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The embedded-cluster method is generalized for application to ternary alloys and applied to the
calculation of the frequency-distribution spectra of the random, mass-disordered, one-dimensional
ternary alloy A„B& „C. The spectra for one-di. mensional models of some representative III-V and
II-VI ternary alloys (diatomic mixed crystals) are calculated and compared with exact numerical
spectra obtained for 50000-atom random chains by the use of the negative eigenvalue theorem. For
a cluster containing eight unit cells embedded in a coherent-potential-approximation effective medi-

urn, the embedded-cluster method reproduces all of the major features of the "exact" spectra for all

alloy compositions and over a wide range of mass ratios. This reconfirms the accuracy of the
method and strengthens its potential practicality for application to real semiconductor alloys.

I. INTRODUCTION

The vibrational properties of ternary semiconducting al-
loys, particularly their phonon spectra, have been the sub-
ject of numerous experimental and theoretical investiga-
tions during the last several years. ' These investiga-
tions have been stimulated in part by the increasing tech-
nological importance of these materials and in part by an
intrinsic interest in them as prototype systems for the
study of the basic physics and chemistry of the effects of
disorder on the vibrational properties of alloys. A theoret-
ical understanding of both Raman scattering' data
and phonon sidebands in luminescence' ' in the III-IV
ternaries could, for example, provide insight into the fun-
damental mechanisms responsible for the trapping, migra-
tion, and decay of excitons bound to impurities in these 31-

loys and, at the same time, be important for the improve-
ment of the semiconductor devices manufactured from
these materials. In addition, extensive infrared reflectivity
data exist for both the III-V and II-VI semiconductor al-
loy systems. ' " Unfortunately, the theory of the vi-
brational properties of these alloys' ' ' is not yet suffi-
ciently sophisticated that it can make accurate predictions
of these spectra. For example, even estimates of the pho-
non state density for these materials require laborious cal-
culations on simplified models. ' As a step towards
partially alleviating this situation, Myles and Dow ' and
bonis and Cxarland have independently developed a
technique, called the embedded-cluster method, which
promises to be a computationally tractable scheme for ac-
curately predicting such vibrational spectra. This method,
designed for application to real three-dimensional alloys,
has been successfully tested on one-dimensional-model
binary-alloy spectra, where the exact numerical results
for several-thousand-atom random chains are known.

The primary purpose of the present paper is to general-
ize the embedded-cluster method for application to ter-
nary alloys and to apply this generalized method to the
calculation of vibrational spectra for one-dimensional
models of some representative III-V and II-VI semicon-
ductor alloys. The results of these calculations will be

compared to "exact" spectra for 50000-atom chains ob-
tained for the same systems by the use of the negative-
eigenvalue theorem. ' ' The exact spectra will thus
serve as convenient touchstones of comparison to further
test the embedded-cluster method. A preliminary version
of this paper has appeared elsewhere.

One of the most interesting theoretical questions to be
answered about ternary semiconducting alloys is whether
the spectral density of phonon states in a particular energy
interval is expected to be of the "persistence" type or of
the "amalgamation" type. A persistance-type spectrum
exhibits features which are characteristic of quasilocalized
lattice vibrations associated with a single-alloy constitu-
ent, whereas an amalgamation-type spectrum is hybri-
dized and characteristic of the alloy as a whole rather
than of any component. The ternary alloy Oa„ln~ „Sb,
for example, is known to exhibit two persistent optical
modes (one associated with InSb and one associated with
GaSb) for some alloy compositions x, by only one amal-
gamated mode for other compositions. ' Another in-
teresting question, both theoretically and experimentally,
is whether a given alloy will have one or two optic bands
in a particular composition regime; that is whether it will
exhibit one- or two-mode behavior. Fortunately, the qual-
itative criteria for the occurrence of amalgamated versus
persistence phonons as well as one- or two-mode behavior
is believed to be almost independent of dimensionality and
relatively insensitive to the details of the model, ' ' even
though the quantitative aspects of mode localization cer-
tainly depend on both model and dimensionality. Thus, a
secondary purpose of this paper is to investigate the
persistence-amalgamation nature of phonons in one-
dimensional models of real ternary semiconducting alloys.
In this regard, the embedded-cluster method shows an ad-
vantage over even the exact calculations based on the
negative-eigenvalue theorem "' ' and is complimen-
tary to them. In particular, it can easily be used to identi-
fy and label peaks in the spectra which are due to per-
sistent phonon modes associated with small clusters of
atoms containing particular configurations of alloy con-
stituents.
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The present calculations will be useful because they
may be used to obtain R qualitatiue understanding of pho-
non behavior in semiconductor alloys, which should be
helpful in interpreting data. A more quantitative under-
standing will undoubtedly come with more realistic three-
dimensional calculations. Recently, we have used the
negative-eigenvalue theorem in conjunction with the
embedded-cluster method to study the persistence-
amalgamation behavior of phonons in a one-dimensional
model of the quaternary alloy AlyGR& yAs& zPz Rnd in
the one-dimensional ternary alloys which result when x or
y is equal zero or one: Aly Ga] y As Aly GR] y P,
GRAS~ „Pz, and A1AS& zP„.

The remainder of this paper is organized as follows. In
Sec. II the notation to be used and the basic model to be
considered are discussed and some background on the per-
fect diatomic chain is reviewed. Section III contains R

brief review of the coherent-potential approximation for
ternary alloys. The embedded-cluster method for ternary
alloys is discussed in Sec. IV and Secs. V and VI present
results of embedded-cluster calculations of the vibrational
spectra of one-dimensional models of selected III-V Rnd
II-VI semiconducting alloys. These results are then com-
pared with exact results obtained for 50000-atom random
chains by the use of the negative-eigenvalue
theorem 2a, 26, 30—35 This comparison shows that the
embedded-cluster method, using an eight-unit-ce11 cluster
embedded in a coherent-potential-approximation effective
medium, reproduces all of the major features of the exact
spectra for aH alloy compositions and over a wide range of
mass ratios. Section VII contains a brief discussion of the
results and some conclusions.

II. MODEL AND BACKCxRQUND

where

(n, a
~

M
~

n', P& =5„„5 ti(M„5,+Mc5, ), (2)

where M„ is a random variable which assumes the values
Mz and Mz with probabilities x Rnd 1 —x, respectively,
and Mz, M~, and Mc are the atomic masses of the alloy
constituents A, 8, and C. The notation here Rnd
throughout the rest of the paper is thus that the sublattice
with index 1 is the disordered one. The quantity C in Eq.
(1) is the force-constant matrix, whose real-space matrix
elements may be expressed as

(n, a
~

@
~

n', P)=/[5„„(35 p
—1)—5„„ i5 i5p2

—5. ..+i5,z5p, if . (3)

In writing Eq. (3) we have implicitly assumed that the
force constant P is the same for the two possible near-
neighbor pairs AC and BC in the alloy AzB& zC and that
it is independent of the composition x. Thus, only mass
disorder is considered here.

The Green s-function matrix for the alloy is defined in
terms of the mass and force-constant matrices as

6 (co2) =(Mco —4'+i0) (4a)

where i 0 is a positive imaginary infinitesimal. The densi-
ty of states, or spectrum of squared frequencies, is given
RS

U„(t)= U„e '"'= (n, a
~

u )e

is the displacement of the 0,th atom in the nth unit cell
and a = 1 (a =2) refers to the sublattice with A or B (C)
atoms. The quantity M in Eq. (1) is the mass matrix
which has the matrix elements '

A. Equations of motion and Careen's function
for the alloy D(co )= — Im[Tr[M6(co )]I,Xm.

(4b)

The basic mode1 we employ is a one-dimensional linear
chain of atoms executing longitudinal vibrations and in-
teracting through nearest-neighbor harmonic forces with
force constants iI). Although the explicit calculations are
done for this one-dimensional model, most of the formal-
ism described below is valid, with appropriate generaliza-
tions, for real three-dimensional alloys. The equations of
motion for the aHoy AzB~ zC are' '

(Mco —4&)
~

u) =0,

where the trace is over all unit cells in the crystal and X is
the total number of unit cells.

In what follows, periodic boundary conditions
(Uiv+„——U„) are assumed and we define the frequen-
cies

cow 2P/M~, co@ ————2P/Ma, roc 2P/Mc, ——

2 2 2 2 2 2
egg =Cog +COC, COg~ =COg +kg

B. Solutions for the ordered diatomic lattice

If the masses of the atoms A Rnd 8 are equal, Mz ——Mz, then the "alloy" becomes the ordered diatomic lattice BC and
mass Mii occupies sublattice 1. In this case, the real-space matrix elements of the Green s function, Eq. (4), have the

1

X(M Mp)'

(n, a
~

6 (co )
~

n', p) =6 ti(n, n', co )= g (n, a lk, j)(k,j In', P)
co —co~(k)+i0

Ii e[Ci (k)]"Ci (k)e

co —c(koj) i+0
(Sb)
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where the sum on k is over all wave vectors in the first
Brillouin zone, the superscript on the Green s function in-
dicates that it is for the ordered, unalloyed diatomic crys-
tal, the

~
n, a ) are the displacement eigenvectors, the

~
k,j) are Bloch-type states, ' ' j labels the phonon

branch, co&(k) is the phonon dispersion relation for the jth
branch, r„(which equals na for the linear diatomic lattice)
is the position of the nth unit cell, N is the number of unit
cells in the crystal, CJ~(k) is the normal-mode eigenvector
for sublattice a and phonon branch j, and the sum on j
goes over all acoustic- and optic-phonon branches.

For the one-dimensional, ordered diatomic chain Bc
considered here, the phonon dispersion relation, the
normal-mode eigenvectors, the Green's function, and the
density of states can all be obtained analytically. In this
case, the phonon dispersion relation becomes' '

coj(k)= 2coac+ 2 [coac 4coacoc—»n ( 2 «)l
where a is the lattice constant (the near-neighbor distance
is a/2), the wave vectors have the form

k =vm/Xa with v=O, +1,+2, . . . ,

and for j =a (acoustic branch) the minus sign applies
while for j=o (optic branch) the plus sign applies. The
eigenfrequencies in Eq. (6) have the property that for any
wave vector k, co, (k)+co, (k)=coac. The eigenvectors
C (k) for this one-dimensional model are explicitly

displayed in Ref. 13 and will thus not be shown here.
After some manipulation, using the eigenvectors from
Ref. 13 and the phonon dispersion relation of Eq. (6), the
Careen's-function matrix elements for the diatomic chain
become

G (n, n', co )=[(co —coc)5

+(Ma/Mc)(co —coa)5 2]H(n, n', co )

(7a)

and

G& 2(n, n', co) =[Gz&(n', n, co )]"

,' coac—oc—(Ma/Mc)'"

X [H(n, n', co )+H(n + l, n', co )],
(7b)

where the function H (n, n', co ) has the form
—ik(n —n')a

H(n, n', co )= g 2 2
[co —co, (k)][co —co, (k)]

(7c)

With the use of Eq. (6) and standard mathematical tech-
niques, this function can be evaluated in closed form. The
result is

I

+[co (co coac)+(co——coa)(co coc)—+2co(co —coac)' (co coa)' (co ——coc)' ] "
H(n, n', co ) =

Ma(co —coac ) (co —coa ) (co —coc ) (coacoc )2 2 1/2 2 2 1/2 2 2 1/2 2~n —n'
j

where, in the case coc &coa (Ma &Mc), the minus signs
apply if coa &co &coc and the plus signs apply otherwise.
If, on the other hand, coa &coc (Mc &Ma), the roles of coa
and coc are reversed. In Eq. (8) and subsequent equations
the square roots must be evaluated in their complex sense;
that is if the argument of the square root is positive, the
positive square root is taken, while if the argument of the
square root is negative, the positive imaginary root is tak-
en. The density of vibrational states for the perfect dia-
tomic chain can be evaluated by combining Eqs. (4b), (7a),
and (8). The result is'

D(co') = ——
1m[Ma G 11(n,n, co')+McG22(n, n, co')],

2to m~ —cue. For the case M~ &Mc the roles of co& and2

roc are reversed.2

OO
p~

~z D(~z)

I.O 2.0 5.0

C. Isolated-impurity theory

The theory for the diatomic crystal with an isolated
substitutional impurity corresponds to the x~0 or 1 limit
of the alloy A„81 „C. Any successful theory of alloys
must thus predict that, in this limit, physically observable

(9a)

1 I f
coac —2co

~(~ —~ac) (~ —~a) (~ —~c)2 2 1/2 2 2 1/2 2 2 1/2

(9b)

The density of states is symmetric about the center of the
gap at —,coac and is normalized to dco D(co )=2.

0
Both the density of states and the phonon dispersion rela-
tion are shown in Fig. 1 for the case Mc ——2Ma. From
Eq. (9b) and Fig. 1 it is clear that for Ma &Mc the top of
the acoustic band occurs at coc, the bottom of the optic
band occurs at m~, the top of the optic band occurs at
mzc, and the gap between the two bands has a width equal

bl Q3
3
3~ lO-

OO
Tf/4 1Y/p 5Tf/4 ff

ka
FIG. 1. Density of states D(co ) and the dispersion relation

co (k) for the diatomic chain BC with M~ ——2M~.
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quantities tend to the results of this single-defect
theory. ' ' ' ' ' For the case of the linear diatomic
chain considered here, a closed-form expression for the
density of states in the presence of a single isolated impur-
ity does not exist at present, ' ' although it is clear that
there will be 5-function peaks at certain local-mode and
gap frequencies. The solutions for the locations of these
impurity modes are well known and are discussed in detail
in Refs. 13 and 37. They are worth mentioning here only
to note that the coherent-potential approximation (CPA)
for ternary alloys, discussed in the next section, has been
shown by Sen and Hartmann' to reduce to this single-
defect theory in the appropriate limits. Furthermore, it is
easy to show, with the use of this fact, that the
embedded-cluster method developed in this paper in Sec.
IV has this same property.

III. CPA FOR TERNARY ALLOYS

6 =6'+GoVG,
where the defect matrix V has the form

V=(MO —M)co —(eo—e) .

(10)

(1 la)

Here Mo and No are the mass and force-constant matrices
of the crystal BC. In the present model with mass disor-
der only, this defect matrix is diagonal and has the real-
space representation

Theoretical investigations of vibrational spectra in sub-
stitutionally disordered alloys began about 30 years ago
and the theory of these spectra in ternary alloys was first
discussed by Taylor ' in 1973 and independently by Sen
and Hartmann' in 1974. Despite these facts, no theory to
date has been more than partially successful. It is clear
that, by considering the alloy A„BI „C as a BC crystal
with a large number of A defects, the formalism for the
isolated defect' ' can, in principle, be generalized to treat
arbitrary alloy compositions and arbitrary configurations
of alloy constituents. In this case, the alloy Green's func-
tion for a specific alloy configuration and for the "impuri-
ties" occupying the sublattice a=1 satisfies the Dyson
equation

choice. Thus we shall define the defect as the lighter of
the two atoms which may occupy sites on the sublattice
with o.=1 and shall label the defect as an 2 atom and the
host as a B atom, while recognizing that this choice is ar-
bitrary. Therefore, we take the reference lattice to be BC
and always have e= 1 —(M~ /Mz ) & 0.

The best single-cell effective-medium theory which at-
tempts to construct an approximate solution to Eq. (10) is
the CPA. ' ' ' Also, we have found that the CPA
medium is the best effective medium to use as a cluster-
boundary condition in implementing the embedded-cluster
method. [We have tried other cluster-boundary condi-
tions, such as the average-T-matrix approximation
(ATA) with much less success. j Thus, it is worthwhile to
briefly review this theory for ternary alloys. The original
application of this method to this case was done by Sen
and Hartmann' and independently by Taylor. ' The fol-
lowing discussion is based upon that in a paper by Sen and
Hartmann. '

The effective-medium Green s function is defined as the
configuration average of the alloy Green's function 6„

g =((G», (12)

( 1 Goy )
—1G0 [(Go)—I y] —I (13b)

where G is the perfect- (BC-) lattice Green's function and
X is the (as yet unknown) self-energy matrix. Equation
(13) can be considered to be the definition of the self-
energy matrix. In the CPA, the Green's function g is
self-consistently determined by the requirements (i) that
the effective-medium quasiparticles scatter from each unit
cell the minimum amount, that is, that the single-cell
effective-medium transition matrix is zero when averaged
over all possible alloy configurations, and (ii) that the
self-energy X assume the mathematically simple form

where the double angular brackets denote an ensemble
average over all alloy configurations. In the single-cell
CPA (analogous to the single-site CPA in binary alloys)
this statistically averaged Green's function is assumed to
satisfy

g=G +6 Xg (13a)
OI

V= g v„p„=g l
n, 1 &Marco p„(n, 1 l, (1 lb) X(~)= g a. = g I

n 1&Ma~'a(~)(n»
l

(14)

where p„=1 (0) if n is a defect (host) cell and
E= 1 —M~ /M~. Unfortunately, for an arbitrary concen-
tration of defects, an exact solution to Eq. (10) has never
been obtained.

In our paper on binary-alloy spectra, we have outlined
in detail several standard theories of alloy vibrational
spectra and have discussed the inadequacies of each for
application to the calculation of such spectra in real
three-dimensional alloys. The discussion in that paper is
essentially equally applicable to the ternary-alloy spectra
considered here. Thus, such a survey of alloy theories will
not be attempted here and the reader is referred to Ref. 28
for such a review.

For an arbitrary concentration of defects, the distinc-
tion between "host" and "defect" atoms is arbitrary and
any correct alloy theory should be independent of this

where o.(co) is the single-cell self-energy. Sen and Hart-
mann' have shown that the 2&&2 matrix o.„ is nonzero
only on the defect (a= 1) sublattice for two-dimensional
square lattices and three-dimensional cubic lattices, as
well as for the one-dimensional diatomic chain. Require-
ment (ii) physically means that all quasinormal modes of
the average alloy have a single frequency-dependent life-
time and level shift.

By eliminating the reference Green's function 6 from
Eqs. (10) and (13), one can obtain an expression for the al-
loy Green's function in terms of the effective-medium
Green's function,

G =g +g ( &—&)G =g +g g (v„p„—o.„)G .

This equation may be rewritten in terms of a multisite
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effective-medium transition matrix T as

6 =g+g Tg

where

(16)

section, it will be useful to have a specific form for the
general CPA Green's functions in the site representation

g p(n, n', co2) = (n, a
i g i

n', p) .

T =( V —X)[I—g( V —X)] (17)

where

(here I is the unit matrix). In order to implement the
single-cell CPA one assumes that T has the form

(18)

These functions may be obtained by combining Eqs. (13)
and (14) and using the results of Sec. II. After consider-
able algebra, the desired functions can be brought into the
orm

g]](n,n', co ) =(co co—c)(Z co—c) 'G]](n, n', Z ),
(23a)

r„=(u„p„—cr„)[1 g„(u„—p„—o„)] (19) g22(n, n', co )=(Z coc)(—co coc—) 'G22(n, n', Z ),

is the single-cell transition matrix and 1 here means the
2X 2 unit matrix. Here g„ is the 2)&2 matrix

(n
i g i

n ) = g (n
i
n, a)g I3(n,p t

n ) . and

g] 2( n, n', co) =G]2(n, n', Z ),
(23b)

(23c)

+(1—x)( —o„)[1+g„cr„] '=0 . (20)

Equation (20) may, after some algebra, be rewritten in the
form

&n xun+& gn(na—n un ) =0 .

a, P

The requirement that the effective-medium Green's func-
tion g satisfy Eq. (12), when combined with Eqs.
(16)—(19), leads to the self-consistency requirement (i)
above; that is that the configuration average of r nvanish.
This leads to the 2 &2 matrix equation

x (u„—o.„)[1—g„(u„cr„)]—

g2](n, n', co ) =62] (n, n', Z ),
where the complex variable Z is given by

(23cl)

Z'=
~ ~ac+ [(~' ,' coa—c)—' ~'(~—' ~c)C—T(~)]'",

(23e)

and the form of the perfect-lattice Careen's functions
G~~(n, n ', co ) is shown in Eqs. (7) and (8).

By letting n =n' in Eq. (23a), and combining that equa-
tion with Eqs. (23e), (7a), (8), and (21), one can solve for
the self-consistent self-energy cr(co). For the one-
dimensional diatomic lattice, a cubic algebraic equation is
obtained. ' It has the form

cr(co) xc+Mg—co o(co)[o(co) e]g„(co —) =0, (22)

Finally, the use of Eqs. (lib) and (14) yields the scalar
equation for the single-cell self-energy cr(co), '

a3o. +a2o. —a ~0.+ap =0,
where

03 —2e( 1 —x)co (co —coc)—02 2 2 4

(24a)

(24b)
where g]](co ) = (n, 1

i g i
n, 1 ).

In order to solve Eq. (22) and obtain the self-energy
self-consistently, it is clearly necessary to express the
Green's function g]](co ) in terms of cr(co). Also, for use
in the embedded-cluster method discussed in the next a] =2X~(~' ~,' )c(—~' ~', )+—x'~'n', (24d)

c]2 =(co —coBc)(co —coB) E (1 x )co (co coc)+2xE~I2 2 2 2 2 2 2 2 2 4

(24c)
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FIG. 2. Density of states D(co ) for the one-dimensional ternary alloy A05B05C with a=1—M&/M~ ——0.5, obtained by the
negative-eigenvalue-theorem method for a 50000-atom random chain (histograms), by the CPA (dotted-dashed curves), and by the
embedded-cluster method with an 1V, =8 unit-cell cluster (dashed curves) for the case (a) M~/M~ ——0.5 and (b) M~/M~ ——3. These
two cases illustrate typical spectra for a two-mode and a one-mode ternary alloy, respectively.
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ao ——x e (co —coze)(co —co~) .2 2 2 2 2

Here we have defined the auxiliary frequency

0 =co (ci) —cope)+(co —cog)(co —coc) .4 2 2 2 2 2 2 2

The CPA density of states takes the form'

D (co ) = — Im(Tr((MG )) ),

= ——Im(M~[1 o(—co)]g»(n, n, co )
1 2

(24f)

(25a)

G(co ) =(Mco —C&+i 0) (27)

We then define the scattering potential V"(co), which van-
ishes outside the cluster and has the form

V"(~)=(M, —M)~' —(e,—@+X)= V —r, (2g)

inside the cluster. In terms of this potential, the cluster
Green's function G is related to the effective-medium
Green's function g by the Dyson equation

approximation for the alloy Green's function and has the
form

G =g+gV"G, (29)
+Mcg22(n, n, co )] .

This CPA state density is illustrated for x=0.5 in Fig. 2
(dotted-dashed curves) for two different ternary alloys.
Figure 2(a) shows the case of a typical "two-mode" alloy
(@=0.5, Mz/Mc ——0.5), where two distinct optic bands
can be distinguished, while Fig. 2(b) shows the case of a
typical "one-mode" alloy (@=0.5, Mz/Mc ———, ), where
only one optic mode is distinguishable. Also shown for
comparison in these figures are results for the same cases
both for an exact calculation for a 50000-atom chain ob-
tained by use of the negative-eigenvalue theorem (histo-
grams), and for an embedded-cluster calculation obtained
by using an eight-unit-cell cluster (dashed curves). As
may clearly be seen from the figures, the CPA fails to ac-
curately reproduce the spiked fine structure of the exact
spectrum. Instead, it produces a broad, smooth, almost
featureless density of states which tends to "average out"
the spikes and dips in the exact spectrum. On the other
hand, the embedded-cluster method accurately mimics all
of the major features of the spectrum.

This failure of the CPA has long been known and is
characteristic of all single-cell theories. The reason for
this failure is that a single-cell theory neglects all short-
range order, while the individual peaks in the exact spec-
trum can be shown ' to be due to particular configura-
tions of small clusters of the Ac and BC unit cells.

The present. theory -is very similar to our treatment of
binary alloys and is also similar in spirit to the general
treatment of clusters in effective media done by Cionis and
Garland. We begin with an effective medium represen-
tation of the random alloy A„B& „C (in practice this is
usually a CPA medium, but in principle it can be any
translationally invariant effective medium), which is
described by the Careen's function

g (co') = [(G )
' 2+i 0]—

which need only be solved for atoms within the cluster
(G =g outside). This gives

G =(1—gV*) 'g . (30)

D(~', N, ) = — Im(Tr, ((MG)) ),
C~

(32a)

where Tr, means a trace over all sites of the cluster.
Equation (32a) can be rewritten as

C

D(co~; N)= — g Im[((M„G»(n, n, co ) ))
can 1

+Mc((622(n, n, co )))] .

(32b)

The main approximation of our theory is that the density
of states obtained by this procedure is the configuration-
averaged density of states for the random alloy. It is also
sometimes usefu1 to calculate the partial density of states
for the sublattice a, which is

D (co;N, )= —— Im(Tr, ((MG))),
X,m.

where Tr, ~ means a trace over all sites of the cluster
which are on the sublattice a.

One can also calculate the configuration-averaged local
density of states at the ath site in the nth unit cell, which
has the form

The vibrational density of states in this approximation is
obtained by first calculating the average of MG over all k
configurations of the X, cell cluster,

k

((MG)) =k ' y (MG), , (31)
j=l

where (MG)1 is the operator MG for the jth cluster. The
cluster density of states is then

=(Mote —@o—X+i0) (26b) l„(co,N, ) = ——Im ( n, a
~

((MG ))
~

n, )a. (34)
Vo +o and X are the mass, force constant, and

self-energy matrices which characterize the medium. Em-
bedded in this effective medium is a cluster containing N,
unit cells [xN, of them containing AC and (1—x)N, of
them containing BC] in a particular configuration. The
cluster Green's function for this configuration is then our

This quantity should be independent of n if the cluster
size is sufficiently large; in practice one selects a. central
cell to minimize boundary effects. It is also sometimes of
interest to calculate the local density of states for a unit
cell, which is given as
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L„(co;N, ) = l„ i (co;N, ) +1„2(co;N, ) . (35)

Other configuration-averaged local-state densities, such as
one where cell n contains an A (or B) atom can also clearly
be defined and easily calculated with the embedded-cluster
method. Similarly, one can calculate the total density of
states for a specific cluster configuration

d(co, N, ) = — Im[Tr, (MG)],
mNc

(36)

and the partial density of states for the sublattice a within
a given configuration

d (~;N, ) = — Im[Tr, ~(MG)j,
mN,

(37)

as well as various local-state densities for a particular con-
figuration.

Hence, similar to the method outlined for binary al-
loys in the embedded-cluster method for ternary alloys
the vibrational spectrum for the alloy A„Bi „C is ob-
tained by the following procedure. (i) Select an alloy com-
position; this partially specifies the cluster size because
xN, must be an integer (however, see discussion below),
(ii) enumerate all possible configurations of AC and BC
unit cells in a cluster of N, unit cells; (iii) select an
effective-medium Green's function —here we use the CPA
Careen's function, Eq. (23), because it is self-consistent and
independent of the choice of reference lattice, and because
it produces better results than the principal alternatives,
ATA or virtual crystal; (iv) construct the defect matrix V"
(for our case of mass disorder only, @=%0, V" is diago-
nal); (v) solve the matrix equation, Eq. (30), for G; (vi)
evaluate the density of states; and (vii) average over all
configurations of the cluster.

We have recently shown ' that for the treatment of
impurity spectra via the embedded-cluster method, it is
necessary to include all possible configurations of a given
size cluster, even those whose composition differs from
the average alloy composition x. In particular, the atypi-
cal configurations whose compositions differ significantly
from x are the ones which contribute to the wings of the
impurity line. In the present case where we are calculat-
ing alloy vibrational spectra, however, the neglect of these
atypical configurations is a less serious approximation.
The reason for this is that, in this case, the local-mode
peaks from these atypical configurations fall on top of, or
near, those for the more typical ones. Furthermore, since
the intensity of a given peak is proportional to the proba-
bility of occurrence of the cluster which produced it, the
intensities of the former local-mode peaks are significantly
smaller than those of the latter and would thus be washed
out by them. Hence, just as in our binary alloy paper,
only typical cluster configurations with composition equal
to x are kept here. Of course, in principle, the atypical
ones could also be kept. However, the resulting small in-
crease in accuracy would probably not be worth the
tremendous increase required in the number of configura-
tions computed.

V. RESULTS FOR THE DENSITY OF STATES:
COMPARISON OF EMBEDDED CLUSTER

AND EXACT CALCULATIONS

We have calculated the total density of states for one-
dimensional models of a number of different III-V and
II-VI semiconductor alloys using the embedded-cluster
method, Eqs. (25)—(32). For comparison, we have also
calculated the exact spectra for the same cases for 50000-
atom random chains using the negative-eigenvalue
theorem. ' ' ' (Reference 26 is an excellent review ar-
ticle on the latter subject. )

A. Dependence on composition x
and mass ratio M~/M~

The composition dependences of the spectra for the
III-V alloy Ga„Ini „Sb (@=0.39, Mti/Mc ——0.94) and the
II-VI alloy Zn„Cdi „S (e =0.42, Mti /Mc ——3.50) are
displayed in Figs. 3 and 4, respectively, for the composi-
tions x=0.125, 0.375, 0.50, 0.625, and 0.875. The fre-
quencies in these and subsequent figures are all expressed
in terms of the light mass frequency coo ——P/ML, where
ML is the light mass. These particular alloys were chosen
to illustrate the method because they represent a wide (al-
most extreme) range of mass ratios Mii/Mc and because
they have received considerable experimental attention,
especially in regard to their infrared reflectivity and Ra-
man spectra. ' ' The spectra for four other experimental-
ly popular alloys, the III-V alloys GaAs~ „P„,
A1As~ „P„, Al„Ga~ „P, and Al„Ga~ „As, have been
displayed and discussed in Ref. 24. In addition, the spec-
tra for the III-V alloys Ga„In i „As (e=0.39,
Mti/Mc ——1.53), CxaSbi „As„(@=0.38, M~/Mc ——1.74),
and InSb, „As„(e=0.38, Mii/Mc ——1.06), and the II-VI
alloys Zn„Cdi „Te (@=0.42, Mii/Mc ——0.88), CdSei „S„

MB/Mc 0.70), ZnSei „S„(@=0.59, Ma/Mc
= 1.20), and Hg i „Cd„Te (e=0.44, Mii /Mc ——1.57),
which are also of considerable experimental interest, '

have been calculated Howe. ver, in the interest of brevity,
these spectra have not been displayed here. In all of
these cases the agreement between the embedded-cluster
and exact calculations is qualitatively similar to that
shown for Ga„In~ „Sb and Zn„Cd~ „S in Figs. 3 and 4
and discussed below. Furthermore, the spectra of the al-
loys with Mii/Mc close to unity resemble the spectra of
Cia„lni „Sb, shown in Fig. 3, while the spectra of those
alloys with this mass ratio much greater than unity (say
around 1.5 or greater) are qualitatively similar to the spec-
tra for Zn„Cdi „S,with that similarity becoming greater
as this mass ratio is increased.

The results of the exact calculations are shown in Figs.
3 and 4 as histograms, while the embedded-cluster-method
results are shown as dashed curves. All of the embedded-
cluster-method results shown were obtained with a cluster
size of N, =8 unit cells. By its very formulation, the
embedded-cluster method is exact for x=0.0 and 1.0.
Furthermore, in these limits the spectra are merely those
for the perfect diatomic chain with the appropriate
masses. These perfect-chain spectra are described by the
function given in Eq. (9b) and do not differ significantly
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FICx. 3. Density of states B(~ ) for the one-dimensional ternary alloy Cxa„In& „Sb (@=0.39, M&/Mc ——0.94) obtained by the
embedded-cluster method with an X,=S unit-ceH cluster (dashed curves) and by the negative-eigenvalue-theorem method for a
50000-atom random chain (histograms) for the composition x equal to (a) 0.125, (b) 0.37S, (c) 0.500, (d) 0.625, and (e} 0.875. Ap-
propriate host and impurity bands are labeled in (a) and (e). Host bands in these cases closely resemble the perfect diatomic chain
spectra for InSb and CxaSb, respectively.

from the host acoustic and optic bonds which are still
clearly visible in the x=0.125 and 0.875 figures. In those
figures these bands are labeled according to the host dia-
tomic chain whose spectrum they resemble. In addition,
the impurity-gap and local-mode bands are also labeled in
these same figures, according to the impurity which is re-
sponsible for these bands.

As may be seen from an inspection of Figs. 3 and 4, the
embedded-cluster-method calculations reproduce all of the
principal features of the exact spectra. The two unsatis-

factory features are the facts that (l) the band edges and
gaps are sometimes incorrectly predicted by the theory,
and (2) the peak intensities in the spectra are sometimes in
slight disagreement with those obtained in the exact calcu-
lations. The first feature is inherent in our choice of the
CPA medium for the cluster-boundary conditions; the
theory will produce no states at frequencies where the
CPA has a gap. This drawback could, in principle, be
overcome by inclusion of the cluster self-consistently, as
in the various cluster CPA theories. ' ' However,
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purity bands are labeled in (a) and (e). Host bands in these cases closely resemble the perfect diatomic chain spectra for CdS and ZnS,
respectively.

such a procedure would tremendously increase the compu-
tational effort required to obtai~ the spectra and severely
decrease the potential practicality of the method for appli-
cation to real alloys. The cause of the second feature
probably lies both in our choice of cluster size and in the
fact that we have included only clusters with the average
alloy composition x. Since it is well known that every
peak in the spectra can be identified with a local mode of
vibration due to a given cluster configuration, it is possible
that using the cluster size we have chosen and only the

configurations with average composition might not
correctly estimate the intensity due to a particular config-
uration. This drawback could be overcome by using
larger clusters and by including the less probable cluster
configurations whose compositions differ from x. Again,
such a procedure would greatly increase the computation-
al complexity of the method, and it is questionable wheth-
er the resulting increase in accuracy would warrant the
tremendous increase in the computational effort which
would be necessary.
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TABLE I. Major clusters responsible for the peaks in the vibrational density of states of Gao &Ino &Sb

labeled in Fig. 3(c). Abbreviations A =GaSb and 8 =InSb have been used.

Peak

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

e /eo

1.47
1.75
1.89
2.10
2.21
2.26
2.38
2.52
2.61
2.75
2.81
2.84
2.89
2.98
3.05
3.08

Major clusters

AABB; ABBA
AB; BA
ABAB; BABA
AABB; BBAA; ABBA
AAABBB; BBBAAA; AABBBA; ABBBAA; BBABAA
AAABBB; BBBAAA; AABBBA; ABBBAA; BBABAA
BAAAABB; BBAAAB
AABB; BAAB; BBAA I

ABABAABB; BABABAAB
AAABBB; BAAABB; BBAAAB; ABBABA; ABABBA
SbA; ABABAB; BABABA
AB; BA
ABBA; ABAB; BABA
AABB; BAAB; BBAA
BABABBAA; AABABABB; AABABBAB
BAAAABBB; BBAAAABB; BBBAAAAB

B. Discussion of the features of individual spectra

The individual spectra displayed in Figs. 3 and 4 are
rich in detail and cannot simply be characterized as per-
sistent or amalgamated for all frequencies, but exhibit
instead a complex blending of persistent and amalgamated
features. In the following discussion, we consider a por-
tion of a spectrum to be persistent if it exhibits sharp
peaks other than the perfect-crystal Van Hove singulari-
ties. Such peaks are presumably indications of the
quasilocalized nature of the vibrational excitations.

The major spectral peak frequencies are sensibly in-
dependent of aHoy composition on the scale of the figures.
Each such peak corresponds to a characteristic frequency
of an "island" of several atoms within the long

chain. ' The probability of a specific island
occurring varies significantly as the alloy composition is
altered; the height of an island's spectral density peaks
will thus usually vary considerably as x is varied, even
though the island's characteristic frequencies do not. The
specific islands or configurations of atoms which are re-
sponsible for the various peaks in the spectra would be
difficult to identify using the negative-eigenvalue-theorem
method. ' ' On the other hand, such identifications
are easily made using the embedded-cluster
method, "' since this method requires the calculation
of the spectra for every possible cluster configuration.
These identifications, made on the basis of the embedded-
cluster method, for the case of 50 at. %%uo(x=0.5)composi-
tion in the ternary alloys Ga„In& „Sb and Zn„Cd& „Sare

TABLE II. Major clusters responsible for the peaks in the vibrational density of states of Zno 5Cdo 5S
labeled in Fig. 4(c). Abbreviations A =ZnS and 8—:CdS have been used.

Peak

1

2
3
4
5
6
7

9
10
11
12
13
14
15
16
17
18

0.33
0.53
0.65
0.71
0.78
0.83
0.87
2.37
2.47
2.50
2.55
2.65
2.67
2.73
2.77
2.83
2.85
2.90

Major clusters

AAAABBBB; BBBBAAAA
ABBBBAAA; AAABBBAB; ABAAABBB
BABAAB; AABBAB; BBABAA
AAABBB; BBBAAA
ABAABB; BABAAAB; ABBBAA; AABBBA
ABBBBAAA; BBABAAAB; AAABBBAB; ABAAABBB
AAAABBBB; BBBBAAAA; BABAAABB
BCd; AABB; ABBA
BAAAABBB; BBBAAABA; BBBABAAA; ABAAABBB
AABB; BAAB; BBAA
AABB; ABBA; BBAA
ACd; AAABBB; BBBAAA
AAABBB; BAAABB; BBBAAA
AB; BA
ABBA; AABB; BBAA
ABBA; AB; BA
AABB; BAAB; BBAA
AAABBB; BBAAAB; BAAABB; BBBAAA; AABBBA
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shown in the appropriate subfigures of Figs. 3 and 4,
along with Tables I and II. The numbers labeling the
peaks in these figures correspond to the cluster configura-
tions shown in the tables. Since the peaks merely change
in intensity, but do not significantly shift as the composi-
tion is varied, all of the principal peaks in all of the spec-
tra can be identified using these figures. Clearly, this
method can also be used to label peaks in the spectra of
other alloys, particularly those mentioned above, for
which we have calculated spectra but not drawn figures.

A detailed examination of the spectra shows that the
low-energy acoustic vibrations always produce an amal-
gamated spectrum, in accord with one s intuitive expecta-
tion for sound propagation in alloys. The long-
wavelength collective modes are, on the other hand,
characteristic of the entire alloy system and not of its
components. Thus, both the optic modes and the high-
energy end of the acoustic band may exhibit either per-
sistence or amalgamation character depending on the
compositions and mass ratios of the alloy constituents.

In discussing specific features of the spectra, it is useful
to keep in mind the corresponding spectrum of the dia-
tomic linear chain given in Eq. (9b).

The sequences of the individual spectra exhibit interest-
ing trends. The Ga„ln& „Sb sequence (Fig. 3) is typical
of alloys with mass ratio Mz/Mz near unity. It displays
persistent CxaSb optic modes for x & =0.875 and per-
sistent InSb optic modes for x )0.250. The acoustic
modes are amalgamated for all x, and near x=0 (InSb),
the acoustic and optic branches of the spectra are nearly
merged because the In and Sb masses are nearly equal.
Furthermore, the InSb and GaSb optic modes are easily
distinguishable from each other for x (0.375 and for
x & =0.750, indicating that the alloy Ga„In& „Sb should
exhibit two-mode behavior in these composition regimes
and one-mode behavior in between. This is in agreement
with the one-dimensional CPA calculations of Sen and
Hartmann' and with the reflectivity experiments of Brod-
sky, Lucovsky, Chen, and Plaskett on this alloy.

The alloy Zn„Cd~ „S, whose spectra are shown in Fig.
4, is typical of alloys with larger mass ratios Mz/M&. Its
spectra are very interesting because the high-frequency
portions of both the acoustic and optic bands exhibit per-
sistent ZnS local-mode peaks for all x, while the lower-
frequency ends of these bands are amalgamated for all x.
This phenomenon occurs because the mass of S is so much
lighter than those of Zn and Cd. For this alloy the ZnS
and CdS optic bands are merged for x &0.625, indicating
that it should be a two-mode alloy for compositions small-
er than this and exhibit one-mode behavior for larger
compositions. This is in agreement with the predictions'
of the CPA and with the reflectivity experiments of Lisit-
sa, Valakh, and Konovets, who made measurements only
near x =0.5.

It should be pointed out, as indicated previously by Sen
and Hartmann, ' that a more realistic treatment of the al-
loys considered here, even in this one-dimensional model,
should include force-constant changes with alloy composi-
tion, which are considerable in the real alloys. Such
changes would bring the theory into better agreement with
experiment, although the advantage of such a treatment is

doubtful since one would still be in a situation of compar-
ing one-dimensional theory with three-dimensional experi-
ment.

C. Dependence on cluster size

In order to illustrate the effects on the embedded-
cluster-method calculations of changing the cluster size,
we have calculated the density of states using this method
for clusters containing X, =2, 4, 6, and 8 unit cells for
two different representative ternary alloys at a composi-
tion of x=0.5. In Figs. 5(a) and 5(b) we show the spectra
for these size clusters for Ao 5BO 5C in the case of a typical
two-mode alloy (@=0.5, Ms/Mc ——0.5). In Figs. 5(c) and
5(d) we show similar spectra for Ao 58o 5C for a typical
one-mode alloy (@=0.5, M~/Mc ———, ).

These same cases are compared for X, =8 with the
negative-eigenvalue-theorem results in Figs. 2(a) and 2(b).
Both cases illustrate how the various peaks originate from
the various size clusters. The embedded-cluster method
simulates the exact negative-eigenvalue-theorem spectrum
very well for X, =8„reasonably well for X, =6, and ob-
tains most of the major peaks for ~, =4. It is clear from
the difference between the X, =6 and 8 spectra that the
dependence of the spectra on the cluster size is beginning
to saturate at X, =8.

VI. RESULTS FGR PARTIAL, LOCAL, AND SINGLE-
CGNFIGURATIQN DENSITIES GF STATES

A. Partial densities of states

The partial densities of states for each sublattice,
D~(co ) and D2(co ), given by Eq. (33), are as easily com-
puted via the embedded-cluster method as are the total-
state densities. These quantities show explicitly the con-
tributions of the two sublattices to the total density of
states. We have calculated these partial densities of states
using clusters of size X, =8 for the alloy AO5OBo 5C for
the same two-mode (@=0.5, Ms/Mc ——0.5) and one-mode
(@=0.5, Mz/Mc ———', ) cases for which the total-state den-

sities are shown in Fig. 2. The results of these calcula-
tions are shown in Figs. 6(a) and 6(b). Comparison of
Figs. 2(a) and 6(a) shows clearly, for this typical two-mode
case, that the a = 1 (disordered) sublattice makes the dom-
inant contribution to the optic bands while the acoustic
band is dominated by contributions from the a=2 sublat-
tice. On the other hand, comparison of Figs. 2(b) and 6(b)
shows that for this typical one-mode case the contribu-
tions from the a=1 sublattice again dominate the optic
band, while the contributions of the o.=2 sublattice dom-
inate the high-frequency end of the acoustic band. For
this case, the low-frequency modes in the acoustic band
are made up of essentially equal contributions from the
two sublattices.

B. Local densities of states

The configuration-averaged local density of states at the
central cell of the cluster 1.0(co ), given by Eq. (35), as well
as the partial local state densities on the two sublattices,
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lol(co ) and 10'(co ), are also easily calculated using the
embedded-cluster method. By contrast, computation of
these quantities using an exact "' method, such as the
negative-eigenvalue-theorem technique, would be difficult.

We have calculated these three quantities for the same
typical two-mode and one-mode alloys as discussed above.
Figures 7(a) and 7(b) display the results of these calcula-
tions for the alloy A 0 580 5 C with X,=8 for the two™ode

1.00-- 1.00-

0.75-

N
1

0.50—
NO

(~) Ao5 o5 C
Nc=8

~ = 0.5, M, /M = 0.5
D, (cu2) ———

D, (~2)

0.75)

0.50- l

INO I3
I

(b) Ao5 Bos C
N =8

& = 0 5, M,»c = 4/3
D, (cu) —— ——

D (A@2)----—

0.25- ',

0.00
0.00 1.00

II II I

I II

I
II

IIII
IIII II III

I&I', ' g I

2.00
OJ /CU 0

3.00 4.00

0.25-

0.00
0.00 1.00 2.00

cu /OJ 0

3.00 4.00

FIG. 6. Partial densities of states Di(co ) (solid curves) and D2(~ ) (dashed curves) for the sublattices a=1 and 2, respectively, ob-
tained by the embedded-cluster method Cluster size used was N, =8 unit cells and the cases illustrated are for the one-dimensional
ternary alloy Ao 5B05C with e=O.S. (a) Results for a typical two-mode alloy with Mz/M~ ——0.5. (b) Results for a typical one-mode
alloy with Mz/M~ ——

3 .



28 THEORY OF ALLOYS. II. EMBEDDED-CLUSTER. . . 4531

3
O

NO

3
O

NO

0.50-'

/

I

0.25—
&rl
II

I II

Ihl l II I

(I I

j I

0.5 0.5
N =8

Ii, C
6 = 0.5, M /IVI = 0.5

1

II

1.00-3

I

I

0.75
i

O
CV O

o 050-, (

0.25—

(b) Ap 5 Bp 5 C

~ =0.5, M,/M, =4/3
Lp (Cu2)

(Cu2
('
I

I

I
t/l l

ll( S

ll)~. I 5
I Il

t'J i I

0.00
0.00

0.00
0.00 4.003.00

cu /CV 0

I

I

2.00 4.00 1.00 2.00 3.00
cv /OJ 0

FIG. 7. Configuration-averaged local density of states at the central cell of the cluster I.p(co ) (solid curves), and the partial densi-
ties of states lpi{co ) (dashed curves) and lp2(co ) (dotted-dashed curves) for the sublattices a=1 and 2, respectively, obtained by the
embedded-cluster method. Cluster size used was X, =8 unit cells and the cases illustrated are for the one-dimensional ternary alloy
Ap 5Bp 5C with a=0.5. (a) Results for a typical two-mode alloy with M~/M~ ——0.5. {b) Results for a typical one-mode alloy wit

M~/M~ ———,.

(E=0.5, M~ /Mc ——0.5) and one-inode (e=0.5, Mz /Mc
= —, ) cases, respectively. The same trends as noted above
for the state densities Di(co ) and D2(co ) are apparent in
Figs. 7(a) and 7(b) for the quantities lpI(co ) and lp2(a) ).
In particular, contributions from the disordered sublattice
(a= 1) dominate the optic bands in both cases and the
higher-frequency acoustic modes in the one-mode case.
The lower-frequency acoustic band for the one-mode case
and the entire acoustic band for the two-mode case are, on
the other hand, dominated by contributions from the a =2
sublattice.

C. Single configuration densities of states
and nonrandom alloys

The global density of states, Eq. (36), for any single
configuration of alloy constituents within the cluster, as
well as the partial densities of states for a particular sub-
lattice within a given configuration, Eq. (37), can easily be

calculated via the embedded-cluster method. On the other
hand, it is difficult to see how a straightforward appli-
cation of the negative-eigenvalue-theorem tech-
ni ue ' ' ' 3 could be adapted to such a calculation.
Figures 8(a) and 8(b) show typical results for the global
and partial densities of states, d(co ), di(co ), and d2(co )

2 2 2

for a particular configuration. The results in those figures
have been computed for an 2V, =8 unit-cell cluster for the
same typical two-mode (x=0.5, @=05, Mz/Mc ——0.5)
and one-mode (x=0.5, @=0.5, M~/Mc ———, ) alloys as dis-
cussed above. The configuration chosen for display in
these figures is the one where the alloy constituents in the
cluster are arranged in the form ACBCACBCACBCACBC.

A knowledge of such single-configuration spectra along
with the already discussed identification of spectral peaks
in the total density of states with certain cluster configu-
rations could be very useful for analyzing the spectra of
nonrandom alloys. If an alloy is (at least locally) nonran-
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dom, certain configurations of constituents will be weight-
ed differently in the total density of states than in the to-
tally random case. By adjusting the weighting of the vari-
ous cluster configurations to the match peaks in the ob-
served spectrum, some idea of the degree of nonrandom-
ness can be obtained. Hence, alloy measurements which
are sensitive probes of the state density can be used in con-
junction with such calculations to determine the existence
and nature of clustering and nonrandom disorder in al-
loys.

The present embedded-cluster method successfully
reproduces the exact numerical vibrational densities of
states for ternary alloys A„B& „C for all alloy composi-
tions and over a wide range of mass ratios and it does so
with a relatively small cluster size. The spectra obtained
for the model alloys considered here are rich in structure.
Most of this structure would be missed in a simple CPA
theory. ' ' The theory produces the correct spectra
in the exactly soluble limits x~O and 1. The greatest as-
set of the theory is that it converges for small cluster size.
Thus, in its present form, it appears to be promising for
application to calculations of alloy vibrational spectra for
real three-dimensional alloys.

An interesting and useful feature of the embedded-
cluster method is that, in contrast with even the exact cal-
culations, it permits the easy identification of various
peaks in the density of states with specific alloy configura-
tions. Therefore, one can imagine employing this theory
to study nonrandom alloys in which the atoms of one
species cluster together. For example, if measurements
should prove inconsistent with a random-alloy theory, one
could, in principle, determine the types of nonrandom al-
loying which are consistent with the observations by using
this method.

When applied to one-dimensional models of some ex-
perimentally interesting III-V and II-Vl ternary alloys, the
spectra obtained by both the embedded-cluster method
and the negative-eigenvalue-theorem method are in quali-
tative agreement with infrared reflectivity experiments in
the real alloys, particularly in regard to whether a particu-
lar alloy should display one or two optic modes in a given
alloy composition regime. This is because the qualitative
criteria for the occurrence of one- or two-mode behavior
are fortunately almost independent of dimensionality and
relatively insensitive to the details of the model. ' ' The
quantitative aspects of such critera are, of course, depen-
dent on both model and dimensionality. Furthermore,
both the embedded-cluster method and the exact calcula-
tions predict the composition and mass ratio regimes
where one would expect the spectra of a ternary alloy to
be of the persistence or of the amalgamation type.
These predictions are again expected to be qualitatively
applicable to the real alloys because the critera for the ex-
istence of such persistent and amalgamated phonon modes
are qualitatively similar in one and three dimensions. It is
clear, however, that in three dimensions the relative num-
ber of persistent phonon modes should be less than corre-
sponding number in one dimension. However, the pre-
dictions presented here should prove qualitatively useful

for experimenters interpreting data. A more quantitative
understanding of phonon behavior in the semiconducting
ternary alloys must await more realistic three-dimensional
calculations.

The principal drawbacks of the embedded-cluster
method as presented here are (i) in the regimes x ~0 and l
the spectra are more easily treated by performing single-
and paired-defect calculations, (ii) the alloy composition
should be a rational number, that is, x%, equals an in-
teger, and (iii) the effective-medium Green s function ob-
tained by use of the CPA is not fully satisfactory; it
causes the acoustic- and optic-mode bandwidths to be too
narrow and makes errors in its predictions of the existence
and location of gaps in the spectra. None of these is too
serious for the present purposes. As discussed in Secs. IV
and V, a slight increase in accuracy would result if one re-
laxed the requirement that x%, be an integer. However,
this would be obtained at a tremendous cost in computa-
tional efficiency. In addition, more accurate band gaps
and bandwidths could be obtained by introducing self-
consistency within the cluster, as is done in the numerous
cluster CPA theories. ' Again, however, this could be
done only at the cost of tremendously increasing the com-
putational complexity of the method. Since the method
was designed for application to real alloys, one has to de-
cide whether the increased accuracy obtained by such im-
provements would be worth the tremendous computation-
al difficulties which would be encountered on application
of the improved method to such systems in three dimen-
sions.

It should be noted that the embedded-cluster method is
straightforwardly applicable to the calculation of electron-
ic as well as vibrational spectra in alloys. Recently, we
have successfully applied this method to the treatment of
the electronic spectra of impurities in model one-
dimensional alloys. ' Currently, we are simultaneously
pursuing calculations of alloy electronic spectra in one-
dimensional binary and ternary alloys, vibrational spectra
in quaternary alloys, and vibrational and electronic spec-
tra in realistic three-dimensional models of the important
ternary semiconducting alloys.

Recently, Bonneville ' has treated the lattice vibrations
in three-dimensional Ga& Al As in the CPA in order to
try to obtain the effects of local disorder on the infrared
properties of this alloy. This work is a step forward in the
treatment of lattice vibrations in semiconductor alloys, al-
though the limitations of the CPA discussed above should
be kept in mind when one is interpreting his results.

Future work will concentrate on application of the
embedded-cluster method to the treatment of electronic
spectra in the technologically important alloys and of the
spectra (both vibrational and electronic) of impurities in
those materials. From a more fundamental point of view,
it is clear that future studies should also examine the pos-
sibility of obtaining a more easily calculated effective-
medium Green s function which more satisfactorily de-
scribes the band edges of the spectra.
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