I . Thus we set

~~h(~) =d (& /a)"[(~)" '/(~D )"],
where a is an atomic distance which sets the shortest
length scale in the problem (i.e., fracton behavior is ob-
tained for length scales on a descending basis between I.
and a). Thus

co„=(a /L )coD,

where coD is the apparent Debye frequency as projected by
the low-frequency velocity of sound. The integral of Eq.
(5) from 0 to co„equals unity, indicating that there is one
mode per volume I, as required. Thus at the crossover
frequency one finds

L —(2+8)/2
CO (4) Mph(cu„) =d /co„.

Recent experiments of Kelham and Rosenberg suggest
that experiments involving the heat capacity and thermal
transport of epoxy resins may be exhibiting behavior

The fracton regime is a little more complex. From the
definition of the Hausdorff dimensionality there will be
(I./a) atoms per molecule. This leads to an appropriate
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fracton density of states,

Nr, (co) =d(L /a)"[(co) '/(coFD) ] . (8)

(L/a) [1—(a/L) ]Fc+[(L/a) ]tc=(L/a)

We have introduced another quantity, the so-called frac-
ton Debye frequency,

coFD=coD(L /a) (9)

This quantity sets the upper limit on the frequency regime
of fracton behavior. Indeed, if we integrate Eq. (8) from
co„ to coFD we find (L/a) —1 modes as required. That is,
there is one-phonon mode per volume L, and (L /a) —1

fracton modes, so that in total one finds (L /a)" modes per
volume a . At the crossover frequency, Eq. (8) reduces to

III. APPLICATION TO PERCOLATION

Though the experimental portions of this paper are cer-
tainly not described by percolating networks, it is of in-
terest (and possibly of experimental importance) to carry
through the ideas of the previous section to illustrate an
example of fractal structure. It is necessary, however, to
distinguish between the infinite cluster and finite clusters
when calculating the full density of vibrational states for
percolating networks.

As shown in Ref. 2, one can use the concept of fractals
for percolating structures, with (L/a) atoms (sites) per
molecule, where L is the percolation correlation length gz.
Denoting the infinite cluster by the superscripts IC, we
find Eq. (8) becomes

Ni„(co) =d(L/a) [(co) '/(coFD)"] . (12)

The finite clusters need to be considered because the
(specific-heat) density of states will be the sum of the in-
finite and finite cluster density of states. The probability
per site, or atom, of belonging to a cluster of size R ~ L is

[P(R)]„=(d —d )(R /a) "+" (13)

where the subscript FC means finite cluster. Equation
(13) leads to

Lf [P (R ) ]FcdR = 1 —(a /L )'" (14)

Nr, (co„)=d/co„.
We therefore find the important relationship at crossover,

Nr, (co„)/Nph(co„) =d/d . (11)

Because we believe d &d, we shall discover that the exper-
iment appears to be in conflict with the ratio (11), even
though the remainder of the spectrum appears to be con-
sistent with the ideas of fractal behavior (see Note added
in proof ).

and therefore not critical.
Equations (13) and (14) together enable us to calculate

the total number of modes in the finite cluster. We have

N~„(co)=(L/a)" f (d/co)(co/coFD) P(R)dR

=L "(d /co)(co/coFD)"

Nr, (co) =d(L/a) ( I/co)(co/co )'" "+a' (18)

Should we integrate Eq. (18) over the fracton frequencies,
we would find,

f Nr, (co)dco = (d /d)(L 4 1), — (19)
CO

or only d/d & 1 modes per atom, and not one full mode.
This reflects the missing center of mass modes of the fi-
nite clusters. The proof follows from the integration of
Eq. (18) from co(R), the smallest frequency allowed for a
cluster size R, to the maximum fracton frequency coD,

f Nr, (co)dco=R [1—[co(R)/coFD] [

=R ~[1—(1/R"))

=R —1,
which proves the statement for the normalization we have
used. It is intriguing to speculate that this "missing
mode" might be the analogous quantity for percolation
systems that the two-level systems are for amorphous sys-
tems.

The total number of missing modes is 1 —(d/d) per
atom [see Eq. (19)]. Their frequencies are unknown, but
their mass distribution can be calculated. There are
R ''+ ' clusters between R and R +dR, leading to a mass
distribution of mass M between M( =R") and M +dM,
with r=(d/d)+1. The missing mode frequencies Q, ~

(tl
for "two-level" systems, and M for the mass of the clus-
ter) must be less than [from Eq. (15)]

~M R —(2+&)/2 ~—]/d (21)

Summarizing the results of this section, Eq. (18) exhib-
its the fracton density of states for a vibrational network
on a percolating structure. The fracton density of states
at crossover remains that of the infinite cluster:

X [[a/R (co)]' ' —(a/L)'

Adding Nr, (co) from Eq. (12) to Eq. (17), and using Eq.
(15), we find the remarkable result that the total fracton
density of states on a percolating network equals

the probability of belonging to a finite cluster. By defin-
ing Nr„(co„)=Nr, (co„)=d/co„, (22)

R (co)/a =(co/coFD) ' + ', (15)

only clusters with R &R (co) contain modes of frequency
Next, the total number of sites (or atoms) in a volume

L is, from Eq. (14),

but the slope for higher frequencies (i.e., within the frac-
ton regime) is proportional to co

"~' + ' instead of
co ' + ' for the infinite cluster alone. This is because of
the contribution of finite clusters to the fracton density of
states. In addition, the integral over the finite-cluster den-
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sity of states shows that one mode per cluster is missing.
This mode can be attributed to the center of mass motion
of the cluster, and may be analogous to the "two-level sys-
terns" attributed to amorphous systems.

We also note in closing that percolating structures can
easily be achieved in magnetic systems by simple dilution.
A previous paper showed that the diffusion equation not
only maps on to the vibrational problem, but also on to
the linearized spin-wave problem for ferromagnetic sys-
tems. Consequently, for randomly diluted ferromagnetic
systems, the spin excitations would cross over from spin-
wave-like at low energies to spin-fracton-like at h~iher en-
ergies, with a density of states proportional to co ' + '

for the infinite cluster alone, and to cu
' + ' ' for the

sum of the infinite and finite clusters. Either specific heat
or neutron-diffraction studies on randomly diluted fer-
rornagnets would be interesting to compare with these
forms.

IV. RELEVANCE OF FRACTON THEORY
TO EXPERIMENT

We have already suggested that recent experiments on
the specific heat and thermal conductivity of epoxy resins
by Kelham and Rosenberg may have exhibited fracton
properties. They have shown (from an analysis of their
specific-heat measurements) that N(co) cc co for fico/kii & 8

K, but is proportional to co for 8 K &fico/kii &50 K.
Their figure for N(co) appears to exhibit a discontinuity
between these two regimes, though the analytic form they
have chosen does not. This change of slope is exactly
what one would expect if the epoxy molecules were exhib-
iting fractal behavior. The "crossover frequency" is
chosen to be 8 K, and corresponds to a length scale of 30
A, about the length of the epoxy molecule (diglycidyl eth-
er of bisphenol A). For stoichiometric hardening it is also
the distance between cross links of hardeners. Use of the
same number of hardener molecules, but of differing
lengths, did not change the crossover frequency [Nicholls
and Rosenberg (unpublished)] and the crossover length
scale remained the distance between cross links. This is to
be expected if the epoxy molecules alone are exhibiting
fractal behavior. Preliminary evidence suggests that in-
creasing the amount of hardener (i.e., reducing the dis-
tance between cross-links) tends to raise the crossover fre-
quency. If one associates the length I. in Eq. (4) with the
distance between cross links, then this effect is in the
correct direction. It suggests that the effect of the cross
links is to restore the true Euclidean three-dimensional
character of the lattice vibrations, and that the fractal
behavior is to be associated with the behavior of the epoxy
molecules between the connections with the hardener.

The observed power (linear) for the vibrational density
of states above the hypothesized crossover frequency sug-

gests d =2. Unfortunately, at the present time we have no
independent estimates for d and 8 for epoxy resin. We
note, however, that the length scale can be changed for the
epoxy, either by changing the amount of hardener, or by
using different epoxy molecules, which allows the use of
Eq. (4) to determine 8. Further, d can be independently

(23)

With the use of the scaling relation of Abrahams et al. ,
"

their quantity p(g) becomes

cIlng (L)
dlnL

(24)

or, in terms of the fracton dimensionality d, using Eq. (3),

P(g) =d[1—(2/d)] . (25)

The argument of Abrahams et al. " leads to localized
states for p & 0. The specific-heat analysis of Kelham and
Rosenberg suggests that d —I = 1, or d =2. Use of this

determined from x-ray scattering (see the method of
Stapleton et cil. ). It would be of great interest to see if d
(now overdetermined) is consistent with such measure-
ments.

There remains a problem between the analysis of the
specific-heat data of Kelham and Rosenberg and the
theory developed above [specifically, with Eq. (11)]. Be-
cause d ~ d, and with 0 positive, d ~ d, so that the fracton
density of states at crossover will always be less than the
phonon density of states at crossover. Thus the density of
states can only suffer a drop at crossover, whereas the ex-
periments appear to exhibit a rapid rise at the frequency
which we have interpreted to be crossover. We are at a
loss to understand this difference in behavior. It is possi-
ble that there is an additional feature to the vibrational
spectrum of epoxy resins in the fracton regime which adds
a constant to the density of states, but we are unaware of
its origin. As can be seen below, the analysis of the
thermal conductivity is also consistent with fractal
behavior above the frequency we have identified as cross-
over, so there is some coinpelling character to the evidence
for fracton excitations above about 8 K in epoxy resins.
However, the inconsistency with the direction of the
discoritinuity remains, and makes our hypothesis sorne-
what unsettled (see, however, the Note added in proof ).

Perhaps a more extraordinary feature of the measure-
ments of Kelham and Rosenberg is their finding that if
one analyzes the thermal conductivity in the usual kinetic
theory manner, the mean free path exhibits a precipitous
drop to less than an atomic spacing above the frequency
corresponding to 8 K (or the length of 30 A). Such
behavior for the effective mean free path was first noted
for glasses by Zaitlin and Anderson. They used a nearly
vanishing mean free path [region C of their Fig. (5)] as a
method for analyzing the "plateau region" found for the
temperature dependences of the thermal conductivity of
almost all glasses.

A mean free path of less than a lattice constant certain-
ly suggests localized states according to the Ioffe-Regel
rule. We carry the fracton picture further and note that
Domany et al. have recently shown that essentially all
states are localized on a Sierpinski gasket (a well-known
fractal geometry'). In general, for fractal structures,
Rammal and Toulouse' have recently shown that the
conductance g (L) scales with length for fractals as
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value in Eq. (25) results in P(L) =0, so that the scaling
factor of Abrahams et a/. is consistent with localized
behavior.

For localized fracton states one would not expect any
contribution to the thermal conductivity, but rather only a
scattering of the lower-energy extended phonon states, ex-
actly as the lower-energy two-level systems' have been
shown to do in amorphous systems. We are making a
distinction here between the two-level systems which are
also found in epoxy resin (and in nearly all amorphous
materials '

) and the fracton modes. The density of states
of the former are usually added to the extended phonon
density of states, while the latter replace the phonons as
the fundamental excitation above co„(but see our specula-
tion concerning the origin of the "two-level systems" for
percolating networks). Localized fractons would then
manifest themselves by a sharp drop (vanishing) of the
contribution to the thermal conductivity for excitations
with ~ ~ cu„. A conventional thermal-conductivity
analysis would result in a negligible mean free path in
such an excitation region. The property of the epoxy resin
which best maintains the correctness of our interpretation
is that the frequency at which the "mean free path" be-
comes of the order of an atomic spacing is almost precise-
ly the frequency at which the density of states suffers a
discontinuity —crossover from a Debye-type to a fracton-
like form.

At yet higher temperatures, the plateau in the thermal
conductivity ends, and begins to increase (e.g., above —10
K for epoxy resin). This could be caused by classical hop-
pinglike transitions between localized fracton states,
analogous to Mott's variable range rate hopping' for lo-
calized electronic states. We have not as yet carried
through a detailed analysis for thermal transport in such a
regime.

The fracton hypothesis suggests that materials exhibit-
ing a significant temperature spread for the plateau re-
gime, in the thermal conductivity, possess a characteristic
length considerably larger than an atomic spacing between
which vibrational excitations are localized (we hy-
pothesize, fractonlike). For longer-length scales, one
passes into the normal Debye-type regime. The width of
the plateau region will increase as the crossover length L
increases.

It is interesting to compare the results and analysis of
Kelham and Rosenberg on epoxy resin with that of Zait-
lin and Anderson on other noncrystalline materials (a
borosilicate glass and a polycarbonate). As recognized by
Kelham and Rosenberg, Zaitlin and Anderson were the
first to associate the plateau in the thermal conductivity
of almost all glasses (see Zeller and Pohl' ) with a sudden
drop in the phonon mean free path for frequencies above a
minimum coo (the crossover frequency?). This is clearly
exhibited in their Fig. 5, region C. The similarity of their
analysis for noncrystalline materials, and that of Kelham
and Rosenberg for epoxy resin, where long-range correla-
tions ( —30 A) are expected, is striking.

We admit that it is a little puzzling why ordinary
glasses should exhibit such a length, roughly independent
of the character of their constituents. However, our
analysis would not be the first to argue for such extended

correlations. For example, Morgan and Smith' have
made similar arguments (even to lengths up to 1000 A),
though with a very different model in mind.

It is interesting to note that as pointed out by Morgan
and Smith the plateau temperature width is much larger
for amorphous Se than for most glasses (Zeller and
Pohl' ). It is known that the characteristic correlation
length in amorphous Se is much longer than in most
glasses. We have already noted this phenomenon above
for epoxy resin. Finally, Phillips' has also argued for ex-
tended correlations in amorphous systems.

Recent irradiation experiments on crystalline quartz
also tend to confirm our interpretation of fractal behavior
in glasses. Laermans et al. ' have shown that electron ir-
radiation of crystalline quartz does not produce a plateau
region in the thermal conductivity. However, neutron ir-
radiation does generate a plateau regime with a width
slightly larger for larger neutron doses. ' X-ray scattering
by Grasse et al. ' shows that neutron irradiation causes
amorphous regions of diameter 20 A, while Grasse et al.
show that electron damage does not, hence the lack of a
plateau region in the thermal conductivity for the latter.
Finally, Grasse et a/. ' point out that the size of the amor-
phous regime tends to grow slightly (20%) with increasing
neutron irradiation. This is consistent with the slight in-
crease in plateau length found by de Goer et al. ' as a
function of increasing neutron dosage.

V. SUMMARY AND CONCLUSIONS

In summary, we contend that the thermal properties of
epoxy resin and glasses can be understood on the basis of a
crossover from Debye-type behavior at low frequencies to
fracton behavior at higher frequencies. The density of
states correspondingly changes the exponent of its power
law from d —1 to d —1 [Eq. (2)]. At this same crossover
frequency, the vibrational states change their character
from extended to localized, thereby profoundly affecting
the thermal transport and serving as a possible explana-
tion for the extremely small mean free path of phonons in
this energy region as extracted from more conventional
analyses. The crossover frequency is proportional to the
inverse of the length scale, according to Eq. (4), fracton
behavior expected for shorter lengths. Any increase in
this length should therefore reduce the crossover energy
and increase the width of the plateau region measured in
thermal-conductivity experiments.

Rote added in proof. The form we have used for the
norroalized fracton density of states assumed that the
force constant and mass scaled smoothly through the
crossover regime. Recent work of P. F. Tua, S. J. Putter-
man, and R. Orbach [Phys. Lett. (in press)] suggests an al-
ternative picture: a drop in co vs inverse length scale at
the crossover length. This leads to a jump in the density
of states (instead of a drop), going from the phonon to
fracton regimes. Excellent agreement with the experimen-
tal results of Ref. 3 is obtained. Finally, an effective
medium approximation for X(ro) has been obtained very
recently for percolating networks by B. Derrida, R. Or-
bach, and Kin-Wah Yu (unpublished). It strongly sup-
ports the assumptions of Tua et al. , giving additional con-
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fidence to a fracton interpretation for short-length scale
vibrational excitations in amorphous materials.
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