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We report magnetic properties of CeSb,;_,Te, solid solutions in the whole range of composition
0<x <1. We find that a simple Heisenberg interaction treated in the molecular-field approxima-
tion is sufficient to describe the experimental results at x >0.05. In particular, a linear x depen-
dence of the effective exchange-coupling constants T'; and T, between nearest and next-nearest
neighbors, respectively, accounts for the nonlinear behavior of the variations of the Néel tempera-
ture T(x) which goes through a minimum at x~0.07. This model, however, is too crude to ac-
count for the magnetic properties at concentrations x <0.05, such as a maximum of the crystal-field
splitting energy A(x) between the I'; and I'g levels of the 4f-electron states at x ~0.04, a maximum
of the paramagnetic Curie temperature ®@*(x) at x~0.02, and a very strong monotonic decrease of
Ty(x) in the whole range 0 <x <0.05. To account for these experimental data, we have studied the
fourth-order indirect exchange in the mixing parameter, derived after a canonical transformation of
the Schrieffer-Wolff type is applied to the multisite Anderson model when both the crystal-field ef-
fects and the large spin-orbit coupling of the intermediate state of the Ce electron in the 4f subshell
are taken into account. This model provides an overall understanding of the magnetic properties of
CeSb, _, Te, solutions at all x. A detailed discussion of this model with respect to previous models
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is also reported.

I. INTRODUCTION

Investigations of CeSb have revealed the very compli-
cated magnetic phase diagram' due to strong anisotropic
exchange interactions. This material crystallizes in the
NaCl structure, and under the effect of the crystal field,
the 2F; _s, multiplet of the Ce** ion is split in a doublet
I'; and a quartet I'g separated by an energy A. One pecu-
liarity of CeSb is that the strength of the exchange in-
teractions as measured by the Néel temperature Tn =16
K, has the same order of magnitude as the crystal-field
energy A~28 K.»3 To investigate the effects resulting
from this feature, we have explored physical properties of
CeSb;_,Te, solid solutions. The Néel temperature of
CeTe is much smaller, namely Ty =2 K,*° although the
parameter A is roughly the same as in CeSb.> Also the
easy axis of magnetization is {100) in CeSb and (111) in
CeTe. We can then infer that the mixing of CeTe and
CeSb will lead to significant variations of both the aniso-
tropy and strength of the magnetic interactions. Both
transport® and magnetic measurements’ have already re-
vealed a nonlinear variation of A with x in such com-
pounds, for small Te concentrations. In this paper, we try
to reveal the nature of the microscopic anisotropic ex-
change interaction from the analysis of some magnetic
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properties in CeSb;_, Te, in the whole range 0 <x < 1.

In Sec. IT we report measurements of the magnetic sus-
ceptibility at high temperature, together with the varia-
tions of the Néel temperature Tx as a function of x. In
Sec. III these data are analyzed in the framework of vari-
ous models assuming that the magnetic exchange is isotro-
pic. It is shown that a two-parameter Heisenberg model is
sufficient to reproduce most of the experimental proper-
ties in the range 0.05 <x < 0.7, provided that crystal-field
effects are taken into account. At higher concentrations,
the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
accounts for the magnetic properties. The isotropic ex-
change models, however, fail to account for the magnetic
properties in the range 0 <x <0.05. At such concentra-
tions, the anisotropy of the indirect magnetic interaction
between Ce ions plays an important role. Anisotropic ex-
change models are reviewed in Sec. IV. It is shown in par-
ticular, that the Anderson model is a suitable basis to
analyze the deviation of the magnetic properties of the
solid solutions with respect to the isotropic models.

II. EXPERIMENTS

The magnetic susceptibility X has been measured as a
function of the temperature T at various tellurium con-
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FIG. 1. Thermal variations of C/x, where C is the Curie constant and x the magnetic susceptibility, in CeSb;_,Te,, for x =0.05
and x =0.70. The broken line is the fit by a Curie-Weiss law, and the solid curve is the theoretical fit by Egs. (7) or (11). The fact
that the experimental value of C/x for x =0.70 at low temperatures is smaller than the value predicted by the Curie-Weiss law
comes from the fact that the energy E (I's)— E (I';)=A is negative. To the contrary the large values of C/x for x =0.05 are associat-

ed with the fact that A >0 at this Te concentration.

centrations x. The results for x <0.05 have been reported
elsewhere.” At higher concentrations a single minimum of
the curves X ~!(T) is observed at the Néel temperature Ty .
The results are illustrated in Fig. 1 for two different con-
centrations. In the range T >4.2 K the experimental data
were obtained with the use of a magnetic balance in La-
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FIG. 2. Néel temperature Ty as a function of composition x
in solid solutions CeSb;_,Te,.

boratoire de Physique des Solides in Bellevue, and at
T <4.2 K, X(T) was measured with the use of the mutual
inductance technique at Institut d’Electronique Fon-
damentale of the University of Orsay. The accuracy of
the determination of Ty thus depends on which apparatus
has been used, and is basically ATy=10.1 K when
Ty <42 K and ATy=20.3 K when Ty>4.2 K.
ATy=+1 K for x =0.03 because the value of Ty de-
duced from neutron experiments and from the susceptibil-
ity data on two different samples from the same bath
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FIG. 3. Relative variations of the effective moment of the
cerium ions with respect to the theoretical value 2.54up, as a
function of x in CeSb;_,Te;.
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FIG. 4. Variations of the paramagnetic Curie temperature as
a function of x. Experimental points ®@*(x) are deduced from a
Curie-Weiss law fitted at high temperature. The solid curve
represents the theoretical variations ®(x) in the RKKY model,
for a ratio a/d, defined in Eq. (18), equal to 1.5.

differ by one degree. This can be understood by consider-
ing the variations of Ty as a function of x in CeSb;_,Te,
reported in Fig. 2. At small concentrations x <0.05, a
very strong decrease of Ty with x is observed since Ty is
reduced to 3.75 K in CeSbj ¢5Teg o5, to be compared with
16 K in CeSb. In particular, a difference of composition
8x =0.005 at x =0.03 is sufficient to shift Ty by an
amount of one degree. We can then infer that the uncer-
tainty ATy for this concentration x is dominated by un-
certainty in the determination of x and in the homogenei-
ty of the sample. At higher concentrations the variations
Tn(x) are much smaller and the uncertainty ATy is due
to the accuracy with which the temperature is measured in
the experiments. T goes through a minimum at x =0.7
(Ty=1.30 K), then a secondary maximum (7 =2.60 K)
is observed for x =0.90.

At higher temperature 150 < T < 300 K, the experimen-
tal curve X ~!(T) has been fitted by the linear law,

1

:C"‘

X—l

(T —-0%), (1)

using a least-squares method, for each concentration x in-
vestigated. Equation (1) is the usual Curie-Weiss law in a
molecular-field approximation. Let 72 be the determina-

TABLE 1. Determination of the effective magnetic moment
u of Ce ions and effective paramagnetic Curie temperature ®*
deduced from the least-squares fit of the magnetic susceptibility
by a Curie-Weiss law at different ranges of temperature, for
x =0.035. :

Temperature range u o*

(K) (up) (K)
300—250 2.59 —1.93
300—200 2.56 + 3.94
300—150 2.56 + 4.67
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tion coefficient of the linear regression. For all concentra-
tions we found 1—r2< 1072 so that Eq. (1) is well satis-
fied. The two regression coefficients C* and ®* coincide
with the Curie constant C and the paramagnetic Curie
temperature ® only in the limit T— . Such a limit,
however, was not achieved in our experiments, because at
room temperature, the thermal energy kzT is not large
compared with the crystal-field energy. We shall see,
however, in Sec. III, that crystal-field effects do not affect
significantly the slope C*~! of the curves X ~(T), since
(C*—C)/C <4%. We shall neglect this difference, and
write C* ~C. From this Curie constant, we can derive the
effective moment of the cerium ions. The results are re-
ported in Fig. 3. For all concentrations x, we find values
which are equal to the theoretical value
gupV'J(J +1)=2.54up, within 5%. The reasons why the
crystal-field splitting affects significantly the values of ®@*
rather than the parameter C~! will be reported in Sec. III,
together with an estimation of ®* —@®: The variation of
®* as a function of x are reported in Fig. 4. The uncer-
tainty in the determination of ®* is large, because the de-
viation of the experimental curve X ~(T) from the linear
behavior below 150 K restricts the range of temperature
useful for the calculation of ®*. This range of tempera-
ture is not only narrow but also far from the values of @*
which result from the extrapolation of the Eq. (1) down to
T~®*~0 K. To get an estimation on the accuracy of
the determination of ®*, we have calculated the regression
coefficients in the least-squares fit of X ~!(T) by Eq. (1) in
three ranges of temperatures: 150<7T <200 K,
150 < T <250 K, and 150 < T <300 K. In all cases 1—r2
was smaller than 10~2 and the variations of C were re-
stricted to 1%; the variation of ®*, however, could reach
5 K. An illustration is given in Table I. We can then
conclude that the uncertainty on ®@* is typically A®* ~5
K. The experimental data in Fig. 4 shows that A®*(x)
goes through a maximum at x =0.02+0.01 and a
minimum at x =0.55%+0.05. It is also likely that the
curve ®*(x) shows a secondary maximum at x =0.7, but
taking into account the value of A®*, this superstructure
needs to be confirmed by additional experiments in this
range of tellurium concentrations.

III. ISOTROPIC EXCHANGE MODEL

Neutron experiments have revealed the existence of
complex magnetic ordering in CeSb;_,Te, up to
x~0.02,® which evidences highly anisotropic exchange in-
teractions. For x =0.035 and x =0.05, however, such ex-
periments have shown that the samples are simple type-I
antiferromagnets (AF).® In the same way, the behavior of
X(T) for x>0.035 is characteristic of simple antifer-
romagnets with a single peak of magnetic susceptibility at
the Néel temperature. Therefore, we are led to make the
assumption that the substitution of Sb by Te by an
amount x >0.03 anneals most of the anisotropy in
CeSb; _,Te,. Hence, the exchange interactions should be
related to the isotropic Heisenberg exchange operator,

- -
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In the following, we study two magnetic properties of
the solid solutions CeSb;_,Te, with 0.05<x <1 in the
framework of this Hamiltonian treated in the molecular-
field approximation. We preferred to choose x =0.05
rather than x =0.035 as the reference concentration be-
cause the uncertainty ATy on the determination of the
Néel temperature was larger for x =0.035 as above men-
tioned.

In Eq. (2) the factor (g —1)*> where g is the Landé fac-
tor, arising from the Wigner-Eckart theorem has been in-
cluded in the definition of the exchange integrals. We
found it convenient to consider the sum over equivalent
pair interactions between a given angular momentum J i
and the z, spins of its rth neighbor shell characterized by
the exchange integrals T, .

A. Two-parameter model

The two-parameter approximation consists in replacing
Eq. (2) by the effective Hamiltonian,

2 z, o
%'2—22F,2 Ji'Jj. (3)
r=1 j=1

I') and T';, are the exchange integrals with the z; =12
nearest (NN) and the z, =6 next-nearest (NNN) neighbors
of the Ce** ions, respectively. If T, ,=T, Eq. (3)is the
truncation of the Heisenberg Hamiltonian to the NNN in-
teractions. However, the magnetic interactions extend
further out in the fcc lattice. This can be implicitly taken
into account by allowing the effective exchange integrals
T, and T, to be very different from the individual I"; and
I',, as in europium chalcogenides, for example.” I'; and
I'; in Eq. (3) then represent partial sums over exchange
contributions projected into NN and NNN interactions
alone. Equation (3) has been solved in the molecular-field
approximation.! Depending on the values of Ty and T,,
four different magnetic structures are possible in the fcc
lattice. They are characterized by their k vector which is
k =(0,0,0) for the ferromagnetic ordering, and
k=(1,0,0), k =(7,5,3), k=(1,7,0) for the type-I, -II,
-III antiferromagnetic ordering, respectively. In the whole
text k vectors are expressed in 277 /a units, where a is the
lattice parameter. These phases denoted, respectively, F,
AF1, AF2, and AF3, are illustrated in Fig. 5.!° The or-
dering temperature is proportional to the Fourier
transform of T: T y=C'T(k) which reads, for the vari-
ous phases,

AF1: Ty=-—2C'(2T,—-3T,),
AF2: Ty=—6C'T,,

AF3: Ty=2C"(T,—2T),
F: Tc=0 .

4)

In all phases the paramagnetic Curie temperature ® is
given by

®=6C'(2T,+T,) (5)
The constant C’ is defined by
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FIG. 5. (a) First, (b) second, and (c) third kind of antifer-
romagnetic ordering in the fcc lattice, named AF1, AF2, and
AF3, respectively, in the text, from Ref. 10.

C'— 2J(J+1) _
3kp

(6)

The kind of magnetic ordering which actually occurs for a
given I'y and I, is that kind which has the highest transi-
tion temperature. The result may be displayed as a phase
diagram in the I'y — I'; plane at T =0 reported in Fig. 6.
Let us first investigate the results of the model for the
two extreme concentrations x =0.05 and x =1. We shall
see in the next section that the assumption ® =®* is justi-
fied at these two concentrations, so that both ®@ and Ty
are known from experiment. We also know from neutron
experiments that CeSbg gsTep o5 is a type-I antiferromag-
net® and CeTe a type-II antiferromagnet.* From these
data, the use of Egs. (10) and (11) provides the set of
values (T'},T,) for x =0.05 and x =1, respectively. The
result is reported in Table II. The condition of self-
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FIG. 6. Magnetic-ordering phase diagram in the T';-T', plane,
where T'| and T, are the effective exchange integrals between
nearest and next-nearest neighbors in the two-parameter Heisen-
berg model. The dotted line is parametrized by the variations of
T'i(x) and T5(x) in CeSb,_,Te, reported in Fig. 6 in the whole
range 0.05<x < 1.

consistency of the model is that the type of magnetic or-
dering chosen to calculate (T';,T,) from Ty and @, by in-
verting Egs. (4) and (5), is also the ordering deduced from
the set (T',,T,) according to the diagram in Fig. 6. It can
be checked that this condition is fulfilled in the present
case investigated for both x =0.05 and x =1. Hulliger
and Ott!'! have studied the exchange interactions in
CeP,_,S, which is a very similar solid solution since we
are also in the presence of a mixing between a type-I and a
type-II antiferromagnet. These authors have shown that
the variations of T'; and T, was in first approximation a
linear function of the sulfur concentration. Let us extend
this result to the case of CeSb,_,Te, by assuming that
Ti(x) and Ty(x) are given by a linear interpolation be-
tween the sets (T'},T,) at x =0.05 and x =1 (Fig. 6). This
corresponds to the broken line in the phase diagram of
Fig. 6, which predicts that in the range 0.64 <x <0.79,
the type-III antiferromagnetic ordering is stable. At lower
concentrations x we have a type-I antiferromagnet and at
x >0.79 the type-II antiferromagnet is stable. From Eq.
(7) we can then calculate Ty(x). The result is reported in
Fig. 3. The agreement with experiment is reasonably
good. The model well accounts for the existence of a
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minimum in the curve Ty(x). Up to x=~0.7 the deviation
between theory and experiment is quantitatively small and
may be imputed to a small curvature of the curves I'j(x)
and T,(x). The only significant disagreement concerns
higher tellurium concentrations, and we shall discuss this
point later. It should be noticed, however, that linear vari-
ations of T'; and T,(x), although compatible with non-
monotonic variations of Ty(x), imply linear variations of
®(x). We have shown in the preceding section that the
curve ®*(x) goes through a deep minimum at x~0.5. Let
us assume one moment that ® ~®* also for this concen-
tration x. In that case we can use Egs. (4) and (5) to cal-
culate T'; and T, at x =0.5, following the procedure above
mentioned for x =0.05 and x =1. However, the condi-
tion of self-consistency on the magnetic ordering in the
course of this procedure is not fulfilled for any of the
magnetic orderings. It means that the large negative value
of ® at x~0.5 if ®~@* is not compatible with the small
Neéel temperature in the framework of the two-parameter
model. It is the purpose of Sec. IIB to investigate the
possibility to input the nonlinear behavior of ®*(x) to
crystal-field effects.

B. Crystal-field effects

The comparison between ®(x) and ®*(x) supposed im-
plicitly that these two quantities are identical. This is true
only in the absence of crystal-field effect. When A=40,
however, the crystal field’s only magnetic susceptibility of
the J = 3 manifold reads'?:

C 21T (1+2¢79)

_+®: s

X 5426 2+ (32/8)(1—e %)

s A @)
T kgyT

To simplify the notations, we shall take k=1, which
amounts to express the energy A in kelvins. Equation (7)
can be written

C
X= T—-0,7)"° @®
with
-5
00T 21T (1+42e~°) ©)

T 54260 54(32/8)(1—e-5)

At high temperatures where 8 <<1, a Taylor’s expansion
as a function of 8§ can be performed, to give

TABLE II. Typical results of the molecular-field approximation to describe magnetic properties of
CeSb,_,Te,. Ty and T, are effective exchange constants in the two-parameter Heisenberg model. ®
and Ty are the calculated paramagnetic Curie temperature and Néel temperature, respectively. At
x =0.05 and x =1, T'; and T, have been chosen so that the model reproduces exactly the experimental

data denoted by an asterisk.

r]/k}; rz/kg ® TN

x Phase (1072 K) (1072 K) (K) (K)
0.05 AF1 —2.3 +9.2 + 1.57* 3.75%
0.64 AF1—AF3 —4.35 —0.0512 —3.06 1.01
0.79 AF3—AF2 —4.8 —2.40 —4.20 0.84
1 AF2 —5.6 —5.7 —5.9* 2.00*
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FIG. 7. Theoretical variations of the effective exchange in-
tegrals T'; and T, between nearest and next-nearest neighbors,
respectively, as a function of the composition x in the two-
parameter Heisenberg model, resulting from a linear interpola-
tion between x =0.05 and x =1. '

8T8*
189 °
®,(T) should not be confused with ®@* because ®; depends

on temperature. According to Egs. (8) and (10) we can
write

O—-0(1Nx~ (10)

2
T—04+-25

X—l
189T

_1 2
=C +7T0(8%), 1

where O(8?) is the residue of the series development as a
function of 8, proportional to 8. From Eq. (11) we can
derive the two regression coefficients of Eq. (1) in a least-
squares fit of the curve X ~!(T). The first one is the effec-
tive Curie constant C* defined by

__8A?
18972 °

C d

c*  dr

1

X

(12)

Since the least-squares fit is performed in the temperature
range 150 < T < 300 K, we can take T =250 K in Eq. (12).
A depends on x. The highest value of | A| is found for a
typical Te concentration x =0.5 where a value A~—200
K has been deduced from susceptibility measurements.'®
As usual A is defined by A=E (I'g)—E(I'7). The nega-

4
¥ 3
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FIG. 8. Theoretical curve of the Néel temperature Ty as a
function of x in the two-parameter Heisenberg model. Experi-
mental points are also reported for comparison.
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FIG. 9. Temperature TRXKY(q), proportional to the g com-
ponent of the Fourier transform of the RKKY range function
plotted against the composition x, for the two values of the ratio
a/d defined in Eq. (18): a/d =1.5 (lower scale), and a/d =0.3
(upper scale). Calculations have been done for 4 =(0,0,0) (curve
1), §=(4,3,7) (curve 2), and §=(1,0,0) (curve 3). The mag-
netic structure, determined by the § vector which maximizes
TRKKY(q) is also reported: F is ferromagnetic arrangement, and
AF1,2 stand for the antiferromagnetic ordering of the first and
second kind. The part of the curves where Trxxy(q) coincide
with the magnetic ordering temperature in the RKKY model
are drawn thicker.

tive sign of A then means that the ground states belong to
the I'y quartet. For A=—200 K, (C*—C)/C~3%. This
is the relative error AC /C, when C* is replaced by C as it
has been done in Eq. (1). At other concentrations x, | A |
and then AC/C will be even smaller, and we can then
neglect it. That is the very reason why the effective mo-
ment u could be deduced unambiguously from experi-
ments in Table I. The second regression coefficient is de-
duced from Egs. (1), (11), and (12):

C*
c

16A2

— . 1
189T 13

O*=

Replacing C*/C by 1 in Eq. (13), we get the approximate
expression,

_ lea?
1897 ’

valid if T >>A. This correction may be very large. For
the same example with T'=250 K and A= —200 K, Eq.
(10) gives ® —®*=13.5 K for x~0.5. In principle when
8 is large, the series development in powers of § is not jus-
tified. In such a case the correct procedure is to deduce @
from the theoretical fit of the experimental curve X(7') by
Eq. (13). It turns out, however, that the result of this fit
reproduces (within 10%) the value of ® —®* as given by
Eq. (20). In the first approximation, we have then a for-
tuitous cancellation of the terms in order higher than 82 in
the series development of X as a function of A. As a

0*~0 (14)
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consequence, the renormalization of ® associated with
crystal-field effects is contained in the simpler equation
(20), for any value of A. In particular Eq. (14) accounts
for the difference between the experimental value of @*
and the theoretical value ® = —2 K deduced from Eq. (5)
with the values of T'; and T, given in Fig. 7, for x ~0.5.
For the two boundary concentrations x =0.05 and x =1,
|A| <50 K so that ®—®* <0.8 K, which is negligible.
This justifies that we have replaced ® by ®* to calculate
T'; and T, according to Egs. (4) and (5) for x =0.05 and
x =1. From these results, we can suppose that the non-
linear variations of ®* as a function of x, with a broad
minimum at x~0.5, are due to crystal-field effects, and
are consistent with a linear decrease of ® with x in the
whole range 0.05 <x < 1. To be convincing, however, the
argument should lay on an experimental determination of
A~ —200 K at x =0.5 independent of the magnetic sus-
ceptibility measurements. Neutron experiments and trans-
port measurements are required for this purpose. For the
time being, we can only say that the attribution of the
minimum of ®*(x) at x ~0.5 to crystal-field effects is a
reasonable assumption. In the next paragraph we explore
the other alternative, that the minimum is related to a
RKKY oscillation.

Another motivation for the study of RKKY interac-
tions comes from the fact that in the range 0.7<x <1, a
maximum of Ty is observed, followed by a decrease of Ty
with x up to x =1, while our model in Sec. II predicts a
monotonous increase of T with x in this range of con-
centrations where the solid solutions are expected to order
in the type-II configuration. According to Eq. (4), Ty
only depends on T, with such a spin arrangement, and
within our model, a decrease of T with x close to x~1
would mean an increase of the algebraic value of T,
which supposes a nonmonotonic behavior of T,(x) going
through a minimum at x~0.9. We must recall that, by
definition, T, is an effective exchange integral, which is
sensitive to the long-range interaction I'(R;;). The oscil-
lating behavior of ', may be result of the RKKY-type os-
cillations of the indirect exchange I'(R;;) via the free car-
riers at a long-range scale, as a function of x and the car-
rier concentration.

C. RKKY interactions

By analogy with other semiconducting lanthanide com-
pounds,'* we could suggest that such variations of ®* are
the response of the RKKY interaction to the variation of
the conduction-electron population in the 5d orbital, as x
is varied. The paramagnetic Curie temperature derived
from the RKKY exchange interaction with the spherical
band approximation is'®

O=4k; S F(2kpR,,) . (15)

A is a coefficient of proportionality which does not de-
pend on the wave vector at the Fermi energy, kp. % is
the RKKY function,

2kFRmCOS(2kFRm )_Sin(szRm )
(2kgR,, )* )

F(2kpR,, )= (16)
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In first approximation, we can presume that the number
of conduction electrons per magnetic ion, n, is proportion-
al to x:

n=ax a7
It follows that k. is related to x according to the law,
1/3 3 1/3
a X
kp= |— —

d is the degeneracy of the conduction band. The factor
(a/d)"? then appears as a scaling parameter of the abscis-
sa in the curve ®(x), while A4 is a scaling coefficient for
the y axis. We do indeed find a good agreement between
the experimental values of ®*(x) and the theoretical ex-
pression in Eq. (15) at all tellurium concentrations for

a
i 1.5.
This is illustrated in Fig. 8. In particular a sharp max-
imum at x =0.04 is predicted, which agrees with the large
value of ®* observed at x =0.02.
Just as in the two-parameter model, we can derive the
ordering temperature from the Fourier transform of the
RKKY range function'®:

(19)

Ten=TRY(G=k),

c= .

TREKY ()= akf e’ X m 7 (2ksR,,) (20)

where k is the wave vector of the magnetic structure, i.e.,
the vector ¢ which maximizes TR¥KY(q§) in Eq. (20).
With the RKKY interaction, the phase AF3 is not stable
and the wave vectors of interest to make contact with the
previous two-parameter Heisenberg model are ¢ =(0,0,0),
g=(1,0,0, and ¢=(3,7,7). The temperature
TREKXKY(G) has been calculated as a function of ky for
such values of g in the fcc lattice.!” This result is illus-
trated in Fig. 9 where we have plotted TR¥KY({) as a
function of x, according to Egs. (18) and (19). At low
concentration x the maximum value of TREKY(q) is ob-
tained for ¢ =k =0 so that the ferromagnetic phase is sta-
bilized. Then the AF2 phase is stable up to x =0.3.
These results are obviously in complete disagreement with
experiments since CeSb is not ferromagnetic in the ab-
sence of external field and that CeSb,_,Te, for x =0.05
is a type-I antiferromagnet. According to the model,
however, this phase AF1 is found to be stable for x > 0.3,
up to x =0.8, and in the range 0.8 <x <1, the model
predicts the AF2 spin arrangement, in agreement with ex-
periments. Moreover, the maximum of the curve Ty(x)
at x =0.9, and the decrease of T with x for the AF2
phase in the range 0.9 <x <1 are also accounted for by
the model. The main disagreement between theory and
experiments for x > 0.3 is that the model, according to
Fig. 9 predicts a maximum of Ty(x) at x~0.6, instead of
a minimum. This is connected with the incompatibility
between large negative values of ® and the small values of
Ty, a result which we had already inferred in the two-
parameter model. We can then conclude that the agree-
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ment between the RKKY model and experiment improves
as x increases: For x <0.3 the model fails to reproduce
the spin arrangement in the ordered phase and the evolu-
tion of Ty as a function of x. In the range 0.3 <x <0.8
the model still fails to give the proper variations of Ty(x)
but accounts for the nature of magnetic ordering. At
x > 0.8, an overall agreement between theory and experi-
ments is obtained. This behavior can be understood as
follows. In the AF2 structure of a fcc lattice, nearest-
neighbor interactions always cancel. This is manifested in
the fact that Ty only depends on T, in Eq. (4). It follows
that this structure is imposed by long-range magnetic in-
teractions like the RKKY interaction, and is not sensitive
to short-range superexchange interactions, so that the
model may fit the magnetic properties of CeSb,_,Te, at
x >0.8. At smaller concentrations, however, the AF2
structure is no longer stable and the nearest-neighbor in-
teractions become of a primary importance. We can then
expect the magnetic properties of the solutions to be dom-
inated by short-range interactions, which is the reason for
the failure of the RKKY model, and also the reason for
the success of the two-parameter model to account for the
variations of Ty(x). Since TRXKY[g =(3,+,+)] almost
vanishes for x <0.1 in Fig. 9, the experimental variations
of Tx(x) at such concentrations are by no means connect-
ed with the RKKY interactions. Moreover, the large
value of a/d is rather unphysical and makes the interpre-
tation of the curve ®(x) in terms of RKKY interaction
unlikely. In effect a is not expected to be significantly
different from unity except in the limit of small x, because
CeSb is a n-type material with a carrier-concentration
n=~10" cm~—2 according to transport experiments.® Ow-
ing to the threefold degeneracy of the ¢,, branch of the 5d
conduction band in NaCl compounds, we have d =3, so
that we expected a typical ratio a/d~+ smaller than uni-
ty, at variance with the value in Eq. (19). Then we regard
the overall agreement between the experimental variations
of ®*(x) and the curve ®(x) deduced from Eq. (15) as ac-
cidental.

The results obtained for a/d =+ are readily seen in
Fig. 9, since this choice of a/d only contracts the abcissa
by a factor 4.5 with respect to the case a=1.5. In the
range 0.1 <x <1, the variation of ®(x) thus obtained
(curve 1 in Fig. 9) decreases monotonically with x, in
agreement with the prediction of the two-parameter model
described in the previous paragraph. Also the AF2 phase
now extends in the whole range 0.5 <x < 1. In this range,
Ty goes through a maximum in agreement with experi-
ments. This corroborates that RKKY interactions well
account for the magnetic properties of CeSb;_,Te, in the
AF2 phase at high tellurium concentrations, typically
x>0.7. At lower concentrations, however, the same
disagreement between theory and experiments are ob-
served as in the case a/d =1.5 and the model predicts a
stable ferromagnetic ordering extending in the whole
range 0 <x <0.5.

D. Limits of the isotropic models

The above studies give an overall understanding of the
magnetic properties of CeSb,_,Te, in the whole range
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0.05<x <1, in the framework of the two-parameter
Heisenberg model, with an extra RKKY oscillation of
Ty(x) in the range 0.7 <x < 1. It must be noticed how-
ever, that the nonlinear variation of ®* was deduced from
the nonlinear variation of A with x. The problem now is
to understand why the variations of A are not linear.

Also the two-parameter model is purely phenomenolo-
gic, and does not tell anything on the physical nature of
the magnetic interactions from which T'; and T, are issu-
ing. With this respect, we have shown that at x <0.05
isotropic interactions do not dominate the magnetic
behavior of the material. In fact the orbital momentum of
the Ce’t ion is large (1=3), so that the spin-orbit cou-
pling is strong and the interactions are strongly anisotro-
pic in nature. It is the purpose of the next section to study
such anisotropic interactions, together with their ability to
describe magnetic properties at x <0.05 and nonlinear
variations of A with x, which are beyond the scope of the
above models.

IV. ANISOTROPIC EXCHANGE MODELS

Mainly two models compete for the calculation of the
magnetic exchange interactions in CeSb and other cerium
compounds, namely the model of Kasuya et al.'® and that
of Cooper et al.'® This last model follows the theory for
two-ion anisotropic exchange of Cogblin and Schrieffer.?’

Both models lay on the same physical basis: the in-
direct spin-spin interaction mediated via charge carriers
originates from the hybridization between localized 4f-
electron and charge-carrier states. We use the terminolo-
gy “charge” carriers rather than “free” carriers to denote
conduction electrons, or holes in the valence band, for
reasons which will be explicated later. The reason why
the hybrid exchange interaction dominates other anisotro-
pic indirect-exchange channels is that the 4f level is locat-
ed close to the conduction- and valence-band states in ceri-
um, contrary to the situation met in other rare earths.
This interaction is strongly anisotropic due to the large
spin-orbit coupling of the intermediate states, associated
to the finite value of the orbital angular momentum 1=3
of the Ce’* ion.2%2!

The main difference between the two models above
mentioned concerns the description of the charge carriers
in spin-orbit coupled states. One approach consists in the
tight-binding description of the Bloch wave function:

lk‘i -

Yiu (D)= e = "Pyu(T—R,), 1)

where the suffix »n labels the sites of the Ce ions. The
Wannier function 5, is a linear combination of atomic
orbitals (LCAO) which have the orbital angular momen-
tum /, spin s, and a total angular momentum state |j,M ).
Kasuya et al. have considered the atomic limit which con-
sists in replacing Wy, by its limit at k =0:

Wim(F)= 3 Yigu(T—R,,) . (22)

With this regard the charge carrier is not free, but is local-
ized in atomic orbitals around each site.
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However, the materials we are dealing with are semi-
conductors and metals, so that the Bloch sites with the
electrons traveling rapidly through the whole crystal is a
more appropriate description of the charge carriers.
Cogblin and Schrieffer have considered the free-electron
limit, in which Eq. (21) is replaced by

-

V(P ece'* T, 23)

where o is the spinor for the spin s =5. Then the free-
carrier behavior is considered from the point of view of
scattering of spherical place waves, according to the stan-
dard decomposition

e KT = 3 (21 4 1)iljy(kr)e ™ Y (64,

ILm

(24)

where j; are Bessel functions and Y;” the spherical har-
monics.

To investigate more quantitatively the magnetic proper-
ties associated with such wave functions, it is necessary to
specify the Hamiltonian. The Cogblin-Schrieffer theory is

based on the Anderson Hamiltonian,??
H=Hy,+H,,

U
Hy= 2 €xhim + EEonM-f—— > nynpe, (25)

2 o

2 Vka MCM+V*CMCkM .

H, includes, respectively, single electron band, the 4f 1
configuration energy, and a Coulomb energy to take into
account correlation effects when an electron is added to
the 4f! configuration. C,L creates an electron in the state
j= % and z projection M. cyy, creates a free carrier with

wave vector K in the quantum state |j=>,M).

The hybridization energy H; is considered as the per-
turbation term, which is the usual procedure of the
Schrieffer-Wolff transformation.?®> The idea of the
Schrieffer-Wolff transformation is to perform successive
canonical transformations aimed at eliminating odd
powers of the mixing parameter V). The transformed
Hamiltonian is

3) g, _gl) _g3)
57 eS  He=S "S- ..

H= e , (26)

where the superscript on the S matnx indicates the order
in ¥, of each successive term. S* is chosen so that the
transformed Hamiltonian is

ﬁ:H0+H(2)+H(4)+ S 27)

where the superscript on H indicates the order in Vj; of
each successive term. Cogblin and Schrieffer have calcu-
lated the term in H® associated with the Kondo-type
coupling of localized f electrons to free carriers but
neglected H®. Actually the total effective interaction be-
tween localized moments is then

(i [Heg | fY=Ci |H® | f)

+2 (l IH(Z)‘lEa><alH(2)1f>
a o—E

(28)
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where |i) and |f) are degenerate ground states of Ho;
E, represents the energy of the intermediate states. H g
is fourth order in ¥V, and higher-order terms have been
neglected. From Eq. (28) we can derive the interaction be-
tween a pair of Ce®>* ions separated by R;; as follows:

2 FM’M’(R,‘J') 2 (nM l))
MM

cM Dep(i)—

X |esrerr ) — 3, (npe)) (29)
&

which defines the coupling constant I'™'(R;;). The an-
isotropic nature of this interaction lies in the fact that
I'MM" depends on M and M’, contrary to the quantity T in
Eq. (2). To facilitate the discussion, it is convenient to
sort out the dependence and write

MM (R,;)=F(R;)G (M,M’) , (30)

where F(R;;) is the range function. To calculate this ex-
pression, however, is a difficult task and further approxi-
mations are needed for practical purposes. Cooper et al.
only considered the contribution to I'M '(Rij) arising
from the Cogblin-Schrieffer interaction, so that they
dropped the first term in Eq. (28). To the contrary, in a
different context, Goncalves da Silva and Falicov®* have
calculated the first term of Eq. (28) in a fourth-order per-
turbation theory, but dropped the second term. Actually,
it is important to build a model which takes into account
both terms in Eq. (28), because they both have the same
order of magnitude. In this context, an improvement to
the Cooper model consists in neglecting the effect of the
first term in Eq. (28) on G (M,M’) and consider only its
effect on the range function F(R;;). This is justified be-
cause G (M,M') only describes the anisotropy of the spin-
spin interactions between 4f electrons, which is essentially
determined by the symmetry of the j =3 configuration.
This model amounts to simplify the structure of the local-
ized orbitals to include only spin degeneracy in the deriva-
tion of F(R;;). Such a calculation has been carried out by
Proetto and Lopez.?® The result is

l q|2 ig- l_fk)

FRy)= 3 0o TR S |y |2
7 ” N EO_Ek)Z

fi 1—
w | Trra 1= kwe | (31)
€k+q—€  €kyq—Eo

fx is the occupation number given by the Fermi function.
F(R;;) can be calculated in the case of a parabolic band
€x =#"k?*/(2m*), assuming that ¥, does not depend on g.
The first term in the large parentheses contains contribu-
tions from both H® and H*. When |k|=|k+d]|

=k, the numerator remains finite, but the denominator
vanishes, giving rise to a singularity of the Friedel type,
and consequently RKKY oscillations which dominate the
behavior of F(R;;) at large distances. In particular, in the
limit kpR;; >>1, F(R;;) reduces to

F(R;;)=kpF (2kgR;;) . (32)
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The second term in the large parentheses contains contri-
butions from H'® only, and is then missing in the model
of Cooper et al. The energy denominator contains E, and
never vanishes, so that this term does not give an oscilla-
tory behavior, but is always antiferromagnetic with an ex-
ponentially decaying strength. In particular, in the limit
krR;j <<1, this term is predominant and gives**?°

o ~2oR
FRy) == =ps (33)
with kg defined by
(2m*E )1/2
o= — 0 (34)

V. DISCUSSION

A. Range-function effects

Equation (33) gives at least a partial explanation why
RKKY interactions are not sufficient to describe the mag-
netic properties of CeSb,_,Te,. Villain et al.?’ have
studied the exchange interactions between different layers
in the Ising model. They have been able to fit the zero-
temperature phase diagram of CeSb as a function of the
applied magnetic field, by a RKKY interaction except for
nearest neighbors. Moreover, these authors have shown
that the interaction between nonmagnetic layers resulting
from the superposition of the RKKY interaction plus an
antiferromagnetic interaction decaying exponentially with
distance, is sufficient to account for most of the ferro-
paramagnetic phases observed in CeSb between 9 and 15
K. Although the authors considered such a short-range
interaction as a consequence of a coupling to
longitudinal-optic modes, we can also presume that it is
simply the superexchangelike term given by Eq. (33).
Contrary to Villain et al., Cooper et al. did not calculate
explicitly F(R;;). In fact they used a two-parameter ap-
proximation, very similar to the one we used in the previ-
ous section, since they truncated F(R;;) to the next-
nearest neighbors r,. They only considered F(r;) and
F(ry) (or T'y and I',) in Eq. (30), as adjustable parameters
which can be chosen in order to fit experimental data.
This may be the reason why this model is so successful to
describe the magnetic phase diagram of CeBi and CeSb.
The advantage of Cooper et al. is that the anisotropy does
not follow from the arbitrary assumption that the in-
tralayer interaction is large with respect to the interlayer
interaction, but is contained in the term G (M,M') which
has been calculated explicitly. At this stage, we cannot
make any comparison with the model of Kasuya et al. be-
cause these authors did not calculate the magnetic phase
diagram, nor the indirect spin-spin interactions which are
fourth order in the mixing potential. They only evaluated
second-order effects in the anisotropic mixing p-f in-
tegrals and showed that this anisotropy accounted for the
(100) easy axis of magnetization in CeSb,'® a result
which is also inferred from the model of Cooper et al.,'®
with the Coqblin-Schrieffer interaction.
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B. Anisotropic effects

Up to now we have focused attention to the range func-
tion F(R;;). However, the anisotropic term G (M,M’) is
also of fundamental interest. To calculate this quantity,
we can notice that the expansion in spherical plane waves
in Eq. (24) corresponds to a decomposition of the propa-
gating wave along the basis | kImo) where m and o are z
components of the orbital momentum / and spin s =,
respectively. The Cogblin-Schrieffer interaction (and the
model of Cooper et al.) selects out only the f resonant
scattering so that only the component / =3 in Eq. (24) is
considered. This state must be expressed in the |kM )
basis, in which the Hamiltonian in Eq. (25) is expressed,
with j = 3; we can write

| kM) =ap |k,3,M +3,— 3 ) +Bu | k3.M — 3,4+ 1) ,
(35)

where a,; and B, are appropriate Clebsch-Gordan coeffi-
cients. It follows that only the m =M+ components
enter the equations, and G (M,M’) is proportional to'°

+1 .
f_l ekaleIAigl/Z | 20x , (36)
where P,M *172 is the Legendre polynomial. To lowest or-

der in 1/kR the only nonvanishing integrals in Eq. (36)
are for M = i%. So, the exchange interaction in the
model of Cooper et al. couples the f-orbital states with
M =++. These states correspond to the f orbitals with
m =0, i.e., those that pile up charge along the bonding
axis between Ce ions. This exchange interaction, however,
does not interact with the f-orbital states with M =+
and M = i% separately, since the integral in Eq. (36) van-
ishes for such values of M. It means that the exchange
will interact with the two bonding states which are the ap-
propriate mixture of M =++ and M =+ 3 states piling
the charge along the bonding axis, so as to reproduce the
charge symmetry of the m =0 states, but will not interact
with the two antibonding states piling up the charge out-
side the bonding axis. The physical meaning of this result
is obvious: The exchange interaction between Ce ions
breaks the sphericals symmetry of the single isolate Ce3+
ion and reduces the symmetry to that of the cubic lattice.
Then it contributes to the crystal-field energy. In the
presence of the crystal field, the eigenstates of the 4f elec-
trons are linear combinations of the functions with dif-
ferent M values and are given by?®

Iy |j,=7F0.83)=0.4083 | +3)—0.9129| %), -

Ty |j,=+1.83)=0.9129| +3)+0.4083 | F1),
|j3=+0.5)=|+73).

The T'; eigenstates are the antibonding states.

| j;==1.83) are the bonding states, as well as the two
states |M++ ) which are still eigenstates because they
have zero-orbital-momentum projection m. These sym-
metry arguments show that the interaction affects dif-
ferently the I'y quartet and the I'; doublet, and then af-
fects A. This result was inferred in the model of Kasuya
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et al.?® and the same holds true in the model of Cooper
et al. To make contact with Ref. 25, we will assume that
the exchange interaction mostly affects the I' states.

C. Crystal-field effects

The exchange interaction is responsible for a shift of the
I's level and then a change of the energy A, which can be
derived from the second-order perturbation theory under
the form

Uziél 2

kM

| kM |vi | ¥) |
Eo——ﬁi

fi. (38)

Yy is the eigenstate of the I'y quartet; i =1,2 specifies the
nature of the free carrier and refers to an electron in the
conduction band and a hole in the valence band, respec-
tively. vy is the appropriate coupling potential. Equation
(38) is the generalization of the expression of U as derived
by Kasuya et al.?® Since Ey <€), U is negative and shifts
the T’y level to lower energies, which accounts for the low
value of A in CeSb and CeBi with respect to the value de-
duced from the point charge model. It also accounts for
the lower value of A in CeBi than in CeSb because more
free carriers (electrons plus holes) are expected in CeBi
due to a significant overlap of the conduction and valence
bands, and U is proportional to the carrier concentrations
n; owing to the occupation number f; in Eq. (38). The
evolution of A as a function of x in CeSb,_, Te, is even
more interesting since A goes through a maximum at
x =0.04+0.01. Our model can account for this result if
we admit, as Kasuya et al. did, that CeSb is a semimetal
with a small overlap of conduction and valence bands.
When x increases from x =0 we expect the hole concen-
tration n, in the valence band to decrease and the electron
concentration n; to increase. These two effects give oppo-
site contributions to A. If the p-f coupling is stronger
than the d-f one, the larger contribution to A comes from
the decrease of the hole concentration, so that A increases
until the concentration x,, is reached where the valence
band is fulfilled. A further increase of x only increases
ny, implying a decrease of A. To the contrary, the model
of Kasuya et al., which considers the p-f mixing alone,
cannot account for the peak of A(x) at x,,, but can only
account for the increase of A(x) at x <x,,.

The reason for this advantage of our model is that it
does not depend on the nature of the free carrier, and is
the same whether the free carrier originates from d elec-
trons on a cerium site or from p electrons on an anion site,
or from both of them. This property is the consequence
of the reduction of the wave function to a plane wave in
Eq. (23). In the model of Kasuya et al. the wave function
is described in terms of the Wannier function in Eq. (22)
which depends on the nature of the charge carrier: if
I =1, Eq. (22) represents an eigenstate of the I';s point of
the Brillouin zone and is then associated with a hole in the
valence band. Then this choice of / in the model of
Kasuya et al. is a reduction of the problem to a non-
resonant scattering of carriers of a given type (holes), al-
though the choice / =3 in Eq. (24) of the model of Cooper
et al. is only the approximation of a resonant scattering of
free carriers of any type. We used the band-structure ter-
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minology in Sec. II, and pointed out that Eq. (22) is an
LCAO approach. In the same way Eq. (24) is the decom-
position characteristics of muffin-tin theories. The differ-
ence is that the wave function in Eq. (23) is assumed to be
a plane wave even at the Ce sites. A better approximation
would consist in identifying W, (T) to a plane wave outside
the muffin tin at > R, and to a LCAO inside the muffin
tin r <R, where R is the radius of the Ce ion. This is the
augmented—plane-wave picture (APW), which shows that
the reality is somewhere in between the description of the
charge-carrier eigenstates by Kasuya and Cooper, respec-
tively.

D. Magnetic properties at x <0.05

The fact that the exchange interaction comes from orbi-
tal states that pile up the charge along the bonding axis
gives strongest coupling in the (100) planes.!” This cou-
pling is ferromagnetic, which explains the positive value
of ® observed at low concentrations x in CeSb;_,Te,.
Nevertheless, the model of Cooper et al. does not account
for the antiferromagnet ordering between the { 100) layers
since it favors the ferromagnetic ordering. The antifer-
romagnetism may be induced by the short-range interac-
tions coming from H™® [see Eq. (33) and the discussion in
Sec. VA]. We have pointed out that one goes from this
short-range interaction to the RKKY long-range interac-
tion as the free-carrier concentration n increases. So the
increase of x from x =0 will reduce the short-range anti-
ferromagnetic interaction, which implies a decrease of Ty
and an increase of ®, in agreement with experiments.
Then at x~0.02 the range function F(R;;) oscillates with
R;j, and so does the Fourier transform F(q =0) as a func-
tion of n or x, but the oscillations as deduced from Eq.
(31) are quantitatively different from the RKKY ones.?
Since ® < F(g =0) the maximum of ® at x~0.02 may be
due to such an oscillation, shifted with respect to the
RKKY predictions. This shift shows itself in the
anomalous ratio a/d in Eq. (19) when we try to fit experi-
ments with the RKKY model. At larger concentrations
x >>0.02, however, the limit in Eq. (32) is reached for
smaller values of R;; and the RKKY model should pro-
vide a good description of the variations ®(x) because @
is essentially sensitive to the long-range part of the in-
teractions. To the contrary Ty «< F(g =Q) where Q is the
wave vector of the magnetic order. Since Q is large, Ty is
mainly sensitive to the range function F(R;;) at small dis-
tances R;;, where the antiferromagnetic interactions create
the deviation from the RKKY function. This explains
why Tn(x) cannot be deduced from the RKKY model
which, however, provides a good description of the curve
O(x) for x >0.05, a result which we had noticed in Sec.
II.

VI. CONCLUSION

Magnetic properties of CeSb;_,Te, solid solution have
been investigated. To account for the experimental re-
sults, we have studied the properties of the fourth-order
indirect exchange Hamiltonian in the mixing parameter,
derived after a canonical transformation of the
Schrieffer-Wolff type is applied to the Anderson model.
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This indirect magnetic interaction H g contains the mag-
netic exchange derived by Cooper et al., originating from
the two-ion anisotropic exchange of Cogblin and
Schrieffer, but also contains antiferromagnetic short-range
interactions which were not present in the models of Refs.
19 and 20. Even so, H is not the only exchange mecha-
nism which may occur in these materials. In particular
this model only considers a resonant exchange between
free carriers (electrons or holes) and the 4f electrons.
Nonresonant processes also exist. For example, we have
shown that the exchange interaction of Kasuya et al. has
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the same symmetry and the same fundamental properties
than the interaction of Cooper et al., with the limitation
that the model of Kasuya et al. only considers the mixing
of holes in the valence band with the 4f electrons on the
Ce sites. The problem on a theoretical point of view, is
not to build an untractable model which would take into
account all the possible magnetic interactions, but to select
exchange processes which dominate the physical proper-
ties of the material. In this respect, we can conclude that
H 5 is the simplest Hamiltonian which satisfies this pur-
pose at least qualitatively.
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