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Electron mobility in semiconductors. II.
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An extension is given to a previous calculation of the linear electric mobility of a single electron
interacting only with lattice vibrations. These calculations are based on the path-integral represen-
tation of Feynman et a/. for a polaron. They apply only in the macroscopic limit, the limit of small
wave vectors in a representation of the electron s distribution function. The present calculation at-
tempts to find the complete kernel of the path integral, which is no longer taken to be Markovian,
to an accuracy of order 1/n, where n is the number of elapsed collisions. The kernel is found ex-
pressible in terms of functions of the time only. These functions satisfy soluble coupled integro-
differential equations. We argue that the solution of these equations, which leads to the steady-state
distribution function in Wigner electron coordinates r and u obtained previously, is the unique
physical solution.

I. INTRODUCTION

The desire to place electron transport in crystals on a
first-principles basis has existed for a long time. The
problem of interest in this paper is that of a single electron
interacting only with the lattice vibrations of the crystal,
which can be under the influence of a weak electric field
E. In other words, we have linear mobility and the
effective-mass approximation in a nondegenerate semicon-
ductor. Different approaches to calculating the polaron
mobility have been taken. Feynman, Hellwarth, Iddings,
and Platzman' eliminated the phonon coordinates from
the problem, leading to an electron-density matrix in the
form of a double path integral. Several calculations of
mobility using the Feynman formula and a Boltzmann
and/or variational technique' have been carried out in
the past.

Just as the Feynman path-integral formulation of quan-
tum mechanics can be reduced to the Schrodinger equa-
tion, so too can the double path integral for the density
matrix be reduced to an integro-differential (ID) equa-
tion. In a previous publication (hereafter referred to as
I), we attempted to solve this ID equation with a Marko-
vian trial solution for the density matrix. The approach is
based on classical Brownian motion, where the random
motion is assumed unaffected by the motion of the colloid
particle. We assume in I that we can average out the
memory effects of the previous motion of the electron.
These memory effects are stored in the lattice in the com-
plex amplitudes of vibration. Simplified models
representing silicon and germanium gave encouraging re-
sults in regard to the values of the deformation-potential
coupling constants, the temperature dependence of mobili-
ty, and the adherence to the Einstein diffusion relation. It
turned out that for the typical semiconduction parameters
considered there the electron-phonon interaction effective-
ly occurs in a time interval only of the order of 10 of

the periods of the most relevant lattice modes of vibration.
Thus memory effects may be minimal, and the Markovian
approach appears realistic.

In attempting to develop a means of calculating the
non-Markovian corrections, we found that the previous re-
sults embodying an Einstein diffusion picture go beyond
the Markovian approximation. Indeed, when slightly gen-
eralized, they represent the steady-state distribution func-
tion without approximation to within a factor of (1/n),
where n, , the number of elapsed "collisions, " is typically of
the order of 10 in room-temperature experiments. This
paper develops the reasons for this conclusion as we see
them.

The key to obtaining a solution to the ID equation in I
is the observation that in measuring electron diffusion and
mobility we are averaging the distribution function in
velocity and position over all velocities, and are concerned
only with the macroscopic features of the remaining spa-
tial distribution. This means that in a Fourier representa-
tion only very small wave-vector components (of the order
of I/~n times the Einstein diffusion length) are needed.
It becomes possible to solve the ID equation using Taylor
expansions in these small components, and up to second
order in the wave vectors the Markovian trial solution be-
comes an exact solution of the ID equation. This raises a
question, which is fundamental in many-body problems.
Can we have a solution of the equation of motion which
satisfies initial and boundary conditions, but does not
necessarily represent the exact solution to the problem?

Let us develop these ideas mathematically, thereby
gaining a perspective of the approach we shall take to the
problem. As a first step in I we transformed the
quantum-mechanical problem to the classical-like Wigner
variables, electron space coordinate r, velocity coordinate
u. In terms of these variables we defined a propagator
(density matrix), which we called p~ "closed, " or
pn. (r, u;ro, uo, t), which we can think of as the probability
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of the electron's goin~ from ro, uo, at time 0 to r, u at time
t. In addition to a p~", we shall also need a p~ "open",
or pw(re, u~, . . . , rr, ur, . . . , ro, Uo, r). We divide the
time of propagation of the electron from 0 to t into N ar-
bitrarily chosen intervals, ~&,~~. . . , ~l, . . . , ~~, separat-
ing times t],tz, . . . , tz, with

I =1,2, . . . , N, t~=—t .

pg" represents the electron's going from ro, uo at time 0

to r&, u& at time t~, to rz, uq at tq, . . . to r~, u~ (or just
plain r, u) at time t; in other words, the probability of a
path. pg'" is available explicitly. We shall show in Sec.
III how it can be obtained from a double path integral
given by Feynman et aI. That integral describes the prop-
agator of the electron after removal of lattice coordinates.

The relationship between pg'" and pw'" is the follow-
ing:

pw(r, u;ro, uo't)= f pw(re urr . . rr ur. . ro uo r)d''rrv id urr, . . . d r&d u&, (1.2)

where performing the integrations on the right-hand side will be called "closing. "
Physically, a Markovian process is one in which the time evolution of a particle depends only on the present, and not

the past. Mathematically, a Markovian propagator must satisfy

pw(r, u;ro, uo, t)= f pw(r, u'rr ur t —tr)pw(rr ur'ro uo'tr)d ~rd ur (1.3)

The propagator we use in I was modeled closely on a particle undergoing Brownian motion, reducing, for t~ (x), to

pw"' (r, u;ro, uo., t) ~exp[ —(r —ro) /(4aoDt)]exp[ mu /—(2k~Tbo)], (1.4)

where D is a diffusion constant. This is Einstein diffusion
in space, along with the Maxwell velocity distribution,
when parameters ao,bo, defined in Eq. (1.5), equal unity.

For finite t the Markovian character of the full propa-
gator becomes most easily apparent by examining its
Fourier representation. In dimensionless variables [time
measured in units of P ', the "damping time, " distances
in terms of an "Einstein diffusion length, " (D/P)' ], we

have in I that

pw(r, u;ro, uo,.t)=(2~) f f d kd3w

Xexp[ik (u —uoe ')]

1 —(i —tl )f exp[i(ke ' —k') ur]d ur
(2'�)

=5 (ke ' —k ') (1.6a)

and

3 f exp[i(w —w') Pr]d Pr =5 (w —w ')
(2m)

(1.6b)

that is, integrals representing Dirac 5 functions. Further,
we extend our definition (1.5f) in a convenient way by let-
ting

P—= r+ u —ro —uo,

Xe™Pp(k, w, t),

(1.5b)

f~

b(tr)= 2boe
'" f '—e"dt .

We have

, b (t t, )k' ——, b (t, )k'=——,
'—b(t)k'—

(1.7)

p(k, w, t) =e

F = ——,'(bk —2h k w+aur ),
a =2ao dt =2aot,

0

b =2bo e 'dt =bo(1 —e '),
h = —2ho f e 'dt = —2ho(1 —e '),

(1.5c)

(1.5d)

(1.5e)

(1.5f)

(1.5g)

and we are here generalizing by also including a para-
meter bo, which formerly was unity. The integral form
of the coefficients in Eqs. (1.5e)—(1.5g) can be traced back
to p ~ being the solution of a diffusion equation.
When we Fourier represent p w ( r, u; r r, u r; t tr ) and-
pw(rr, ur', ro, uo, tr), t & tr &0 according to Eq. (1.5a) with
wave vectors k, w;k ', w ', respectively, and close by in-

tegrating over PI and ui we find integrals

—(t —t~)if k'=ke
We have, generally

F(k, w, t tr ) iF(k ', w ', tr ) =F(k—, w, t) . (1.8)

F (1.9a)

with F a diagonal quadratic form
N

F= +Fr, (1.9b)

Fr = —
~ (brkr 2hrkrurr +arwr ) ~— (1.9c)

It follows that pw is Markovian, Eq. (1.3).
We now see how to generalize to obtain p~ "opened" at

N —1 times. p open will have a Fourier representation
in terms of 2N wave vectors k &, . . . , ki, . . . , k&,
w &, . . . , wz, . . . , wz, and again a Fourier transform
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aI =2&o(rl rl—i)

b~ ——boe ' e 'dt,
I —1

hi ———2hoe ' e'dt .
I —1

(1.9d)

(1.9e)

(1.9f)

We see that given the closed propagator p~(r, u; ro, uo, t),
and the information that it is Markovian, its open form is
uniquely determined for us.

Let us now return to our ID equation of motion, which
from I has the form

w +u V p~= lim g f V(r, u;r J, u l, t —tI)pg'"d rz &

. . d u, ,
x

r O

(1.10)

where V is some influence function (actually operator).
Equation (1.10) has a unique Markovian solution. Howev-
er, if p~ is not assumed Markovian, then Eq. (1.10) does
not fully determine pw, not even pw" . %'e can think of
the closing procedure called for by Eq. (1.10) as a pro-
cedure of projection on a limited subspace. There exists,
actually, a hierarchy of ID equations of motion, with the
next equation relating p open at one time to p open at two
times, etc. It is these equations that determine p open ful-
ly. This situation is similar to the one encountered in the
many-electron problem, where one resorts to truncating,
i.e., stopping the chain of equations at some point, and
solving the last equation as best as one can with an ap-
proximation. Our response to the situation, to determine
what is going on, is to solve the problem "open. " In this
paper we treat p as a problem in 6X coordinates, where X
is a large number to be defined in terms of convergence of
the double path integral specifying the density matrix of
the electron.

Physically, our problem is manifestly not Markovian.
The electron is influenced by the instantaneous deforma-
tion of the lattice, which deformation in turn, is deter-
mined by the previous path of the electron. The Markovi-
an propagator of I, represented fully open in Eqs. (1.9),
cannot be the exact solution of the problem, because it
does not provide any links from the past to the present.

Still restricting ourselves to small wave vectors we shall
learn that the ID equations of motion for p open are gen-
eralized diffusion equations in wave-vector space, with ex-
ponential solutions. The most general Fourier representa-
tion of p open will consequently be obtained by replacing
the diagonal form for I' in Eq. (1.8) by a general quadratic
form, with cross terms linking different time intervals. It
is this form for F that we use in subsequent sections.

It might be supposed that this form of solution wi11

render the problem completely intractable. This is not so.
For the steady-state closed propagator of interest here, we
note that we shall only need certain sums of the coeffi-
cients appearing in the generalized quadratic form F.
This is because upon closing one has

—(, t —t~)kie =k

for I =1,2, . . . , X —1. See Eqs. (1.6a) and (1.6b). This
has the result that the wave vectors become common fac-
tors for large blocks of terms in F allowing for direct sum-
mations of the coefficients in a block. These sums become
the new unknowns. It will, accordingly, turn out that we
can solve our problem by first assuming a great number of
intervals X, and then finding equations for the desired
sums of coefficients. These equations become ID equa-
tions as we let X—+ ac, with t the only independent vari-
able.

After obtaining equations of motion for p open, which
we do in Sec. II, we must show in Sec. III how to genera1-
ize the transformation to %'igner variables for our 6X
coordinate problem. These details are needed to write
down, in Sec. IV, a fully general form for the Fourier rep-
resentation of p open. Appendix A motivates our pro-
cedure of obtaining equations of motion for p open by
looking at the Feynman path-integral propagator for a
single particle in a given potential. The mathematical de-
tails of reducing the ID equations of motion for p open to
equations for the coefficients in F are relegated to Appen-
dices B and C. In the last sections, V—VII, and in Appen-
dix D, we show how to solve these latter equations, and
obtain the desired coefficient sums for steady-state propa-
gation. The outcome is a more complete physical solution
for both p open and p closed than we obtained in I, with
results for p closed, the distribution function in the final u
and r, largely but not fully anticipated there.

II. DERIVATION OF ID EQUATION

As mentioned, by eliminating lattice mode coordinates
Feynman et al. obtained an expression for the propagator

p( R,R ', Ro, R o, t ) taking the electron from Ro,R 0 at time

0 to R,R' at time t in the form of a double-path integral.
We can write

0 Ro r)= f ' ' f P(&x»w. ~ RI~RI~, RO, RO)d &~ ) d R),
R=R~, R':—R~, X)I)0. (2 1)

We shall refer to the integrand on the right, the kernel of the double-path integral, as p "open, " and it shall be dis-
tinguished from the quantity on the left, p "closed, " by indicating its dependence on the multiplicity of variables in-
volved.



4538 STEPHEN J. NETTEL AND HANS BECK 28

Explicitly, p open is' '

p(Rrv, Rr'v, . . . , Rp, RO, ~)= her

r, m

' —3 2
im ~ (Rr —Rr —i)

exp
I=1 7I

(Rr' R—r' )'

~ N I —1l +

~r g 'rr'+ i &(Rr R r i Rr', R i )

I =1 I'=0
(2.2a)

where

4(R r, RrR r, R'r) = —A'g [S,r;(tr —tr )v )(I,I') S2x(—tr tr )v2(—I,I')],
K

(S,-,S - )=,
I
Cx

I
(»n[tv-(&r tr )],g—-hco's[w-(&r tr )]) /-=2 2

(2.2b)

(2.2c)

u i (I,I') [R I
u2(I, I')

—e +e I (2.2d)

(2.2e)

(2.2f)

gx ——2nx. + 1, n~ ——thermal number of phonons in longi-
tudinal mode of vibration K, of frequency mK. CK is the
electron-phonon coupling constant. We have changed the
notation slightly from I to make the paper easier to read.

Equation (2.2a) differs from the usual expression in that
we allow for differing time intervals ~I, I=1,2, . . . , X.
We suggest the reader refer to Appendix A, where we
motivate our development with the example of a single
particle in a potential. Throughout the paper we shall
adopt the convention of showing p depending on argu-
ment ~, when we mean that it actually depends on the X
time intervals ~I. We take it that for pN closed defined in
Eqs. (2.1) and (2.2) there will always exist for all physical
arguments a limiting value, called p(t) closed, in the fol-
lowing sense. Let T be an upper limit on the total times
of propagation of interest. Then there exists for any given
positive number e, however small, some number X, such
that given any number X' & N, and any choice of X' posi-
tive time intervals ~I,

I
prv' (r) —p (r)

I
«

provided only

and

~I (T/X for I = 1,2, . . . , N'

N'

t= grr .
1

With this assumption we can find p closed for different
times t, 0 & t & T, with the same number of intermediate
variables, R1, . . . , RN 1,R1, . . . , RN 1, before going to
the limit, e~O (see also Appendix A).

We can now easily generate ID equations of motion for
p open by formally partially differentiating with respect to
the different ~I. Actually it will suffice for our work to
differentiate only with respect to the last ~,~N, relying in
due course on an implicit process of induction to solve our
problem.

We have

Bp(Rrr, R Iv, . . . , RO, RO, ~)

87N

Ã

z [(Rz —Rx i) +(Rx —Rrr —&) ] g ~a@(Rrr, R~,'RJ, Rz) p(Rrr, R&, . . . , RO, RO;~),
2A~N J

and to lowest order in zN,
r

+ . (V'~ —V', ) p' '"= g sr@(R~,Rrv, RJ,RJ )p' '",
jm Pf R lR J

(2.3)

as one can see by explicitly taking the Laplacian involved, omitting terms in which they operate on @.
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III. TRANSFORMATION TO WICxNER FORMS
AND FOURIER REPRESENTATIONS

Rr+Rr)/2,

yI=RI —RI

(3.1a)

(3.1b)

To carry out the transformation to Wigner form' we
first define variables

~here I=0,1, . . . , N and for p closed we have the
transformation

p~(r&, u&, ro, uo, t)=(m/h) f f exp i —(m/fi)(y& u& —yo uo)

Xp(r&+ y~/2, r& y&/2—;ro+ yo/2, ro yo/—2;t)d yrv d3yo . (3.2)

To deal with the transformation at intermediate times
s, t ~s ~0, we need here to generalize from I, where the
propagators were Markovian. In I, leaving out r variables
we could write

pb, yo)= f p(Y, V, )p(V, yo)d'3,

= f P(Y 7')P(Y. 7»'(Y,' Y, )d'3,—d'3,'

p y~ys p ys~y0

Xexp[i (m/fi)(y, ' —y, ).u, ]d u, d y,'d y,

py, u, p ~ y0du

Rr Rr =r —rr+(yr—+y r')/2 (3.3)

then we can generate p( rz, . . . , ro, Vz, . . . , yo,
y Iv ~, . . . , y '~', r) or 4 of these new arguments without
ambiguity.

The Wigner transformation, for example, for p open be-
comes:

Here we notice from Eqs. (2.1) that @, and indeed, p open

depend always on differences such as RI —RI 1 or
RI —R '1 etc. If we associate variables y with all leading
coordinates (in their position on paper, or what comes to
the same, in time), and variables y' with all trailing coor-
dinates, so that, for example,

m
pw«N ' r0~ uN . u0 ~~ =—

h

3N
N —1

exp[i(m/A)(y~ u~ —yo uo)jexp i (m/h') g ur (y r —yr)
I=1

/ rXp( Nr'' 0 yx yo yN —1 . , yjr)

Xd'yN, ~ d yod yN —1, . . . , d'y1 . (3.4)

We notice that with this definition we again obtain p z
closed if we integrate over intermediate variables
rN 1, . . . , r1,uN 1, . . . , u1. Our analysis is built on the
concept of jumps or random displacements in space and
velocity. Rather than using 2N + 2 vector variables
r0, . . . , rN, u0, . . . , uN, we shall use 2¹ector variables

"upwards from I," keeping uN, or "downwards, '* keeping
u0. Simple algebra gives

N N N~+u, exp —~ rr =u„—Z bur exp
I —1 I+1 I' —1

PI ——rI+ uI —rr 1
—uI 1, I =1,2

~ —+ ~ —+ 1our = uI —uI —1e

(3.5a)

(3.5b)
I I I

u, = g Bur exp —g rr + uoexp
1 I'+ 1 1

and end points r0, u0, r N, u N, thereby temporarily increas-
ing the degrees of freedom. We are generalizing from I in
using variables PI ——rI+uI and uIe '+' rather than rI
and uI. We are from now on again using dimensionless
quantities throughout as in I, and Sec. I, here. Time is
measured in units of P ', and distances in terms of the
"Einstein diffusion length, " v'D/p. We shall have oc-
casion to use the inverse of Eq. (3.5b), that is, expressions
for each uI in terms of the 6uI. Actually, two expres-
sions can be written down, depending on whether we solve

and, we have

+ 71
ui u I UI —1

(3.6b)

(3.6c)

We can take Eqs. (3.6) and (3.6b) as definitions of u r+ and
u r . Viewed as functions of the (iV + 2) vectors
u0, u N, 6u 1, . . . , 5u N, u I and u I are not equivalent.
But when the condition
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N

5uiexP —g vl = llN —UQe
I =1 I+1

(3.6d)
imposed, uI+ becomes equal, of course, to uI . In our
[6X (N + 2)]-dimensional space, Eq. (3.4) becomes re-
placed by

which follows from the defining Eqs. (3.5a) and (3.5b) is

pw(PN, UN, PQ, UQ', 5P,5U;7)

r N
=5 +5Pz —PN+PQ 5 5uzexp —g rz uN—+uQe

I+1

m
X

3N N —1f" . f exp[i(m/A)(y NuN —yo uo)]exp i(mllri) g (u~+. y', —ui yi)
1

/ M3Xpi N - -. , r1yN . -, y1y N —1 ~ . ~ y1 )d XN d XOd EN+1 d 71

(3.7)

where after integrating over the various y coordinates we
introduce I' coordinates in favor of r coordinates into the
left-hand side. In view of the 5-function factors in Eq.
(3.7), the introduction of the variables u i and u z of Eqs.
(3.6) to replace ui in Eq. (3.4) has no effect on the values
of p~ open. It will, however, be useful. It is possible to
also convert the right- and left-hand sides of our ID equa-
tion to the new set of [2X(N+ 2)]-vector variables as we
shall see. What is the relationship between this calcula-
tion and the one envisaged so far in terms of the
2X(N+ 1)-vector variables PQ, P,, . . . , PN, uQ, u&, . . . ,
UN7

When in the [6X(N + 2)]-dimensional space we choose
a point which is not on the surface described by the equa-
tions

g 5PI —PN+PQ ——0, (3.8a)
I+1

N N

g 5uzexp —g rz —uN+ uQe '=0
I =1 I+1

(3.8b)

then p~ open, and both sides of the ID equation vanish.
If the coordinates we choose do lie on the surface, then we
are solving the same problem as before. We note that
when we close, integration over the 2(N —1) intermediate
coordinates P1, . . . , PN 1,u1, . . . , uN 1 will be replaced
by integration over all 2X jumps,
5P&, . . . , 5PN, 5ui, . . . , 5uN [see (Eqs. 4.3)], the 5 func-
tions in (3.7) imposing the necessary restrictions. Our cal-
culation continues by representing the open density matrix
in the following way:

pw(pN, uN', pQ uo»5p, 5u;&)=(2~)-' -' f f N

exp ' p y 5PI PN —PQ)—
1

N

X exp ~ i q +—5u.,exp —g r, —uN —u, e
I+1

Xe' e'" "Pw(w, k;P, q;r)d tQd kd Pd q,

with

(3.9a)

e' 's —=exp i g wi 5Pi e' " ' "—:exp —g ki 5ui
1 1

(3.9b)

pw(w, k;p, q r):—pw(wN . . . , wi;kN, . . . , k„p, q;r), (3.9c)

d3~ d3k =d3~N . . d3~, d31N . - (3.9d)

Pw(PN» UN»PQ» UQ»5P»5U»&) =P w(PN» UN» PQ» UQ»5PN» ~ ~ ~ » 5Pi, 5UN, . . . , 5U i, 'T) (3.9e)
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p~ open in Eq. (3.4) depends on the (N+ 1) vectors
r 0, r &, . . . , r z . However, we can always take the origin at
ro (or in P space at Po), i.e., subtract ro from every vari-
able. It follows that with X-independent vectors mJ in Eq.
(3.9a) we have full generality. We, therefore, may take

p~( w, k; p, q;r) independent of p, thereby reproducing
the 5-function behavior on P in Eq. (3.7). The situation
with the u variables is somewhat different. It would be
unphysical to choose an origin at uo. However, suppose
we bring in a dependence on one more wave vector, for ex-
ample, qo, by adding the factor exp(i qo uoe '). In that
case, since we now have (N+ 2) wave vectors, we can
again take p~( w, k; p, q, qo;r) independent of q without
loss of generality, yielding the second 6 function in Eq.
(3.7). Now in our treatment we are making the physical
assumption that in the steady state the initial velocity u o

has, indeed, thermalized; that is, q 0 will not come out
anomalously large. Our whole development bears out that
this happens, so that exp(iqo. uoe ') may be set equal to
unity, and the degree of freedom dropped. We summarize

IV. TRIAL SOLUTION

It will turn out to be convenient to make a time-
dependent change of scale in the k-wave vectors. We let

X
kr = krexp

I+1

5ur =5urexp
I+1

(4.1b)

and

i k.5u i k 5u (4.1c)

The point about splitting 5uz into u + and u —,Eq.
(3.6c), is that this procedure removes ambiguity when
transforming the right-hand side of the equation of
motion, Eq. (2.3), to Wigner variables. See Appendix 8,
where the transformation is carried out, and we make the
Taylor expansion in wave vectors.

Pp~O& no~0& p~(w, k;p, q;r)~p~(w, k;r) .

(3.9fl

[see (Eq. 3.9b)]. In terms of these variables, the Fourier
representation of our trial solution is following the nota-
tion of Eqs. (3.9);

p~(P~, u~', 5P, 5u;r)=(2~) ' + ' f f exp
X

i p —+5.PI —P~
1

exp i q —g 5ur —u Jv

e'"' "p(w k r)d wd kd pd q (4.2a)

p( w, k;r) =exp —[—,
' F( w, k;r )], (4.2b)

N I
F(w, k;r)= $ X [~rr(~)wr'wr Hrr(r)(kr wr —+wr kr )+Brr(r)kr kr'] .

I =1 I'=1
(4.2c)

Here Azz, Hzz, and Bqq are coefficients which are to be determined from the ID equation of motion. On physical
grounds we expect that Arr will be a function of rr, rr ~, . . . , rr+&, but of none of the other r's. [One can actually see
this by comparison with the exact form Eq. (2.2a).] Because of the implied time dependence of 5ur, Hrr and BII may
also depend on ~~, . . . , ~z + &. To ensure time inversion symmetry kz .w J and wz .kz are taken to have the same coeffi-
cient. As we shall see, all the unknown coefficients can be found from the ID equations (differentation with respect to
every rr produces a new ID equation). We shall only need certain partial sums of these coefficients. Let us close Eq.
(4.2a) [see Eq. (1.1)]. We find

p~(Px, u~, r)= f p~(Px, . . . , P„u~, . . . , u)', r)d P~ ). . . d P,d u~, d u,

= f p~(P~, ux~5P, 5u;r)d 5' ' d 5P~d 5u~ . d 5u,

=(2~) ' f e "e '
p(p, . . . , p;q, . . . , q;r)d'pd'q,
I

P(P . p q q'r)=exp — y y ~P ~II' 2P'qHII'+q BII') ~-
I=1J'=1

(4.3a)

(4.3b)

(4.3c)

To find the transport coefficients, mobility, and diffusion
constant, we only need p ~ closed. We see that p ~ closed
requires a very limited subcollection of the Fourier
transforms p( w, k; r-).

We remember from I that the values required there of
ur, k (p and q here) are of the order of I/~n, where n is
the number of elapsed collisions. The reasons for this
were that we only needed the average of p~ (r, u; ro Up'7 )
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Upon closing we find (see Appendix 8) that rather than
requiring a knowledge of all the coefficients AII, BII, and
HII, , we only require certain sums of these in order to fi-
nally determine p closed, that is, the distribution function
in u and r at the final time t. These sums are the follow-
ing:

J I
A~(J)—:A~(r~, . . . , rr)= g g Arr,

I =1I'=1
(5.1a)

N I
Ap(J)=Ap(rJ+~, . . . , r~)—= g g Arr, (5.1b)

I =J +1 I'=1+1

(5.1c)

over all u, and that in space the distribution was macro-
scopic. It follows that we can restrict out treatment, i.e.,
range of solutions, again to small wave vectors, and can
again stop at a quadratic form for F. We shall see that
our trial solution, Eqs. (4.2b) and (4.2c) is again a solution
of the ID equation to order 1/n, and it satisfies physical
initial and boundary conditions. We notice that this time
the solution is not Markovian, coefficients AII, etc., I&I
linking what happens at tI to what happens at tI. It is
general in 6X degrees of freedom.

V. COEFFICIENT SUMS

procedure for the propagator of a particle in a potential, K
closed, leads to the Schrodinger equation, and consequent-
ly K closed, as we define it there, depends on t only. Simi-
larly, our definition for p open will ultimately lead to its
hierarchy of closed wave equations. Second, and more
direct, in regard to K closed we can always, given its defi-
nition in Appendix A, construct a proof by induction to
validate its dependence on the overall t only. In the case
of the coefficients here such a proof by induction would
assume a known solution for A(t'=r~+. . . +r~ ~), 8,
and H, to the coupled equations we sha11 obtain for these
functions, and then the extension of these solutions to
t'+~N. Since, as we shall see, the functions involved are
either linear in t or simple exponentials of t, such a proof
is straightforward. We take the more direct approach via
Eq. (5.2) for simplicity.

The coefficients A, A ~, Ar r A3, etc., have certain func-
tional relationships to each other, which it will be impor-
tant to know. For later use, let us set

fJ=S

We shall ultimately think of s as a continuous variable,
t )s ~0. Because the coefficients AII are functions of
only the intervening time intervals z1, . . . , 'TI +1 but not of
I itself, we see that in accordance with Eq. (5.2)

A~(r~, . . . , rr):—A)(s)=A(s) . (5.3a)
N I

A=A(r~, . . . , r~)—= g g Arr,
I =1 I'=-1

A =A1+AP+A3,

(5.1d)

(5.1e)

and similar dependencies for 8 and H. We can justify this
assumption in a number of ways. First, if our limiting
procedure leads to a physical distribution function, A, 8,
and H cannot depend on the individual ~'s, which tend to-
wards zero, but rather only on the total t. We see in Ap-
pendix A that a definition in terms of a similar limiting

Similar definitions apply for the sums 8,81, ~ ~ ~

H H1 . . . . Figure 1 illustrates the various regions in I-I'
space over which one is summing to get the variously sub-
scripted functions.

We shall assume that

A(r„r2, . . . , rg) =A(r~+r2+ . . +rg) =A(t),
(5.2)

On the other hand, because of the time-dependent scale
factors associated with 5uI, and kI, 1 &I &X, we must
have

H&(J)e =H, (t,s)e" '=H(s) (5.3b)

B, (J)e ':B, (t, s)e " —"=8(s) .

Similarly one has

Az(J):A2(t, s) =A(t —s)—,

Bz(J):B~(t,s) =8—(t —s),
Hp(J) =Hp(t, s) =H(t —s) .

(5.3c)

(5.4a)

(5.4b)

(5.4c)

It is the individual coefficients in A3,83,H3 that couple
the past, i.e., tI &s to the present, i.e., t ) tI )s. We now
notice that because of their definitions in Eq. (5.le),
A 3+3~3 are also functionally determined by
A (t),B(t),H(t). From Eqs. (5.3a) and (5.4a),

A3(t, s) =A(t) —A(s) —A(t —s),
83(t,s) =B(t) e" 'B(s)—8—(t —s),
H3(t, s) =H(t) e" 'H(s) H—(t —s) . —

(5.5a)

(5.5b)

FKs. 1. Regions in I-I space which yield the partial sums

A ~,81,H&, H~, A2, 8q, H2, H2, and A3 83 H3 H3 ~

VI. SOLUTIONS FOR COEFFICIENTS
WHEN A3 ——83 ——H3 ——0

The calculation of the right- and left-hand sides of the
ID equation of motion Eq. (2.2), are outlined in Appen-
dices 8 and C. When we equate the respective coefficients
of q, p. q, and p found on each side, we get the follow-
ing three coupled ID equations for functions A(t), 8(t),
and H(t):
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8(t)= f ds g[G -(t —s)e " "—G -(t —s)n(t, s)],
K

p[8 (t)+H(t)] —J ds g ( G (t —s)(1+e (' '~) —G (t s )[n (t s) m—(t —s)][,
K

p[A—(t)/2+H(t)]= J ds g [G,- (t —s)+G2- (t s—)m (t s)],

(6.1a)

(6.1b)

(6.1c)

where

G =[S - (t —s)sinAt( S2z—(t s)—cosAx. ](2L K l3)exp[ KR (—t,s)],1K 1K.

G - = [S(~(t s)—cosAx +S2x(t —s)sinAt(. ](2LK /3)exp[ K'R (t—,s)],2K

L =fiP/(2k~ T),
A =LK(1—e " ')

(6.1d)

(6.le)

(6.1f)

(6.1g)

Here we have changed sums over tJ to integrals over
s =tJ. T is temperature, kz is the Boltzmann constant,
and n, m, and R are functions of t and s through

e( —) (6.2d)

To arrive at a solution of these equations, we start by
setting A 3 ——B3——H3 ——O. Comparison with the earlier
work (I) then shows that the resulting equations are
equivalent to those implied there, but not written down, if
we identify A (t) here with a (t) there, 8 (t) with b (t), and
H(t) with h(t). In I we substituted trial solutions for
these functions directly into the equation of motion, and
fitted parameters. Here we have explicitly the equations
which must be satisfied by our functions A(t), etc. , and
shall solve them for steady-state conditions.

To discuss these equations we start by simplifying our
notation, writing, for example, Eq. (6.1a) as

—(P/2)8(t) =G, (e ) —G~n,

T=t —s .

(6.3a)

(6.3b)

Let us also eliminate the functions A (s),8(s)~(s). Using
Eqs. (5.5) we can write (with A3 ——83 —H3 —0)

A (s) =A (t) A(t —s), —
8 (s)=8 (t) 8( t —s), —
H(s) =H(t) H(t —s) . —

Substituting from Eqs. (6.2b) and (6.2c) we obtain

(6.4a)

(6.4b)

(6.4c)

2
8(t)+B(t)G,(1 e)=G,—(e ) —G2(H, +e 82) .

R (t, s) =A2+2H2+82+f(H3+83)+ f 8» (6.2a)

2m (t,s) =2A2+2H2+2fH, +A3+H3(1+f), (6.2b)

2n (t,s)=2H2+282+2fB(+H3+83(1+ f), (6.2c)

with

l

Eqs. (6.1d) and (6.1c), the analytic solutions of Eqs.
(6.1a)—(6.1c) must be very complex. Such complexities
have not been observed in the steady-state distribution
function, and, physically we do not expect them to
propagate. We are led to assume that they are associated
with transients, especially as they are tied up with the
abrupt beginning of the integrals at s=O. If we extend the
integrals (time of propagation), back to s = —ao, the com-
plexities go away. Numerically this extension has no ef-
fect on the integrals in Eqs. (6.1). The reason lies with the
oscillating nature of the functions G1+,G2+,S]&,S2& com-
bined with the rapid decay of the factor —exp[K R (t,s)]
in Eqs. (6.1d) and (6.1e). The latter, when determined in a
fully self-consistent way from the solution of our equa-
tions, turns out to go typically as exp[ —10 (t —s)]. In
units of p ', we recall, t is =10, and s is going negative
from t=O. '

It is particularly important that we do not include tran-
sient effects in the functions A (t), B(t), H(t), that do not
belong in the coefficients Azz, etc. , themselves while
describing steady-state propagation near the final time t.
If we did include these effects we would have spurious
contributions to the functions that are sums of these latter
coefficients only, namely to A(t —s), B(t —s), H(t —s),
(t —s)(1/p. It is at these final times that the main ac-
tion of the influence function takes place in our ID equa-
tion.

With all this in mind we extend the propagation to for-
mally start at s = —oo rather than at s=O in our integrals
on the right-hand side of Eqs. (6.1a)—(6.1c). With this
procedure all expressions in Eq. (6.5) other than 8 (t), B(t)
become numbers, rather than functions. We show in Ap-
pendix D that this is true even though R (t,s) is ostensibly
a function of t as well as t —s. We also give there forms
equivalent to Eq. (6.5) for the two other original equations
(6.1b) and (6.1c). We now have a coupled system of three
differential equations with simple, physical solutions.
Subject to the boundary condition A(0)=8(0)=H(0)=0,
these solutions are given by

(6.5)

Cxiven our expressions for G1+,G2z and S]&,S2+ in Eq.
(2.1c), as well as the presence of the exponential factor in

A (t) =2a, t,
8(t) =bo(1 —e '),
H (t) = —2ho(1 —e '),

(6.6a)

(6.6b)

(6.6c)
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with

bo ——(ao+bo)/2,
G& [exp( —T)]
G2(1 —e )

ho = ( I /p) [2a 0G2 ( T)+G 1 ]

(6.6d)

(6.6e)

(6.6f)

(Volterra identified linear integral equations with
equivalent sets of algebraic equations by dividing the
range of the independent variable into discrete intervals.
If the range is divided into n intervals, one integral equa-
tion becomes a set of n linear inhomogeneous algebraic
equations with n unknowns. )

For the solution in Eqs. (6), R (t,s) becomes set exactly

subject to the condition

G, (er—I) =P . (6.6g)

Thus Eqs. (6.6) not only satisfy Eq. (6.5) and its two com-
plementary Eqs. (Dla) and (Dlb), but the original Eqs.
(6.1) with A3, B3, H3 set equal to zero.

We recall that Eq. (6.6e), which also appears in I, typi-
cally gives values of ao very close to unity, thereby
guaranteeing the Einstein relation [see Eq. (1.4)]. Actual-
ly,

G) =G)(e )= —G3(1 —e )= —G3(7) G2(e 1)

so that from (6.6f), also ho = 1, giving a near Maxwell tail
to the velocity distribution, see Eq. (1.3). Thus, the theory
shows independently of any assumption the exact behavior
of the high-velocity end of the distribution function, a
feature of which we were not aware when writing I. With
b 0 1, b o was set = 1 in I, we will get the same encourag-
ing physical results as before for temperature dependence,
adherence to the Einstein relation, and deformation-
potential coupling constants for semiconductor models of
silicon and germanium.

VII. GENERAL SOLUTION

Even if at the outset we retain A3, B3, H3, Eqs. (6.8)
provide a steady steady-state solution. We are to think of
A3, B3, and H3 as given by Eqs. (5.5), that is, defined by
the functions 2, 8, and H, and as being substituted in this
form into the general equations, (6.1). Now for the solu-
tions given in Eqs. (6.6), as noted, A, B, and H each satisfy
an additive property, such as Eq. (6.7) for B In other.
words, Eqs. (6.6) lead to the vanishing of A3 B3 H3 as
given in Eqs. (5.5). It follows that A (t), B(t), and H (t) as
given by Eqs. (6.6) are also steady-state solutions of the
original ID Eqs. (6.1).

The factor exp[ IC R (t,s)] aside, E—qs. (6.1a)—(6.1c)
are a set of linear inhomogeneous equations. We know, in
particular, from the work of Volterra" that linear inho-
mogeneous integral equations have unique solutions.

These results are closely similar to those obtained in I and
gives physical results consistent with them. (Factors 2L
and 2L have here been absorbed into our definitions of 6]
and G2, respectively. ) Equation (6.6g) fixes the value of P,
and comes out as a subsidiary condition explicitly because
of our choice of time units, i.e., choosing a simple ex-
ponential, e.g., e ' in H(t). Checking we find that for
Eqs. (6.6a)—(6.6c) the additive properties obtained by
combining Eqs. (5.3) and (6.4) are also satisfied. For ex-
ample, for B,

B(t) e" 'B(—s) B(t —s)—=0 .

R (t,s) =ao[exp( —T) I+—T], T=t —s . (7.1)

We now note the qualitative (and quantitative) physical
success obtained earlier with our solution, for p~ closed.
We also note that no iteration procedure about our solu-
tion is possible, since it, itself, is an exact solution. Thus,
we do not expect that there will be another physically ac-
ceptable steady-state solution to Eqs. (6.1). Such an addi-
tional solution would have to result from an overall self-
consistent alternative to the characteristic exponentially
decaying behavior of exp[ ER (t—,s)]. These considera-
tions lead us to suppose that in Eqs. (6.6) we are proposing
the unique physical solution to Eqs. (6.1).

Let us review the situation. The picture of an electron
as an erratic particle absorbing or emitting a single pho-
non at a time is not under observation, and does not play a
part in our analysis. We see our quantum-mechanical
equations of motion as compatible with the picture ob-
served in transport experiments of an electron as a steadily
propagating macroscopic distribution. These equations
depict the distributed electron as continuously experienc-
ing simultaneous recoil from interaction with a quasicon-
tinuous spectrum of modes of vibration. Continuous dif-
fusion under the influence of a steady thermodynamic
force becomes a plausible description.

To solve the macroscopic steady-state problem of in-
terest to us we can restrict ourselves to small wave vectors.
For small wave vectors kq, mz we can, as we have seen,
make a Taylor expansion of the right side of the equation
of motion, which consists of the influence function acting
on p open. By differentiating p open with respect to each
of the ~q's, N & I & 1, in turn we obtain N generalized dif-
fusion equations for p of the form

~pen
=Q(kt wr )p" N)'I) 1~ N)I ) 1 (72)

7g

where Q(kt, wt ) is a quadratic form in kt, wt. The only
possible self-consistent solution to these equations is a
generalized Gaussian, such as the one that is given in Eq.
(4.2c). Since a solution of these equations does exist, it is
after all given in Eq. (2.2), and, since, we have written
down the most general possible Gaussian, we must
presume that the [3N X(N+ 1)/2] coefficients Att, Btt,
Htt suffice to accommodate the solution of Eq. (7.2). A
proof showing that we have just the appropriate number
of coefficients is outlined in Appendix E. The solution of
Eq. (7.2) constitutes the desired form for p open.

We can find the subset of transform coefficients
p(p, . . . , p; q, . . . , q, t) which we need to find the distri-
bution function, i.e., p closed, by solving directly for cer-
tain overall sums, rather than finding all the individual
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coefficients AII, etc., themselves. The final distribution
function in r and u agrees with the Markovian result ob-
tained earlier in I, with certain sums of coefficients found
to vanish for the macroscopic steady state. p open
represents the probability of every conceivable path of the
electron, and we expect it to strongly exhibit correlations
(memory effects). We interpret the vanishing of A3 83,
H3 when we solve for p closed as indicating that in the
steady-state the lattice dynamics and the interacting mac-
roscopic electron distribution both maintain their integri-
ty, and not all the available correlation is called for.
When the electron is starting out, or if fine grained fluc-
tuations are of interest, then on a physical basis we expect
that non-Markovian aspects will play a more obvious part.
We also note that if a strong electric field were applied, so
that a steady-state condition would never set in, this situa-
tion would make itself felt during the formative stage of
the electron's evolution. This stage we have not investi-
gated, but rather taken for granted as leading to steady
state. With the vanishing of A3, 83, H3 we easily arrive
at the goal of our calculation, an explicit form for p
closed. Equations (6.6) are readily amenable to calcula-
tions even with more detailed models of various semicon-
ductors than we have so far been able to consider.
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APPENDIX A

f(R~ t) = f K (R~)Rp't)1//(R p 0)dR p

and that then K(R&,Rp, t) is given by'

(Al)

K(R&,Rp, t) = f exp —f L(R,R, t') &R (t') (A2)
0 0

To lend plausibility to our treatment of the double-path
integral in Sec. II, we here use the same approach to
derive the Schrodinger equation for the one-dimensional
propagator E, starting with Feynman's path-integral ex-
pression. We recall that if at t=O a particle has a wave
function g(Rp, O), then at time t its wave function is given
by

We also note that
2

m

2m BR 2

2
ih

N
2+N

(A5)

(A6)

So, finally

dK(R„,R p;t) aK(R,R, ;t)
ih =i%

at &N

—g~ 8 K(R+~Rp, t)
+ VK(R~, Rp, t) .

2m

g KldR~, dR,
I=1 APPENDIX 8

—1/2
ih ~1 m Rl —RI —i

exp .
2

(A3a)

—V(Rt )

(A3b)

In this appendix we reduce the right-hand side of the
equation of motion, Eq. (2.3), to where its Fourier
transform is a quadratic polynomial in wave vector times
the transform of p open (which latter factor ultimately
cancels from the equation of motion). Let us start with a
typical term on the right side of Eq. (2.3), namely

T~g = xpe[l'K'(R~ —RJ )]p(R~ R~ . . . Rp R p 'r)

From Eq. (3.9) the transformed term becomes
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N

(Trvj)~ ——5 +5Pr —P& 5 +5urexp —g rr —uz exp[iK (rz —rJ)]
I+1

~ N —1

e"p
™

yrv'urrexp g (u r 'y r u r yr)«p (Yrr+ y J)
fi 2

rt r 3 ~ . . 3 3 r . ~ ~ 3Xp(re, . . . , r)', y~, . . . , y)', y ~ ), . . . , y ),'r)d yg . d y)d yrr . d y)
(82)

We now compare the right-hand side of Eqs. (3.7) and (3.9a) but imagine that the 5ur in exp( i k —5u) in Eq. (3.9a) are
written in terms of the ur, as in Eqs. (3.6c). [However, we do not alter the 5 function, which is present in both equa-
tions, or, alternately, if we want to be completely formal we can also Fourier represent the 5 function in Eqs. (3.9) and
(82), and proceed from there. ] The comparison reveals that if while Wigner transforming, an additional factor
exp( —iK y J) is introduced, as in Eq. (82), it causes a shift in 5uJ+&, but not in 5uJ. We summarize

AK
(TrtrJ)w expiK'(rx —rJ)pw(rx ux»rx g 5ux— I

X5uX j, . . . , 5UJ+2, j+1+, J, . . . , 5uli1)
2m

(83)

The other three terms occurring in Eq. (2.2d) for V& 2(N, J) will likewise lead to unequivocal recoils in the 5u coordinates
of p~ open, as well as again to the factor exp[iK ( r~ —r J )].

When now we combine Eq. (83) for (Trtrj)~ with the Fourier representation of p~(P&, u~;5P, 5u;r) given in Eq.
(3.6a), we see that the recoils represented in Eq. (83) get translated into exponential factors, where the exponents are
wave vectors multiplied into the recoils. The prefactors will be the same as in I. Dropping the prefactors, we are left
with

expiK. (rrr r)Jp~(P~, u~', 5P, 5u; )r=(M~ )J~ . (84)

The task is to find the Fourier representation of (M&J ) ~ for ready comparison with the left-hand side of the ID equa-
tion. We draw on the Fourier representation of p~(P~, u~,'P, 5u;r) in Eqs. {4.2). Some algebra then reveals that

(Mrvj )~——5(b P)5(b, u )(2~) f
N00 iK (r~ —r ) ~ ~.

expiK $ (5Pr —ur+ur &)e
" e'"'

J+1

Xe' "' "exp[ —F(w, k;~)/2]d md k

=5(b,P)5(hu)(2m. ) f f e' ' e'"' "exp[ F(w, k;~)/—2]d md k, (85a)

where

5(~p)=—5 +5p, —p
I

(BSb)

k r, =q+K, w r, ——p —K, J+1&I &X

kr, ——q+fJK, wr, ——p, 1(I(J . (86b)

and

5(b, u )—:5 g 5ur —u~
I

We then find, withB5cj

that

F(p, q;r)+K R,(J)+IV R (J)=F(w „k,;~), (86c)—

J ~ ~ Jkr=kr+K~ wr=wr —K~ J+1&I& (85d)
R&(J)=2kn (J)—2wm (J),

Jkr=kr+fJK, wr=wr~
N

fJ =1—exp
J+1

(BSe)

(85f)

Recalling from Sec. IV that we are primarily interested
only in the Fourier components p(p, . . . , p;q, . . . , q;r)
corresponding to the closed situation, we only evaluate
F( w „k„'~) where

and R (J), m {J), and n (J) are as defined at the beginning
of Sec. VI, Eqs. (6.2a)—(6.2c).

As noted we are only interested in solving our ID equa-
tion for common wave vectors p and q. Returmng to
Eqs. (2.2) we see that the right-hand side consists of eight
terms. The various terms all have the form of (Terr) ~ in
Eq. (83). They differ only in their prefactors. For exam-
ple, for the term considered in Sec. III, we get
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N

( T~q) ~ ex——p ~ —i(fiK/2m). ( q+ K) 1 —exp
J+1

(M'tvJ ) IV (88)

The factor (M&J)~ as in Eqs. (84) and (85) is common to all eight terms. The prefactor, again, originates from Fourier
representing p~ open with the various recoils attached to 5u~ and 5uJ or 5u J+&.

We are interested in representing the right-hand side of the ID equation as an integral over p and q of a Taylor series
to second order in p and q multiplying

ptt (pq, ;r)exp[i(p 5P+q 5u)] .

(M~J )~ contributes

exp[ ——,
' F( w „k,;r)]exp[i( p 5P+ q 5u )],

where

exp[ ——,
' F( p, q;r) ]

is just p~( p, q;r). We are left with a factor

[1—K R&(J)/2+(K R, ) /g]jexp —[K R (J)/2]J (89)

It is now straightforward to obtain the Taylor expansion in p and q of the entire right-hand side, exponential prefactors
included, the whole calculation proceeding as in I.

APPENDIX C

Here we give some details for reducing the left-hand side of the ID equation of motion, Eq. (2.3). Again the Fourier
transform becomes a quadratic polynomial in wave vectors multiplying the transform of p open, (which the latter factor,
as noted, cancels in the ID equation). Again, transforming to Wigner functions, we see that the left-hand side of the ID
equation reads ':

Lsplv(P~ ulv'5P 5u'r)—: + u~' Vp pg (Ptv u~'5P 5u'r) (Cl)

From the derivation in Sec. II of the ID equation we know that 8/B~N is taken at constant rq and u J, I= 1,2, . . . , X.
Expressed in the latter variables, ( +5ut —u~+ uoe ) vanishes. Further, we shall only be interested in solving the ID

equation for kq ——q, 1 &I & X, whereby

N

k 5u = g qt 5utexp
I 5+1

Since q does not depend on the r's, we only need, neglecting the transient term, 8/Br„p(p, . . . , p;q, . . . , q;r). From
Eqs. (4.2b), (4.2c), (4.3c), and (5. ld), we have

a 1,»(ri, . . . , r~) aH, aB
p(P*. . . p'q* . . q'r)= p 2P q +q p(P . . P q

N 2 vN +N +N
(C2)

As a result of Eq. (5.2) we can now rewrite Eq. (C2) as:

P(p, . . . , p;q, . . . , q;t)= ——,
'

[p A(t) —2p qH(t)+q B(t)]p( p, . . . , p;q, . . . , q;t),

where the dots signify differentiation with respect to t. Turning to the kinetic energy represented in Eq. (Cl), and substi-

tuting from Eqs. (4.2a), (4.2b), (85b), and (85c) we have

u~ V p p~(P~, u~.,5P,5u;t) =(2') 5(AP)5(hu )i

N

X f . f +5ut e'" e' "exp[ F(wk t)/2]d3LUd—3k
1

= —(2~) 5(bP)5(b u) f . f wz g [ Vk, exp[ F(w, k;t)/2]]e'"'—
I =1

Xe' "d md k, (C4)
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where we have expressed 6ut by ( Vkt/i)exp(i k 6u ), and then to get the last line we have used integration by parts with
respect to k. Since VP~ is here at constant P~, . . . , P~ „it does not affect 5(AP), and, therefore, brings down a factor
i w~ F. urther, from Eq. (4.2c) we have,

J N ~ J
Vk F= —g HJtwt —g HtJwt+ g Btjkt+ g BJtkt

I=1 I =J I =J I=1

and, for

wr =p 1&I& (C5a)

k=q, 1&I&N

g V „F=—2pH(t)~2qB(t)
J

(C5b)

(C5c)

using Eq. (5.1e). Finally combining Eqs. (4.2), (85), (Cl), and (C3)—(C5), we get for the left-hand side of the ID equa-
tion

+uz V~„[(2~) 5(bP)5(b, u)e'" e' ' "p~(p, . . . , p;q, . . . , q;t)]
+N

= ——,
' [q'B(t) —2p q[B(t)+H(t)]+p'[A(t)+2H(t)] j

X[(2vr) ' 5(AP)6(hu)e'''s e''' "p~(p, . . . , p;q, . . . , q;t)], (C6)

where the large term in the square brackets on each side is the p, . . . , p; q, . . . , q Fourier component of p~ open.

APPENDIX D

Here we tie up loose ends from Sec. VI. The other two equations complementing Eq. (6.5) are

f3[B (t)+H(t)]+ [H (t) B(t)]G2(e——I) = G( I+e )+G~[&2+H2(e —I)—B2e ]

2
A(t) PH(t)+H—(t)G2(e —1)=G~+Gq(42+Hqe ) .

(Dl)

(D2)

Pboe "=G, (e —T) ( ——2bo+bo)—G2(—1 —e
—r)

—boe 'Gq(e" —1) . (D3)

Simplifying Eqs. (Dl) and (D2) in the way, and equating
coefficients of e ', e ', and constants, yields Eqs.
(6.6d) —(6.6g),

With (6.5) these give three coupled, linear, first-order dif-
ferential equations for A(t), B(t), H(t), with constant
coefficients. These must have as the standard solution
apart from constants a linear function for A(t) and ex-
ponentials for B(t) and H(t) Equation. s (6.6) is the
unique solution satisfying conditions at t=0. As regards
R (t,s) in the exponentials of Eqs. (6.1d) and (6.1e) and de-
fined in Eq. (6.1h), we assume initially that it depends
only on t and s as R (t —s), although ostensibly it depends
on t as mell. However, when having found the solutions
given in Eqs. (6.6) we substitute back into Eq. (6.lh) we
find R does indeed depend only on (t —s), see Eq. (7.1).
Accordingly, we have a true solution.

The interested reader can check that substituting from
Eqs. (5.4a)—(5.4) and (6.6a)—(6.6c) into Eq. (6.5) leads to

of unknown coefficients. We shall consider a simplified
situation, in which p~ open depends only on the coordi-
nates rz, X)I) 1, and the only unknown coefficients are
the Aqz. Extension to the actual situation wi11 be straight-
forward.

Let us count the number of "degrees of freedom. " We
recall that Aa depends on &~ &s —i. ~ &r+i. We a
sume that there is also a constant associated with every
coefficient. Let nz be the overall number of coefficients
that depend on rz, [nt ——1+ (X I)(X I+ 1)]—. R—ecall-
ing that there are (N)(X+ 1)/2 coefficients all together,
the total number of degrees of freedom, n„,,~, will be
given by

n„„)= g nt+(X)(X ~ I)/2 .

We reca11 that the Ith II3 equation is obtained by dif-
ferentiating p~ open with respect to ~z. If we looked at
the right-hand side of this equation we should see that the
influence function is a sum of terms, each of which de-
pends on only one pair of variables r z

—r z, X)I' )0,
I'&I. Let us, therefore, make a change of variables as fol-
lows:

VN = WN

APPENDIX E VN j=WN 1

We give a plausibi1ity argument to show that our X ID
equations for p open just suffice to determine the matrices v)= wy —wp,
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so that

We now Taylor expand the right-hand side of the ID
equation in the Ut. We then shall get only (N) diagonal
terms multiplying m&, v&, . . . , vi, . . . , U~, respectively,
with the UI term missing. If all pairs U&UI torned up we
would have had N(N+ I)/2 terms. We recall that solv-
ing an ID equation in the limit of small wave vectors just
entails setting the final polynomials in the m s, i.e., the
polynomials incorporating both sides of the equation,

identically equal to zero for all values of all wq. Each po-
lynomial coefficient is a linear function of the Att . Thus,
the vanishing of each of the above diagonal terms intro-
duces one new linear relationship among the All . This is
true even though we replace the UI's by their equivalent
m 's. When we consider all ID equations, I=1,2, . . . , X,
the right-hand sides will contribute one linear relationship
for every physical interaction, (every pair), a total of
(N + 1)(N)/2 relationships.

Turning to the left side of the ID equation we recall
that Att has (I I') deg-rees of freedom, since it depends on
7I 'Tl ] . . . , 7 I' + 1. Differentiating with respect to 7 y,
therefore, introduces ni relationships. Thus, the total
number of relationships is just n „„~.
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from K~1 need special treatment. However, even here no

divergences (such as e', etc.) occur. Since, for deformation-

potential coupling integrands typically contain factors of K,
and the important contributions come at K-100, see I, we are
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on submicron samples, where phonon modes K & 1 do not ex-
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