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Eigenstates of Wannier excitons near a semiconductor surface
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The exact energies and wave functions, in the effective-mass approximation, of an electron mov-

ing in the potential of a massive hole near a single rigid surface of a semiconductor are presented.
The electron-hole interaction potential is taken to be the Coulombic 1/er inside the semiconductor
and + ao outside. The Schrodinger equation for this electron-hole interaction potential is separable
in the prolate spheroidal coordinate system, and thus can be solved numerically to any desired accu-

racy rather easily. The ground state of the exciton is seen to change continously from a hydrogenic
1s state, when the hole is well inside the bulk, to a hydrogenic 2p, state, when the hole is located
right on the surface in agreement with the known results in these two limits. The variation of the
energies and wave functions of the ground and the excited states as a function of the distance of the
hole from the surface are discussed and compared with some previous calculations.

I. INTRODUCTION

A hydrogenic model describes very well the eigenstates
of excitons in the bulk of a semiconductor. ' An extension
of this model to the case of excitons near crystalline sur-
faces would be useful in the understanding of many phe-
nomena in surface semiconductor physics, e.g., the forma-
tion of a "dead layer, " ' surface-reflectance spectra, etc.
Numerous works, both theoretical and experimen-
tal, ' have dealt with the behavior of hydrogenic exci-
tons in confined geometries. However, the finite mass of
the electron and of the hole along with the presence of the
crystalline boundary makes only approximate calculations
possible.

In many of these theoretical works, therefore, attention
has been focused on the simpler problem of the surface ex-
citon with an infinitely heavy hole. Levine noted that the
eigenstates of an electron moving in the Coulombic poten-
tial of the immobile hole located right on the surface are
simply those hydrogenic wave functions that vanish on
the crystalline surface. Harper and Hilder, and, more re-

, cently, Gallardo and Mattis, have used an approximate
Green's-theorem method to study the energy of the exci-
ton at a finite distance froin the wall. Bendow has stud-
ied the effect of the finite geometry on the energy of an
exciton by a variational calculation. However, such
methods, as might be expected, yield poor results when
the exciton is close to the wall.

Seemingly, it has not been realized that the eigenstates
of an exciton with a massive hole (m, /m& ~0) at a finite
distance from a single semiconductor surface is exactly
solvable. The aim of this paper is to provide such solu-
tions. The same eigenstates also appear for an electron
moving in the potential of a donor atom near a surface.
The fact that this is one of the very few problems for
which the Schrodinger equation is exactly soluble makes it
interesting by itself.

II. THE HAMILTONIAN AND ITS SOLUTION

In the effective-mass approximation, the Hamiltonian
of the exciton near a semiconductor surface is given by

e being the dielectric constant of the medium, and r, and
r~ are, respectively, the positions of the electron and the
hole. V, is the potential due to the surface located at
z =a, and it includes the image potential. We shall re-
strict ourselves to the case of the heavy holes such that the
hole motion may be completely neglected. We shall also
neglect the image potential and assume the customary
boundary condition, ' ' that the wave function van-
ishes on the surface. Neglect of the image potential while
choosing the above boundary condition (BC) is justi-
fied, ' ' since the repulsive image potential basically
serves to decrease the amplitude of the wave function at
the boundary. With these approximations, the Hamiltoni-
an of Eq. (l) reduces to a simple hydrogenic Hamiltonian,

H=—
2me

with the BC

P(z, =a)=0 . (4)

Here z =a is the bounding plane of the crystal and z, is
the z coordinate of the electron.

The boundary condition given by Eq. (4) makes it diffi-
cult to solve the Schrodinger equation

of the surface exciton in the spherical coordinate system.
However, as we shall soon see, the Schrodinger equation
becomes separable in the prolate spheroidal coordinate sys-
tem making the exact solution easily obtainable. We de-
fine the new set of coordinates (g', sl, tb) with

H= — V, — VI, +V, I, +V, ,
2' 8 2777 I,

where m, and mh are, respectively, the effective masses of
the electron and the hole. Here V, ~ is the Coulombic
electron-hole interaction potential
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r&+r2
2Q

r2 —r&

2a

and P is the rotational angle about the line passing
through the hole and perpendicular to the surface. Here,
r ~ is the distance between the electron and the hole, r2 is
the distance between the electron and the image of the
hole, and a is the distance of the hole from the surface (see
Fig. 1). This coordinate system is rather well known in
connection with the hydrogen molecular ion. In
these coordinates the half-space geometry of the crystal is
defined by g' varying from 1 to ao, il varying from 0 to 1,
and P varying from 0 to 2m. The boundary condition of
Eq. (4) simply becomes

The boundary conditions are

N($ =0)=N(P =2~),
X(g~ a) )~0,

(12)

(13)

F(g =0)=0 .
In Eqs. (9)—(11), m and 2 are the separation constants

and k = —4a E. We shall deal only with the bound-
exciton states, so that k is a positive quantity. The solu-
tions of the P equation (9), along with the BC, Eq. (12),
are given by

tp(rI=O) =0 . (6)

The Schrodinger equation given by Eqs. (3) and (5) in
the prolate spheroidal coordinate system becomes

where I =0, 1,2, 3, . . . is the azimuthal quantum number.
The f equation (10), along with the BC, Eq. (13), also

arises in connection with the hydrogen molecular ion and
has been studied by many authors. Following Jaffe,
we write

$2 2 $2@

(g —1)(1—i) ) BP

2ag E 2~

'n

(16)

Here the energy unit is the Rydberg divided by e and the
distance unit is the Bohr radius multiplied by e, where e is
the dielectric constant of the medium. Writing

with o =(2a/k) —(m +1). The advantage of expanding
X(g) in a power series of (g —1)/(/+1) is that this series
is rapidly convergent. Inserting Eq. (16) in the g equation
(10), the following three-term recursion relations for the
a„'sare obtained:

p(g, rl, p) =@(p)X(g)&(g) (8)

and substituting this expression in Eq. (7), the following
three separated equations are obtained:

a„+&
——P„an+Oman —1

for n)0, with a
&

——0. Here

(17)

d N 2= —m N,d2
d

(~2 1)
dX 2 —2ag+k g +A X=O,

$2

(9)

and

A +k —2ko —(o+m)(m +1)—2n (cr 2k)+2—n
(n + 1)(n +m + 1)

(18)

(10)
(n —1 cr)(m —+cr+1 n)—

(n + 1)(n +m + 1)
(19)

2

+2ag+k g +A F=O .
g —1

The eigenvalues of the Schrodinger equation satisfy an
equation, involving an infinite continued fraction, ob-
tained from Eq. (17),

r2 r&

Xhole

Po
+

—P2 +
9'2

—p3 9'3+-—74

(20)

vacuum

wall

semiconductor

FICs. 1. Semi-infinite crystal geometry and the distances used
in the definition of the coordinate system.

Here, p s and q s given by Eqs. (18) and (19) are func-
tions of m, E, and A. Cxiven the azimuthal quantum num-
ber m and a trial energy E, a separation constant 3 that
satisfies Eq. (20) gives a solution of the g equation (10).
An appropriate separation constant A may be found for
every trial energy E. A solution is obtained if this A also
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satisfies the boundary condition of the il equation for the
same trial energy E as discussed below.

The il equation (11),may be solved by writing
bn+ i =&nba+&. bn —i (22)

Substitution of this expression for Y(i)) in Eq. (11) leads
to a three-term recursion relation given by

Y(+) (+2 1)m/2e —k(q —I) g b (+ 1)n
n=0

(21) for n &0, and with b ~

——Q. We have here

3 +k +(a/2) —(m —2k)(m +1) 2n (—1 —2k +m) n(—n —1)
2(n + 1)(n +m + 1)

(23)

and

(a/2)+2k (m +n)
2(n + 1)(n +m + 1)

(24)

By inspection of Eq. (21), the BC on H(g), given by Eq.
(14), simply becomes

bo —b)+b2 —b3+ - . =0 . (25)

Thus a solution is obtained when the set of numbers
(m, E,A) that satisfies Eq. (20) is also a solution of Eq.
(25). These values of the eigenenergies and the corre-
sponding separation constants E and 2 specify the exact
solutions and are obtained by a systematic search of the
simultaneous solutions of Eqs. (20) and (25) for a given
azimuthal quantum number m. In actual calculations the
infinite series appearing in Eqs. (16) and (21) are terminat-
ed once the solution (energy E and separation constant 3)
has converged to the desired accuracy.

III. CsRGUND STATE

The exact eigenstates of the surface exciton are known
in two limits: when the exciton is far away from the sur-
face' and when the hole is located right on the surface.
The first case is of course the case of a bulk exciton,
where the ground state is a hydrogenic 1s state with the
energy E = —1 A" (the effective Rydberg). The exact
solution in the latter case was, as already mentioned,
pointed out by Levine. The ground-state wave function
in this case is simply a hydrogenic 2p, state with the wave
function vanishing on the wall and with the eigenenergy
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FIG. 2. Energies of the ground state and of the first two ex-
cited states as a function of the hole distance a from the wall.

E = —4W' . In Fig. 2 we have displayed the calculated
energies of the ground state and the first two excited
states as a function of the distance of the hole from the
surface. The two known limits are reproduced and the en-
ergies monotonically decrease as the hole is moved away
from the wall.

The wave functions are obtained from the expressions
of Eqs. (8), (16), and (21). Figure 3 shows contours of the
ground-state wave functions for five different values of
hole distances from the wall. This shows how the ground
state gradually changes from the hydrogenic 1s state to
the 2p, state as the hole approaches the wall. In Fig. 4 we
have displayed the variation of the expectation value (z, )
of the electron with the hole position. At hole distances
of a few effective Bohr radii the electronic charge cloud is
centered more or less around the hole, and thus (z, ) ap-
proximately equals the distance of the hole from the wall.
As the hole is brought closer to the wall, the electron fol-
lows the hole. However, there is a minimum distance of
approach of the electron to the wall. Once this minimum
approach is achieved, moving the hole any closer to the
wall moves the electron away from it as the repulsive ef-
fect of the wall is strongly felt by the electron (Fig. 4).
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FICx. 3. Ground-state wave-function contours as the hole ap-
proaches the surface for various hole distances a: (a) a =5, (b)
a =2, (c) a=1, (d) a =0.5, and (e) a =10 . Distances are in
units of ao.
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IV. EXCITED STATES

We have already shown in Fig. 2 the energies of the
first two excited states as a function of the wall distance.
When the hole is located right on the wall the first excited
state is triply degenerate and consists of the 3p, -, 3d„,-,
and 3d~, -type hydrogenic states with the energy E =

9

as discussed by Levine. Here, the 3p~-, 3'-, and
3d„~-type states are not allowed as these wave functions
do not vanish on the wall. With the hole away from the
wall the triply degenerate state splits into a singly degen-
erate state and a doubly degenerate state, as shown in Fig.
2, with the former having the lower energy. In the limit
that the wall is at infinity the singly degenerate 3p, -type
state slowly changes into a 2s+2p, -type state and the
3d„,- (3',-) type state changes into a 2p„- (2'-) type
state.

In Fig. 6 we show the electronic wave-function contours
of the first excited state in the /=0 plane for four wall
distances. In this case, the wave function smoothly
changes from the hydrogenic 3p, state with E =

9

to a hydrogenic 2s+2p, state with E= —4&' as the
hole initially located on the wall is moved away to a large
distance. Similar electronic wave-function contours are
shown for the doubly degenerate m =1 state in Fig. 7. In
this case the 3d -type state changes into a 2p„-type hy-
drogenic state when the wall is moved to infinity.
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FIG. 4. Ground-state expectation value (z, ) of the distance
of the electron from the wall as a function of the hole distance.
Dashed line is the asymptote on which hole distance equals
(z, ). Thus deviation of (z, ) from this line shows in some way
the deviation of the excitonic state from the hydrogenic 1s state
for which hole distance equals (z, ).

The force on the exciton in our model is given by the
Hellmann-Feynman theorem

(z —a) P(x,y, z)
~GX 8P JZ)c[x2+y2+(za)2]3/2 (26

V. COMPARISON W'ITH PREVIOUS CALCULATIONS

where z &0 defines the half-space geometry of the crystal
and (0,0,a) is the position of the hole in Cartesian coordi-
nates. In Eq. (26), Es, and P are, respectively, the
ground-state energy and wave function. The relationship
of Eq. (26) provides an analytical result when the hole is
exactly on the wall. In this case, the ground-state wave
function is given by

1 —r /2ao
P(x,y, z) = 51/2e Z 7

(16~a p)
(27)

where ao is the effective Bohr radius. This is simply the
hydrogenic 2p, wave function as discussed before, except
that now the normalization is different. Inserting Eq. (27)
into Eq. (26) one gets

= f dx dy dz —
~
tt(x,y, z)

~

a=0

(28)

where W' is the effective Rydberg and ao is, again, the
effective Bohr radius.

This analytical result agrees with the results of Fig. 5
where we have calculated the force by simply taking the
derivative of the ground-state energy with respect to the
wall distance. As might be expected, the force is max-
imum when the hole is at a distance of about lao from the
wall. The energies and the corresponding separation con-
stants of the ground state are given in Table I. The corre-
sponding wave functions may be obtained from Eqs. (8),
(15), (16), and (21).

In Fig. 8 we have compared the exact results with the
results of Harper and Hilder ' and of Gallardo and
Mattis obtained by a Careen's-theorem method. Harper
and Hilder's method clearly fails when the exciton is near
the wall; in fact it yields the isotropic result in the limiting
case where the hole is located right on the wall. Gallardo
and Mattis have modified this method. They get the ex-
act result when the hole is right on the surface; however,
at a small distance away from the wall (a ( —,'ac), the
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FKJ. 5. Force on the exciton, identically equal to —BEg, /Ba,
as a function of distance of the hole from the wall. Force is
such that it tends to move the exciton away from the wall and
into the bulk.
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TABLE I. Cxround state of the exciton near a rigid wall.

Wall distance

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.50
3.00
3.50
4.00
4.50
5.00

'A'=A+
f
E

f

a~.

Binding energy

0.250000
0.263 649
0.280 217
0.300 917
0.327 310
0.360 994
0.402 865
0.452 232
0.506 633
0.562 698
0.617 319
0.668 313
0.714496
0.755 447
0.791 240
0.822 218
0.848 851
0.871 646
0.891 096
0.907 658
0.921 741
0.965 983
0.985 358
0.993 771
0.997 384
0.998 915
0.999 555

1

Separation constant'

2.000000
1.850 902
1.703 852
1.559 351
1.418 182
1.281 519
1.150940
1.028 183
0.914 704
0.811 314
0.718 127
0.634 739
0.560454
0.494 457
0.435 915
0.384 036
0.338 090
0.297 419
0.261 433
0.229 607
0.201 474
0.103 256
0.051 489
0.024 956
0.011 769
0.005 410
0.002 426

0

d /E//da

0.125 00
0.149 38
0.183 99
0.232 66
0.297 98
0.377 36
0.458 95
0.524 12
0.558 07
0.557 94
0.530 83
0.487 13
0.435 87
0.383 31
0.333 14
0.287 22
0.246 30
0.21043
0.179 34
0.152 58
0.129 67
0.057 00
0.024 85
0.01073
0.004 57
0.001 92
0.000 80

0
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FIG. 6. Electronic wave-function contours of the first excited
state for various distances a of the hole from the wall: (a) a =5,
(b) a =2, (c) a =0.5, and (d) a =10 . Distances are in units of
ao. Wave functions vanish on the dashed lines and, of course,
also on the wa11.

I I I

0 4 8 12 16 2G
0 4 8 12 16 20

Coordinate perpendicular to wall
{effective Bohr radii)

FIG. 7. Electronic wave-function contours of the second ex-
cited state for various distances a of the hole from the wall: (a)
a =7, (b) a =3, and (c) a =10 . Distances are in units of ao.
The second excited state is doubly degenerate as has been dis-
cussed in the text. In this figure only one of them has been
shown.
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FICi. 8. Comparison of the exact energies with approximate
solutions of Harper and Hilder (dots) and of Cxallardo and
Mattis (crosses).

method is insensitive to the position of the wall. %'hen
the hole is more than —,'ao away from the wall, their
method yields a ground-state energy only in qualitative
agreement with the exact solution.

VI. CQNCLUSIGN

In conclusion, the exact eigenstates of an exciton near
the surface of a semiconductor in the effective-mass ap-

proximation and also in the approximation where the hole
motion is neglected have been obtained. The ground-state
wave function has been studied in some detail, and the
way it changes between the two limits —when the hole is
deep inside the semiconductor and when it it right on the
surface —has been seen. The exact solutions have been
compared with some approximate solutions in the litera-
ture. It is hoped that this study is helpful in the under-
standing of the behavior of more realistic excitons, i.e., ex-
citons with a finite hole mass.

Rote added in proof. The author has recently received a
copy of Z. Liu and D. L. Lin, Phys. Rev. B (in press),
which treats the hydrogen atom in semi-infinite space,
essentially the problem treated here, by a modified
Green's-theorem method. A comparison with the exact
results presented here shows that Liu and Lin obtain
reasonably accurate energy eigenvalues when the exciton is
close ( (—,

' ao) to the surface.
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APPENDIX

%'e present Tables II and III.

TABLE II. First excited state m =0.
Wall distance

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.50
3.00
3.50
4.00
4.50
5.00

'A'=A + /E
f

a'.

Binding energy

0.111 111
0.115 101
0.119805
0.125 468
0.132 335
0.140 509
0.149 779
0.159 571
0.169 184
0.178 088
0.186039
0.193008
0.199076
0.204 359
0.208 974
0.213 024
0.216 596
0.219 760
0.222 576
0.22S 092
0.227 347
0.235 700
0.240 841
0.244093
0.246 179
0.247 528
0.248 402
0.250000

Separation constant'

2.000000
1.850 311
1.701 312
1.553 133
1.405 966
1.260060
1.115689
0.973 070
0.832 301
0.693 370
0.556 212
0.420 752
0.286 921
0.154 658
0.023 911

—0.105 370
—0.233 233
—0.359 723
—0.484 886
—0.608 769
—0.731 415
—1.327 685
—1.899 643
—2.452 256
—2.989 818
—3.515 912
—4.033 440

d /E //da

0.037 04
0.043 10
0.051 40
0.062 30
0.075 24
0.087 91
0.09649
0.098 13
0.093 23
0.084 47
0.074 52
0.065 00
0.056 55
0.049 31
0.043 17
0.037 98
0.033 57
0.029 81
0.026 58
0.023 79
0.021 36
0.012 90
0.008 08
0.005 16
0.003 33
0.002 15
0.001 40
0.00000
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TABLE III. Second excited state m = 1.

Wall distance Binding energy

I
E

I

Separation constant'
A' d /E f/da

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.50
3.00
3.50
4.00
4.50
5.00

0.111 111
0.113005
0.114987
0.117063
0.119240
0.121 523
0.123 921
0.126437
0.129 078
0.131 845
0.134743
0.137768
0.140 919
0.144 190
0.147 S70
0.151 047
0.154 606
0.158 229
0.161 897
0.165 589
0.169 284
0.187 137
0.202 692
0.215 210
0.224 807
0.231 955
0.237 183
0.250000

6.000000
5.875 538
5.752 193
5.630 027
5.509 110
5.389 518
5.271 335
5.154 653
5.039 571
4.926 197
4.814 645
4.705 036
4.597 495
4.492 149
4.389 124
4.288 541
4.190S16
4.095 152
4.002 539
3.912 750
3.825 843
3.435 288
3.115 895
2.859 994
2.657 637
2.499 132
2.375 981

0.018 52
0.01937
0.020 28
0.021 2S
0.022 29
0.023 40
0.024 56
0.025 78
0.027 04
0.028 32
0.029 62
0.030 89
0.032 12
0.033 27
0.034 31
0.035 21
0.035 94
0.036 49
0.036 83
0.036 97
0.036 90
0.033 85
0.028 14
0.021 99
0.016 57
0.012 21
0.008 86
0.000 00

'A ' =A +
i
E

/

a '.
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