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The exact energies and wave functions, in the effective-mass approximation, of an electron mov-
ing in the potential of a massive hole near a single rigid surface of a semiconductor are presented.
The electron-hole interaction potential is taken to be the Coulombic 1/er inside the semiconductor
and + o« outside. The Schrodinger equation for this electron-hole interaction potential is separable
in the prolate spheroidal coordinate system, and thus can be solved numerically to any desired accu-
racy rather easily. The ground state of the exciton is seen to change continously from a hydrogenic
1s state, when the hole is well inside the bulk, to a hydrogenic 2p, state, when the hole is located
right on the surface in agreement with the known results in these two limits. The variation of the
energies and wave functions of the ground and the excited states as a function of the distance of the
hole from the surface are discussed and compared with some previous calculations.

I. INTRODUCTION

A hydrogenic model describes very well the eigenstates
of excitons in the bulk of a semiconductor.! An extension
of this model to the case of excitons near crystalline sur-
faces would be useful in the understanding of many phe-
nomena in surface semiconductor physics, e.g., the forma-
tion of a “dead layer,”?>> surface-reflectance spectra, etc.
Numerous works, both theoretical?>~%° and experimen-
tal,2'22 have dealt with the behavior of hydrogenic exci-
tons in confined geometries. However, the finite mass of
the electron and of the hole along with the presence of the
crystalline boundary makes only approximate calculations
possible.

In many of these theoretical works, therefore, attention
has been focused on the simpler problem of the surface ex-
citon with an infinitely heavy hole. Levine® noted that the
eigenstates of an electron moving in the Coulombic poten-
tial of the immobile hole located right on the surface are
simply those hydrogenic wave functions that vanish on
the crystalline surface. Harper and Hilder,* and, more re-
.cently, Gallardo and Mattis,” have used an approximate
Green’s-theorem method to study the energy of the exci-
ton at a finite distance from the wall. Bendow® has stud-
ied the effect of the finite geometry on the energy of an
exciton by a variational calculation. However, such
methods, as might be expected, yield poor results when
the exciton is close to the wall.

Seemingly, it has not been realized that the eigenstates
of an exciton with a massive hole (m,/m; —0) at a finite
distance from a single semiconductor surface is exactly
solvable. The aim of this paper is to provide such solu-
tions. The same eigenstates also appear for an electron
moving in the potential of a donor atom near a surface.
The fact that this is one of the very few problems for
which the Schrodinger equation is exactly soluble makes it
interesting by itself.

II. THE HAMILTONIAN AND ITS SOLUTION

In the effective-mass approximation, the Hamiltonian
of the exciton near a semiconductor surface is given by
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where m, and m,, are, respectively, the effective masses of
the electron and the hole. Here V,_, is the Coulombic
electron-hole interaction potential

Ve-h:"l/el?e_?hl ’ (2)

€ being the dielectric constant of the medium, and T, and
T, are, respectively, the positions of the electron and the
hole. ¥, is the potential due to the surface located at
z =a, and it includes the image potential. We shall re-
strict ourselves to the case of the heavy holes such that the
hole motion may be completely neglected. We shall also
neglect the image potential and assume the customary
boundary condition,®—%!>16 that the wave function van-
ishes on the surface. Neglect of the image potential while
choosing the above boundary condition (BC) is justi-
fied,'>!® since the repulsive image potential basically
serves to decrease the amplitude of the wave function at
the boundary. With these approximations, the Hamiltoni-
an of Eq. (1) reduces to a simple hydrogenic Hamiltonian,

# 1
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with the BC
W(z,=a)=0. @)

Here z =a is the bounding plane of the crystal and z, is
the z coordinate of the electron.

The boundary condition given by Eq. (4) makes it diffi-
cult to solve the Schrodinger equation

Hy=Evy (5

of the surface exciton in the spherical coordinate system.
However, as we shall soon see, the Schrodinger equation
becomes separable in the prolate spheroidal coordinate sys-
tem?* making the exact solution easily obtainable. We de-
fine the new set of coordinates (£,7,¢) with
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and ¢ is the rotational angle about the line passing
through the hole and perpendicular to the surface. Here,
r, is the distance between the electron and the hole, r, is
the distance between the electron and the image of the
hole, and a is the distance of the hole from the surface (see
Fig. 1). This coordinate system is rather well known in
connection with the hydrogen molecular ion.*~2% In
these coordinates the half-space geometry of the crystal is
defined by £ varying from 1 to o, 77 varying from O to 1,
and ¢ varying from O to 27r. The boundary condition of
Eq. (4) simply becomes

P(n=0)=0. (6)

The Schrodinger equation given by Egs. (3) and (5) in
the prolate spheroidal coordinate system becomes
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Here the energy unit is the Rydberg divided by €* and the
distance unit is the Bohr radius multiplied by €, where € is
the dielectric constant of the medium. Writing

P&, =D(H)X(E)Y(n) (8)

and substituting this expression in Eq. (7), the following
three separated equations are obtained:

2
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d 218X m? 242 _
e [§2_1 —2aE+k%2 44 |X =0,
(10)
and
2
7;‘117(772—1):—3;— m—l +2an+k*n?+A4 |Y=0.
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FIG. 1. Semi-infinite crystal geometry and the distances used
in the definition of the coordinate system.
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The boundary conditions are

P(p=0)=P(p=27) , (12)

X(— 0)—0, (13)
and

Y(p=0)=0. (14)

In Egs. (9)—(11), m and A are the separation constants
and k%= —4a’E. We shall deal only with the bound-
exciton states, so that k? is a positive quantity. The solu-
tions of the ¢ equation (9), along with the BC, Eq. (12),
are given by?

1 +img ’
vV (2m)

where m =0,1,2,3,. .. is the azimuthal quantum number.

The & equation (10), along with the BC, Eq. (13), also
arises in connection with the hydrogen molecular ion and
has been studied by many authors.?*~2® Following Jaffe,?’
we write

b= (15)

n

-1 , (16)

E+1

with o=(2a/k)—(m +1). The advantage of expanding
X (£) in a power series of (§—1)/(£+1) is that this series
is rapidly convergent. Inserting Eq. (16) in the & equation
(10), the following three-term recursion relations for the
a,’s are obtained:

X(E)=(E—1"E41%e S a,
n=0

An 4 1=PnGn+49nQy _1 (17)

for n >0, with a _; =0. Here

_A+k*—2ko—(o+m)m +1)—2n(c—2k)+2n*
(n+1)n+m+1)

n

(18)
and

(n—1—0o)m+o+1—n)
= . 19
n (n+1)n +m +1) {19
The eigenvalues of the Schrodinger equation satisfy an
equation, involving an infinite continued fraction, ob-
tained from Eq. (17),

1
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Here, p;’s and g;’s given by Egs. (18) and (19) are func-
tions of m, E, and 4. Given the azimuthal quantum num-
ber m and a trial energy E, a separation constant 4 that
satisfies Eq. (20) gives a solution of the £ equation (10).
An appropriate separation constant A may be found for
every trial energy E. A solution is obtained if this 4 also
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satisfies the boundary condition of the 1 equation for the
same trial energy E as discussed below.
The 7 equation (11), may be solved by writing

4587

Substitution of this expression for Y(7) in Eq. (11) leads
to a three-term recursion relation given by

bn+l=rnbn+snbn—l ’ (22)

Y(n)=(n*—1)""2%e k-3 p (g—1)". (21)  for n >0, and with b_,; =0. We have here
n=0
]
A+k*+(a/2)—(m —2k)m+1)—2n(1—2k +m)—n(n —1)
, = (23)
2(n+1)(n+m+1)
-

and E=—+# In Fig. 2 we have displayed the calculated
)42k energies of the ground state and the first two excited
— a/2) 4 2k(m +n) (24)  states as a function of the distance of the hole from the

XA Dmm )

By inspection of Eq. (21), the BC on H (7), given by Eq.
(14), simply becomes

bo—bi+by—bs+ -+ =0. (25)

Thus a solution is obtained when the set of numbers
(m,E,A) that satisfies Eq. (20) is also a solution of Eq.
(25). These values of the eigenenergies and the corre-
sponding separation constants E and A specify the exact
solutions and are obtained by a systematic search of the
simultaneous solutions of Egs. (20) and (25) for a given
azimuthal quantum number m. In actual calculations the
infinite series appearing in Egs. (16) and (21) are terminat-
ed once the solution (energy E and separation constant A4)
has converged to the desired accuracy.

III. GROUND STATE

The exact eigenstates of the surface exciton are known
in two limits: when the exciton is far away from the sur-
face' and when the hole is located right on the surface.?
The first case is of course the case of a bulk exciton,
where the ground state is a hydrogenic ls state with the
energy E=—1 R (the effective Rydberg). The exact
solution in the latter case was, as already mentioned,
pointed out by Levine.? The ground-state wave function
in this case is simply a hydrogenic 2p, state with the wave
function vanishing on the wall and with the eigenenergy
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FIG. 2. Energies of the ground state and of the first two ex-

cited states as a function of the hole distance a from the wall.

surface. The two known limits are reproduced and the en-
ergies monotonically decrease as the hole is moved away
from the wall.

The wave functions are obtained from the expressions
of Egs. (8), (16), and (21). Figure 3 shows contours of the
ground-state wave functions for five different values of
hole distances from the wall. This shows how the ground
state gradually changes from the hydrogenic 1s state to
the 2p, state as the hole approaches the wall. In Fig. 4 we
have displayed the variation of the expectation value (z, )
of the electron with the hole position. At hole distances
of a few effective Bohr radii the electronic charge cloud is
centered more or less around the hole, and thus {z,) ap-
proximately equals the distance of the hole from the wall.
As the hole is brought closer to the wall, the electron fol-
lows the hole. However, there is a minimum distance of
approach of the electron to the wall. Once this minimum
approach is achieved, moving the hole any closer to the
wall moves the electron away from it as the repulsive ef-
fect of the wall is strongly felt by the electron (Fig. 4).
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FIG. 3. Ground-state wave-function contours as the hole ap-
proaches the surface for various hole distances a: (a) @ =5, (b)
a=2, (c) a=1, (d) @ =0.5, and (¢) @ =10~%. Distances are in
units of ag.
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FIG. 4. Ground-state expectation value {z,) of the distance
of the electron from the wall as a function of the hole distance.
Dashed line is the asymptote on which hole distance equals
(z.). Thus deviation of (z,) from this line shows in some way
the deviation of the excitonic state from the hydrogenic 1s state
for which hole distance equals (z, ).

The force on the exciton in our model is given by the
Hellmann-Feynman theorem3*7:

OE,, 14
F=- da __<¢ da ¢>
(z—a) | ¥(x,y,2) | *
[x2+y2+(z——a)2]3/2 4

= dxdydz (26)
z>0

where z >0 defines the half-space geometry of the crystal
and (0,0,a) is the position of the hole in Cartesian coordi-
nates. In Eq. (26), E; and ¢ are, respectively, the
ground-state energy and wave function. The relationship
of Eq. (26) provides an analytical result when the hole is
exactly on the wall. In this case, the ground-state wave
function is given by

1 —r/2a,

— 1 , 27)
(167a3)”2 z

1/1(x,y,2)=

where aq is the effective Bohr radius. This is simply the
hydrogenic 2p, wave function as discussed before, except
that now the normalization is different. Inserting Eq. (27)
into Eq. (26) one gets

oFE

e _ z X
da a=o-‘fz>0dx dydz,,} | ¥(x,,2) |

=+A%/a, , (28)

where Z°ff is the effective Rydberg and q is, again, the
effective Bohr radius.

This analytical result agrees with the results of Fig. 5
where we have calculated the force by simply taking the
derivative of the ground-state energy with respect to the
wall distance. As might be expected, the force is max-
imum when the hole is at a distance of about 1a, from the
wall. The energies and the corresponding separation con-
stants of the ground state are given in Table I. The corre-
sponding wave functions may be obtained from Egs. (8),
(15), (16), and (21).
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IV. EXCITED STATES

We have already shown in Fig. 2 the energies of the
first two excited states as a function of the wall distance.
When the hole is located right on the wall the first excited
state is triply degenerate and consists of the 3p,-, 3d,,-,
and 3d,,-type hydrogenic states with the energy E = — %
R as discussed by Levine.® Here, the 3p,-, 3p,-, and
3d,,-type states are not allowed as these wave functions
do not vanish on the wall. With the hole away from the
wall the triply degenerate state splits into a singly degen-
erate state and a doubly degenerate state, as shown in Fig.
2, with the former having the lower energy. In the limit
that the wall is at infinity the singly degenerate 3p,-type
state slowly changes into a 2s +2p,-type state and the
3d,,- (3d,;-) type state changes into a 2p,- (2p,-) type
state.

In Fig. 6 we show the electronic wave-function contours
of the first excited state in the ¢ =0 plane for four wall
distances. In this case, the wave function smoothly
changes from the hydrogenic 3p, state with E = — 3 #°f
to a hydrogenic 2s +2p, state with E = — +2° as the
hole initially located on the wall is moved away to a large
distance. Similar electronic wave-function contours are
shown for the doubly degenerate m =1 state in Fig. 7. In
this case the 3d,,-type state changes into a 2p,-type hy-
drogenic state when the wall is moved to infinity.

V. COMPARISON WITH PREVIOUS CALCULATIONS

In Fig. 8 we have compared the exact results with the
results of Harper and Hilder*” and of Gallardo and
Mattis” obtained by a Green’s-theorem method. Harper
and Hilder’s method clearly fails when the exciton is near
the wall; in fact it yields the isotropic result in the limiting
case where the hole is located right on the wall. Gallardo
and Mattis” have modified this method. They get the ex-
act result when the hole is right on the surface; however,
at a small distance away from the wall (a 5%‘10)’ the
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Force on exciton

1 1 1
1 2 3 4 5

hole distance from wall, a
(effective Bohr radii)

FIG. 5. Force on the exciton, identically equal to —9E,, /da,
as a function of distance of the hole from the wall. Force is
such that it tends to move the exciton away from the wall and
into the bulk.

o
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TABLE 1. Ground state of the exciton near a rigid wall.

Wall distance

Binding energy

Separation constant®

a | E | A’ d|E | /da
0.00 0.250000 2.000 000 0.12500
0.10 0.263 649 1.850902 0.149 38
0.20 0.280217 1.703 852 0.18399
0.30 0.300917 1.559 351 0.232 66
0.40 0.327310 1.418 182 0.29798
0.50 0.360994 1.281519 0.377 36
0.60 0.402 865 1.150940 0.45895
0.70 0.452232 1.028 183 0.524 12
0.80 0.506 633 0.914 704 0.55807
0.90 0.562 698 0.811314 0.55794
1.00 0.617319 0.718 127 0.53083
1.10 0.668 313 0.634 739 0.487 13
1.20 0.714496 0.560454 0.43587
1.30 0.755 447 0.494 457 0.383 31
1.40 0.791 240 0.435915 0.333 14
1.50 0.822218 0.384036 0.28722
1.60 0.848 851 0.338090 0.246 30
1.70 0.871 646 0.297419 0.21043
1.80 0.891 096 0.261433 0.179 34
1.90 0.907 658 0.229 607 0.15258
2.00 0.921741 0.201474 0.12967
2.50 0.965983 0.103 256 0.05700
3.00 0.985 358 0.051489 0.024 85
3.50 0.993771 0.024956 0.01073
4.00 0.997 384 0.011769 0.004 57
4.50 0.998915 0.005410 0.00192
5.00 0.999 555 0.002 426 0.000 80
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FIG. 6. Electronic wave-function contours of the first excited
state for various distances a of the hole from the wall: (a) a =5,
(b) a =2, (c) a =0.5, and (d) @ =10~ Distances are in units of
ao. Wave functions vanish on the dashed lines and, of course,
also on the wall.
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FIG. 7. Electronic wave-function contours of the second ex-
cited state for various distances a of the hole from the wall: (a)
a=17, (b) a=3, and (c) a =10%. Distances are in units of ao.
The second excited state is doubly degenerate as has been dis-
cussed in the text. In this figure only one of them has been
shown.
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FIG. 8. Comparison of the exact energies with approximate
solutions of Harper and Hilder (dots) and of Gallardo and
Mattis (crosses).

method is insensitive to the position of the wall. When
the hole is more than +a, away from the wall, their
method yields a ground-state energy only in qualitative
agreement with the exact solution.

VI. CONCLUSION

In conclusion, the exact eigenstates of an exciton near
the surface of a semiconductor in the effective-mass ap-
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proximation and also in the approximation where the hole
motion is neglected have been obtained. The ground-state
wave function has been studied in some detail, and the
way it changes between the two limits—when the hole is
deep inside the semiconductor and when it it right on the
surface—has been seen. The exact solutions have been
compared with some approximate solutions in the litera-
ture. It is hoped that this study is helpful in the under-
standing of the behavior of more realistic excitons, i.e., ex-
citons with a finite hole mass.

Note added in proof. The author has recently received a
copy of Z. Liu and D. L. Lin, Phys. Rev. B (in press),
which treats the hydrogen atom in semi-infinite space,
essentially the problem treated here, by a modified
Green’s-theorem method. A comparison with the exact
results presented here shows that Liu and Lin obtain
reasonably accurate energy eigenvalues when the exciton is
close ( < 7a,) to the surface.

ACKNOWLEDGMENTS

The author would like to thank Dr. M. Altarelli, Dr. P.
J. Kelly, Dr. M. Springborg, and above all Professor O. K.
Andersen for stimulating discussions.

APPENDIX
We present Tables II and III.

TABLE II. First excited state m =0.

Wall distance Binding energy

Separation constant?

a | E | A’ d |E | /da
0.00 0.111111 2.000 000 0.03704
0.10 0.115101 1.850311 0.043 10
0.20 0.119 805 1.701 312 0.05140
0.30 0.125468 1.553133 0.062 30
0.40 0.132335 1.405 966 0.07524
0.50 0.140 509 1.260 060 0.08791
0.60 0.149779 1.115 689 0.096 49
0.70 0.159571 0.973070 0.09813
0.80 0.169 184 0.832301 0.09323
0.90 0.178 088 0.693370 0.084 47
1.00 0.186039 0.556212 0.074 52
1.10 0.193 008 0.420752 0.06500
1.20 0.199076 0.286 921 0.056 55
1.30 0.204 359 0.154 658 0.049 31
1.40 0.208 974 0.023911 0.04317
1.50 0.213024 —0.105370 0.03798
1.60 0.216 596 —0.233233 0.033 57
1.70 0.219760 —0.359723 0.029 81
1.80 0.222576 —0.484 886 0.026 58
1.90 0.225092 —0.608 769 0.02379
2.00 0.227 347 —0.731415 0.02136
2.50 0.235700 —1.327685 0.01290
3.00 0.240 841 —1.899 643 0.008 08
3.50 0.244 093 —2.452256 0.005 16
4.00 0.246 179 —2.989818 0.003 33
4.50 0.247 528 —3.515912 0.002 15
5.00 0.248 402 —4.033 440 0.00140

0 0.250000 0.00000

*4'=A + | E | a*
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TABLE III. Second excited state m =1.

Wall distance Binding energy

Separation constant?

a |E | A’ d|E | /da
0.00 0.111111 6.000 000 0.01852
0.10 0.113005 5.875538 0.01937
0.20 0.114 987 5752193 0.02028
0.30 0.117063 5.630027 0.02125
0.40 0.119240 5.509 110 0.02229
0.50 0.121523 5.389518 0.02340
0.60 0.123921 5.271335 0.024 56
0.70 0.126437 5.154 653 0.02578
0.80 0.129078 5.039571 0.02704
0.90 0.131845 4.926197 0.028 32
1.00 0.134743 4.814 645 0.029 62
1.10 0.137768 4.705036 0.030 89
1.20 0.140919 4.597 495 0.03212
1.30 0.144 190 4.492 149 0.03327
1.40 0.147570 4.389 124 0.034 31
1.50 0.151047 4.288 541 0.03521
1.60 0.154 606 4.190516 0.03594
1.70 0.158229 4.095152 0.03649
1.80 0.161897 4.002 539 0.036 83
1.90 0.165 589 3.912750 0.03697
2.00 0.169 284 3.825843 0.03690
2.50 0.187137 3.435288 0.033 85
3.00 0.202 692 3.115895 0.028 14
3.50 0.215210 2.859 994 0.02199
4.00 0.224 807 2.657 637 0.01657
4.50 0.231955 2.499 132 0.01221
5.00 0.237183 2.375981 0.008 86

w 0.250 000 0.000 00

"4'=A + | E |a>
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