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A model based on the electrostatic Hellmann-Feynman theorem and an empirical valence-force
potential has been used to study breathing-mode distortions around the vacancy and substitutional
Cu in silicon. The calculation of the forces driving the distortion is based on a self-consistent calcu-
lation of the charge-density perturbation. In both cases considered, we find an outward breathing-
mode distortion of the lattice. By using a Kubic-harmonics expansion of the charge density, the
structure of the forces can be examined. It is found that the outward breathing-mode distortion is
caused mainly by the reduced charge anisotropy around the defect, which is a result of the defect-
induced deficiency in the number of valence electrons. Distortion amplitudes and the spatial exten-
sion of the distortion fields are also calculated for the fully relaxed lattice.

I. INTRODUCTION

Over the past few years, substantial progress has been
made in advancing the one-electron theory of deep-level
impurities in semiconductors. This has mainly been ac-
complished by various developments of the Green’s-
function theory,! = which has become a powerful and
practical tool for solving the one-electron problem in the
local-density approximation to a high degree of precision.
Applications of the method to various systems have gen-
erated a great deal of information, and as a result, consid-
erable insight into the electronic structure of deep-level
impurities has been gained.

Because of the complexity of the deep-level problem
from a theoretical point of view, only rather idealized sit-
uations have been considered. For instance, in almost all
calculations performed so far, the distortion of the lattice
due to defects has been neglected. Larkins and Stoneham*
investigated lattice relaxations around the vacancy in dia-
mond and silicon using the defect-molecule method of
Coulson and Kearsley’ and an empirical valence-force
model. This relatively early calculation failed to give
definite information about the relaxation around the sil-
icon vacancy, however. The experimental information
about impurity-induced lattice distortions in semiconduct-
ors is also very limited. Sometimes the local symmetry
around the defect is deduced from, for instance, ESR mea-
surements,® but the actual amount of distortion has to the
best of our knowledge not yet been measured. Thus this
very important aspect of the deep-level problem is still
very much unexplored.

Among some of the few other calculations involving
defect-induced lattice distortions,” ~!! the papers by Baraff
et al.¥@8®) on the Anderson negative-U property of the
silicon vacancy are particularly interesting. Some of the
parameters of the model developed by these authors for
the negative-U system were calculated within a valence-
force model similar to that used by Larkins and Stone-
ham.* The direction and amplitude of the breathing-mode
distortions, needed as input to their model, was not calcu-
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lated, but assumed [in analogy with the silicon (111) sur-
face] to be an outward distortion. As will be seen later,
our calculation confirms the assumption of an outward
breathing-mode distortion.

The main objectives of this study are the following: (i)
to determine the direction of symmetry-conserving
(breathing-mode) forces on the nearest neighbors to the
defect, i.e., to determine whether inward or outward dis-
tortions are expected for a given impurity, (ii) to estimate
the amplitude of breathing-mode distortions on atoms sur-
rounding the defect and the spatial extension of the distor-
tion fields, and (iii) to study the mechanism driving the
distortion. This is made possible by investigating the
forces caused by the defect on individual atoms. The ap-
proach used in this paper is very similar in spirit, but not
in detail, to that used by Larkins and Stoneham. Our cal-
culation of the forces caused by the defect is based on re-
sults of modern and very precise self-consistent Green’s-
function calculations. Results for the neutral vacancy and
substitutional Cu in silicon will be presented.

II. MODEL FOR LATTICE DISTORTIONS
AROUND DEFECTS

A. The electrostatic Hellmann-Feynman theorem

In the pseudopotentlal approximation, the quantum-

mechanical force F acting on the pseudoion at R
given by

F,=—V,E({R,}), (1)
where E({R »}) denotes the total energy of the (pseudo)

crystal for a partlcular ion conflguratlon {ﬁ }. Usmg the
density-functional formalism!? and the Xa approx1ma-
tion!® for the exchange-correlation potentlal it is straight-
forward to show!* that, if the i ion at 51te R is described by
a local pseudopotential v ( | r—R [, F is given by
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Here p(T’) denotes the pseudo-charge-density and Z,, is
the valence of the ion at site R It has also been assumed
that the ions are spherically symmetric and nonoverlap-
ping.

This result is usually referred to as the electrostatic
Hellmann-Feynman theorem. It is valid both in the all-
electron case!* and in the pseudopotential case.'* It for-
mally requires, however, that the charge density is con-
structed from the true eigenfunctions to the one-particle
Schrodmger equation.'* In practical applications, this re-
quirement is hardly ever met, and the general experience
has been that the forces predicted by Eq (2) can be very
inaccurate unless the charge density is obtained to very
high precision. 16 Studying the literature, however, it
seems as if this experience is mainly based on calculations
of the force on the nucleus in an all-electron picture: A
small polarization of the core electrons often leads to a
large change in the electric field at the nucleus compared
to a situation where the charge density of the core elec-
trons is regarded as spherically symmetric.!” Consequent-
ly, if the polarization of the core is neglected, it may lead
to a large error in the calculated force acting on the nu-
cleus. As was pointed out by Harris et al,'® the accuracy
of the force predicted by the electrostatic Hellmann-
Feynman theorem depends critically on whether the
frozen-core approximation (i.e., retaining the spherically
symmetric atomic core) is done before or after the gradient
of the total energy is calculated. If the frozen-core ap-
proximation is done after the gradient of the total energy
is calculated, the actual polarization of the core is neglect-
ed and the force on the nucleus may be grossly inaccurate.
If, however, the order of operations is reversed, one is ac-
tually requiring stationarity of the energy functional with
respect to the valence charge density alone when deriving
the one-particle Schrodinger equation, and the error in the
force due to the deviation of the core density from its
atomic (frozen-core) form is eliminated. Differentiating
this (modified) energy functional with respect to the nu-
clear coordinates corresponds then to calculating the gra-
dient under a rigid shift of the nucleus plus corresponding
core, i.e., one has effectively the force acting on the spher-
ically symmetric ion. It was demonstrated in Ref. 18 that
the force acting on the ion as a whole is much less sensi-
tive to errors in the (valence) charge density than is the
force acting on the nucleus alone due to all electrons (core
plus valence). Since the pseudopotential approach basical-
ly adopts the idea of making the frozen-core approxima-
tion in the energy functional, i.e., before the gradient of
the total energy is taken, we feel that Eq. (2) gives realistic
values of the force if v (T’) is taken to be an (ionic) pseudo-
potential. This conclusion is also supported by a rather
recent successful calculation of phonon frequencies using
the Hellmann~Feynman theorem in the context of pseudo-
potentials.!®

4511

B. Forces due to defects

Consider an isolated point defect at l_io. We will limit
ourselves to substitutional defects, but the generalization
to interstitial defects is trivial. If we denote by AZ the
difference in ionic charge between the impurity atom and
the host atom it replaces, the ionic charge Z, at an arbi-

trary lattice point R is given by
0
Z,=Z,+AZ%,,, (3)

where Z9 is the valence of the host (pseudo) atoms. Fur-
thermore, it is convenient to write

p(T,Q)=p%T,Q)+Ap(T,Q) , @)

where p° is the charge density of the host crystal and Ap
the change in charge density due to the presence of the de-
fect. In Eq. (4) we have indicated that the various quanti-
ties depend on the relative positions of the N atoms in the
crystal through the 3(N — 1)-dimensional vector

—Q’:(Rl,ﬁb...,ﬁN_l). (5)
Inserting Egs. (3) and (4) into Eq. (2) gives
»(Q)=F5(Q)+AF,Q), ©6)

where FO( Q) is the force actlng on the pth ion when no
impurities are present and AF Q) is the extra force on
the pth host ion due to the presence of the impurity.
FO(Q) is glven by Eq. (2) with zero superscripts on p and
Z, and AF Q) is given by

AF,(Q)= [[—V,u(| TR, |)]8p(F,Q )dT,

AzZz) -
I_R*";RO—'}(RP—RO). (7)
p—

At the atomic equilibrium positions {ﬁg} of the host
crystal we have F’g(Qo)=O, where QO is defined in com-
plete analogy with Eq. (5). Thus in this case,
ﬁp(Q°)=Aﬁp(QO) and the forces acting on the ions in the
undistorted lattice configuration, and therefore their ex-
pected direction of motion, can be determined quite easily
once Ap(T,Q0 is known.

C. Estimate of the relaxed atomic positions

To calculate the distorted equilibrium positions of all
atoms in the crystal containing the defect, one has to find
the vector Q=Q * for which ﬁp(Q *)=0 for all p [Eq.
(6)] In practice, this approach requires that we calculate

(Q ) for dlfferent lattice conflguratlons Q; until we find
the vector Q, Q * which makes all F (Q =0, i.e., one is
required to make a fully self—cons1stent calculation for
each trial vector Qi. Unless i * =Q * -—Q 0 is known to be
confined to the first few neighbors of the impurity, this
task is formidable and a simpler approach is called for.
To get a simple, and yet realistic, estimate of the magni-
tude of the distortion, we will make the following two ap-
proximations:

(i) In Eq. (4) we approximate the impurity-induced
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change in charge density Ap(f’,a) with Ap( ?,60), i.e., we
set

p(7,Q)~p%T,Q)+A4p(T,Q%) , (8)

while keeping the full 6 dependence in p°. When inserted
in Eq. (2) this gives [cf. Eq. (6)]

F,(Q)~F2(Q)+AF,(QY%, O)
where

AF,(Q%= [[—V,v(| F—R, )]Ap(F,Q)d T

Azz) -
+——="7R,—Ry),
“‘lp‘1{0|3

which differs from Eq. (7) only in that Ap(f’,(_j) is re-
placed by Ap( 7,Q0%. This approximation clearly corre-
sponds to the assumption that the change in charge densi-
ty due to the presence of the defect is independent of the
lattice distortion within the range of distortions being con-
sidered To avoid misinterpretation of the notation
AF (Q in Eq. (10), it should be emphasized that the
impurity-induced force AF (Q9 driving the distortion of
the host ion at Rp is not a constant force, independent of
the displacement. It still depends on the single-position
vector ﬁp, both through the argument in the pseudopoten-
tial and through the ion-ion interaction term [the last term
in Eq. (10)].

(ii) To simplify the evaluation of the quantities in Eq.
(6) further, we use

F%(Q)=—V,0%(Q),

(10)

(11)

where ®%f(Q) is the deformation potential of the host
crystal. Several deformation potentials for bulk silicon
can be found in the literature (see, for instance, Refs. 20
and 21). We have chosen to work with a potential that
gives a good overall fit to experimental phonon spec-
tra.?>?® Its explicit form is*?3

def 3 _N_l
Q)= 3 @,

(12a)
i=0
with
l 4
;=7 F, 2 Ar,]
j=1
3 4 . ,
+2 2 [E.rOFG(Aeﬂk) -l—f,,ArijAr,-k
j=lk=j+1
+r0fr6(Arij+Arik)A6ﬁk] . (12b)

®; is the potential energy contribution associated with
each atom in the lattice, Ar;; denotes the change in bond
length between nearest-neighbor atoms i and j from the
equilibrium value 7y, and A@j; is the change in bond an-
gle between atoms j, i, and k where i is the atom at the
apex. For silicon the values of the force constants are?
F,=9.2697 eV/AZ Fo=0.1838 eV/A% £, =0.1684
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eV/A2, f,,=0.2495 eV/A2 and r,=4.4447 a.u. Since the
valence potential in Eq. (12) reproduces the overall struc-
ture in the experimental phonon spectra,? this potential
has essentially the same status in phonon dispersion calcu-
lations as the empirical pseudopotentials®> in electronic
band-structure calculations.
In summary, when approximations (i) and (ii) are made,
the force exerted on the pth host ion is given by
»(Q)=AF,(Q%)—V,0*(Q), (13)
where AF (Q% (which is not independent of R ) and
<I>d3f(Q are glven in Egs. (10) and (12), respectlvely In
what follows, AF will be referred to as the Hellmann-
Feynman force. Apart from the approximations con-
tained in ®%, the basic approximation is that the change
in charge den51ty induced by the motion of the atoms
from their equilibrium positions is unaffected by the pres-
ence of the impurity.

III. CALCULATION OF FORCES AND EQUILIBRIUM
POSITIONS

The relaxation model described in the preceding section
has been applied to the vacancy and substitutional Cu in
silicon. The unrelaxed (6=(_j°) electronic structure of
both defects has been studied in detail with the quasiband
crystal-field (QBCF) method, and here we will only quote
those results which are relevant for the discussions in the
present paper.

A. The charge density and symmetry of forces

Both for the silicon vacancy and for Si:Cu, a sixfold-
degenerate gap state (including spin degeneracy) of ¢,
symmetry in the T,; point symmetry group is introduced
when no lattice relaxation is allowed to occur (Q=Q0).
For the silicon vacancy, the gap state is occupied by two
electrons and for Si:Cu by three electrons, all states of
lower energy (the perturbed valence bands) being com-
pletely filled. We can split up the total charge density
p(T) in the (3:(30 configuration into two parts: one
describing the contribution to the charge density from the
perturbed valence bands pyp(T) and the other describing
the contribution from the gap state p,,,(T"),

(14)

Since the perturbed valence bands are fully occupied,
pvp(T) is of a; symmetry (i.e., totally symmetric under
operations in the group Ty, cf. Uns6ld’s theorem), whereas
Pgapl T'), because of the partial occupancy of the gap state,
may be of lower symmetry. In a situation like this, the
general procedure in self-consistent calculations on the un-
relaxed system is to occupy each of the three partner func-
tions of the ¢, bound state by equal amounts to produce a
charge-density distribution invariant under T;.%®>2% This
is equivalent to projecting out the a;-symmetric part of
p(T’) using the projection operator technique of group
theory.?’ (This procedure is quite analogous to that wide-
ly used in self-consistent atomic structure calculations,?®
where the charge density is spherically symmetrized, i.e.,

P(T)=pyp(T) +Pgap(T) .
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the / =0 component is projected out, for atoms including
those having incompletely filled shells of electrons). It is
the a-symmetric part of p(T’) [or Ap(T")] which is driving
the symmetry-conserving breathing-mode distortion, while
it is the residual (and nonunique) terms of lower symmetry
which are responsible for Jahn-Teller distortions,? which
are superimposed on the breathing-mode distortion. For a
full description of lattice distortions around defects, one
must, of course, treat Jahn-Teller distortions as well as
breathing-mode distortions. The latter appear to be par-
ticularly important, however, because they are most likely
present for any point defect, in contrast to Jahn-Teller dis-
tortions, and are therefore always of interest. For in-
stance, the chalcogen impurities in silicon introduce a,
states into the gap,”® so that only symmetry-conserving
distortions and no Jahn-Teller distortions are expected.
Furthermore, there is experimental evidence from spin-
resonance measurements that the 3d-transition atom im-
purities Cr, Mn, and Fe in silicon show no Jahn-Teller
distortions, so that again a model for breathing-mode dis-
tortions only is appropriate. For the silicon vacancy, and
probably also for substitutional Cu in silicon, Jahn-Teller
effects are certainly not negligible [see, for instance, Ref.
8(b) and references therein]. Nevertheless, symmetry-
conserving distortions in these systems are both important
and instructive to study, and in this paper we will confine
ourselves to such distortions only. The work on extending
J

(£
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the model to include also the more difficult Jahn-Teller
distortions is in progress.

B. Computational aspects

Next we describe briefly an effective method for finding
the distorted equilibrium configuration. Let M denote the
number of atoms that are allowed to relax, and introduce
the 3M-dimensional column vector i =Q—Q° With the
definition fp( ©w Lzﬁp(a_z we also introduce the column
vector T (@ )=(T (@£ ),Ty(@), ..., Tp(i£))T, where T
denotes the transpose of the vector. The problem of find-
ing the distorted equilibrium configuration (3 * is then
transformed into that of finding the 3M-dimensional vec-
tor i * for which T'(jZ *)=0. With these definitions, the
problem of finding the configuration Q *=7 *+Q° is
formally the same as that discussed in Ref. 31 in a dif-
ferent context, and can be solved iteratively. Thus, in
analogy with Ref. 31, the distortion & “*+" in the (i 4+ 1)th
iteration is assumed to be related to the distortion i ' in
the ith iteration through

/T(i+1)=,l7(i)—G(i)f(/T(i)), (15)
where G” is the inverse of the Jacobian matrix J'7,
(G ~1=gP=3T(z?)/3ix". The matrix G is up-
dated from one iteration [the (i —1)th] to the next (the
ith) according to the formula

1)

ORIT @

GGl (£-V_gW_GU-D[Fgi-")—F

| F(ﬁ’(i—l))_f’
In contrast to Ref. 31, we have chosen to update the in-
verse of the Jacobian matrix rather than the Jacobian ma-
trix itself to avoid inverting the 3M X 3M-dimensional
matrix J in each iteration. With this minor difference in
mind, the derivation of these expressions parallels that of
Ref. 31.

To start the iteration procedure, we need an initial guess
for G'V. This can be obtained, for instance, by imposing a
given lattice distortion i !’ and calculate the correspond-
ing force vector [. A method very similar in spirit to
that used here has been applied previously®? to calculate
the relaxation due to defects in the alkaline earth
fluorides. The method is quite general and was, for in-
stance, also used to obtain electronic self-consistency in
the QBCF method.?

IV. RESULTS AND DISCUSSIONS

The charge-density perturbation Ap(f’,(_jo) needed as in-
put to the present model calculation was generated with
the very accurate self-consistent QBCF method.®> The
QBCF calculation was based on the (local) host-crystal
pseudopotential v(T’) used in Ref. 33 with exchange coef-
ficient a=1.0, and therefore the calculation of the
Hellmann-Feynman forces is based on the same pseudopo-
tential. The Cu impurity was represented by a first-

(i

)— i:([[(i))]T
(i))fZ )

-
principles nonlocal pseudopotential,*® where both the
atomic 3d and 4s electrons were treated as valence elec-
trons.

A. The structure of the driving forces

Because of the central role played by the charge density
in the present formulation of the problem, we shall, in or-
der to better understand the origin of the forces driving
the distortions, first investigate the charge density of the
perfect silicon host crystal. In Fig. 1 we show the lowest
radial / components pj(r) of the self-consistent host-crystal
charge density p°(F)=p(7,Q0 in a Kubic-harmonics ex-
pansion around a Si atom. The ! components are formally
defined through the series expansion

POF)=3 pdrK; ' (F) .
1

(17)

Kla () is the normalized Kubic harmonic of order ! (i.e.,
symmetrized linear combination of spherical harmonics of
angular momentum quantum number /) transforming ac-
cording to the totally symmetric a; representation in the
group T, while 7 denotes the direction of T and r = [T
In the group T, K| \(7) is zero for  =1,2, and 5. Within
the nearest-neighbor distance, the amplitude of the radial /
components p‘,’(r) decreases rather rapidly with increasing
1. Hence, since the I =0 term is spherically symmetric,
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FIG. 1. Three lowest nonzero radial ! components of the
self-consistent pseudo-charge-density for silicon in a totally sym-
metric (a@;) Kubic-harmonics expansion around a silicon atom.

the I =3 term in Eq. (17) is the lowest and single most im-
portant term describing the formation of covalent bonds
(cf. Fig. 1), while higher terms keep adding to the spatial
anisotropy of the charge density until the covalent bonds
are fully reproduced.

As to the self-consistent change in the charge density
Ap(T)=Ap(T,Q0 caused by the defect in the undistorted
lattice, we make a similar expansion in terms of Kubic
harmonics around the defect center. For [ > 6 the radial
components Ap;(r) are found to be small and have only a
very small effect on the forces. Using the explicit expres-
sions for the a; Kubic harmonics in Cartesian coordi-
nates, we therefore have to a very good approximation

172 105 172
- xyz
A =A —_ 2D Xyz
o(T) Pol7) o + Aps(r) ar .3
” 172 )
+ Apy(r) 16m 7

X[x4+yt+zt—3(x%p2+x%22+y%?)] .  (18)
In Figs. 2 and 3 we show the three lowest / components of
Ap(T") for the vacancy and substitutional Cu in silicon,
respectively. A comparison between Figs. 1 and 2 reveals
that the major effect of the vacancy on the charge distri-
bution is to dig a rather structureless spherically sym-
metric (I =0) hole around the atomic site, accompanied by
a reduction in the spatial anisotropy of the host charge den-
sity through the /=3 and 4 terms in Eq. (18). This
feature should be kept in mind when we analyze Fig. 4,
which shows the x component AF,_; of the Hellmann-
Feynman force acting on a nearest-neighbor Si atom
(p =1) as a function of its distance |ﬁ1—§0| from the
vacancy site. The orientation of the coordinate system is
such that the nearest-neighbor Si atom is at
l_i°=%a(l,l,1), where a is the silicon lattice constant, so
that by symmetry AF} =AF} =AF3. Moreover, the signs
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FIG. 2. Three lowest nonzero radial / components of the
self-consistent change Ap(T’) in charge density for the silicon va-
cancy in an @, Kubic-harmonics expansion.

are chosen such that a positive force component is point-
ing away from the defect site (outward). The figure shows
the contribution to AF] from the /=0, 3, and 4 com-
ponents of Ap(T’) together with their sum (total).’*

First of all, we observe that at the undistorted position
RO, 1 is positive and therefore an outward breathing-
mode distortion of the nearest-neighbor atoms around the
vacancy is expected. An outward breathing-mode distor-
tion was assumed in the paper by Baraff et al.¥® on the
negative-U property of the silicon vacancy and is thus

150 | (a) .
Aplr)
100 | g
50 g
0.0 1 !
0.0 05 10 15 20

0.08

0.04

0.00

RADIAL COMPONENTS OF DENSITY PERTURBATION

-0.04

- 008 L L L L
0.0 10 20 30 40 50

DISTANCE (a.u.)

FIG. 3. (a) The I =0 component of the self-consistent change
Ap(T) in charge density for Si:Cu in an a; Kubic-harmonics ex-
pansion. (b) An enlarged view of the three lowest nonzero radial
I components of Ap(T).
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FIG. 4. x component AF} of the Hellmann-Feynman force
Aﬁl(ao) [Eq. (10)] on the nearest-neighbor host atom in the
(111) direction (p =1) for the silicon vacancy (solid line), as a
function of the distance from the vacancy center. Owing to
symmetry, AF=AF;=AFi. Also shown are the individual
contributions to AFT from the / =0,3, and 4 components of the
change in charge density. For the / =0 component, the spheri-
cally symmetric ion-ion force term [the last term in Eq. (10)] has
been added to the Hellmann-Feynman force integral [the first
term in Eq. (10)] to give an effective | =0 contribution to the
force. The curves start at 4.445 a.u., which is the distance be-
tween the vacancy and the nearest-neighbor atom in the undis-
torted lattice. The arrow shows the fully relaxed nearest-
neighbor equilibrium distance.

confirmed by this calculation. Speculations by Van
Vechten®® also led to the same result. Note that the ap-
proximations made in Sec. IIC do not affect the results
obtained at the undistorted lattice positions. Next we ob-
serve that the single most important component in Ap(T’)
driving the outward distortion at l_i? is the /=3 term,
with some help from ! =4, and that this also appears to be
the case away from RY. We therefore conclude that the
outward distortion of the nearest-neighbor atoms to the va-
cancy is mainly caused by the reduced anisotropy of the lo-
cal charge density around the vacancy. Since the integral
of the anisotropic part of Ap(T) equals zero when in-
tegrated over a sphere containing Ap(T), this part of
Ap(T’) does not contain any net charge, which means that
it is the reduction in covalent bonding (weakening of
bonds) rather than the actual removal or addition of equal
amounts of electronic and ionic charge in itself that drives
the outward distortion.

Turning now to Si:Cu we find on comparison between
Figs. 1 and 3 that there is again a reduction in the spatial
anisotropy of the charge density, although somewhat less
than for the vacancy, while the spherically symmetric part
of Ap(T’) is quite different from the vacancy and has some
extra structure. It should be noted, however, that the
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FIG. 5. Same as Fig. 4 but for Si:Cu.

huge peak in Apy(7) is largely cancelled by the change in
ionic charge already at around 2.0 a.u. [the dip in Apy(r)
removes around 0.5 electrons] so the effect on the neigh-
boring atoms is not at all that dramatic. The somewhat
smaller reduction in the anisotropic part of the charge
density for Cu compared to the vacancy is understandable:
Regarding for a moment the Cu 3d electrons as being part
of an inert core, the introduction of the Cu atom effective-
ly corresponds to removing three valence electrons (first
taking out four valence electrons to create the vacancy and
then putting one valence electron, the atomic 4s, back)
while the vacancy removes four valence electrons. The ra-
tio 3:4 is very close to the ratio between the minimum
values of Ap; for Cu and for the vacancy (~0.73). In
fact, it was found in Ref. 3 that a sphere centered at the
defect site and with a radius equal to the nearest-neighbor
distance in silicon (the central-cell sphere) contains six
valence electrons for the vacancy and, after substracting
ten 3d electrons, seven valence electrons for Si:Cu,
whereas the central-cell sphere contains approximately ten
valence electrons in the perfect silicon crystal. Thus the
“extra” Cu electron, which apparently is confined to the
central-cell region, partially heals the broken bonds and
therefore the reduction in anisotropy of the charge density
due to the Cu impurity is smaller than for the vacancy.

Because of the similarities between the two cases, it is
now not very surprising that an outward breathing-mode
distortion is found also for Si:Cu (Fig. 5). Again the de-
crease in covalent bonding around the defect helps to push
the neighboring atoms out, although this mechanism is
not as dominant in this case as for the vacancy. This is
partly due to the presence of the extra valence electron
around Cu, and partly due to the fact that the effective
force caused by the spherically symmetric part of Ap(T)
has changed. Still, however, it is the anisotropic part of
Ap(T") which gives rise to the largest force.

B. Relaxation of the lattice

When the lattice is allowed to relax freely to absorb the
forces exerted on the nearest neighbors to the defect, we
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FIG. 7. Same as Fig. 6 but for Si:Cu.
FIG. 6. Radial displacement |R, | — | Rg | of atoms around

the silicon vacancy vs their distance from the vacancy center in
the undistorted lattice. The numbers in parenthesis label the
various shells of atoms. Note that all atoms in a given shell
have the same displacement in a breathing-mode distortion. On
the upper scale, the radial positions of the host atoms in the
undistorted (open circle) and fully relaxed (solid circle) lattice are
indicated for the atoms in the two shells closest to the vacancy.

obtain the distortion pattern shown in Fig. 6 for the va-
cancy and in Fig. 7 for Si:Cu.3” The two cases differ only
in the amplitude of the distortion, with a larger distortion
around the vacancy than around the Cu impurity; other-
wise they are nearly identical in structure. The outward
displacement of the four nearest-neighbor atoms is for the
vacancy 0.6 a.u. (13.5% of the undistorted bond length)
and for Si:Cu 0.45 a.u. (10% of the bond length).>® In

both cases, the Hellmann-Feynman force AF}, acting on
the other shells of atoms is vanishingly small and these
shells have moved away from the defect only because of
the outward relaxation of the (1,1,1) shell. [The contribu-
tion to Aﬁp from Apy(r) is eventually cancelled by the
ion-ion interaction term in Eq. (10), but the contribution
from the anisotropic components in Ap(T’) have no cancel-
ling counterpart in the Hellmann-Feynman force formula
and may therefore in principle be of long range. These
forces, however, turn out to be negligible on all shells of
atoms except the first.]

From Figs. 6 and 7 it is clear that the amplitude of the
distortion decreases rather rapidly with increasing dis-
tance to the shell and stays less than around 1% of the
bond length beyond the second shell. The large displace-
ment of the (3,3,1) shell relative to some shells closer to
the defect [e.g., the (3,1,—1) shell] merely reflects the an-
isotropic crystal structure.

The reason for the around 20% larger distortion around
the vacancy (when comparing distortion amplitudes of the
nearest neighbors) can be found in Figs. 4 and 5. These
figures show that at the distorted equilibrium positions of
the nearest neighbors, the effective / =0 contribution to
the Hellmann-Feynman force is almost the same in both

cases and that the larger force caused by the vacancy is
mainly due to the larger / =3 contribution. Our model
therefore suggests that the smaller displacement around
the Cu impurity is mainly due to the extra valence elec-
tron for Cu in the central-cell sphere. According to this
argument, and assuming that the effective ] =0 contribu-
tion to the Hellmann-Feynman force does not change too
much, one would expect a decreasing outward breathing-
mode distortion as one moves to the immediate right in
the Periodic Table from Cu to Ge.

Finally, we examine how sensitive the displaced equi-
librium positions of the inner-shell atoms are to the relax-
ation of the outer shells. Allowing only the four nearest
neighbors in the (1,1,1) shell to relax, we find that for
Si:Cu the error in the radial displacement of the nearest
neighbors is 8%, whereas if all shells except the (1,1,1)
and (2,2,0) shells are kept fixed, the same error is only
1.6%, while the error in the much smaller radial displace-
ment of the (2,2,0) shell is 28%. This result may be of
value in more elaborate calculations on lattice relaxation
using for instance the self-consistent Green’s-function
method!—3 throughout, without any of the approxima-
tions made in Sec. II C.

V. SUMMARY AND COMMENTS

We have presented a model for studying lattice relaxa-
tion around point defects in semiconductors, based on the
electrostatic Hellmann-Feynman theorem and an empiri-
cal valence-force potential. By applying this model to the
vacancy and substitutional Cu in silicon in a study of
breathing-mode distortions the following was found: (i) In
the undistorted lattice, each nearest-neighbor atom to the
defect is acted on by an outward force, moving the atoms
away from the defect along the direction of Ry —R,,
where ﬁN and Ko are the position vectors for a nearest-
neighbor atom and the point defect, respectively. This re-
sult is thus valid both for the vacancy, confirming earlier
speculations®® as to the direction of the breathing-mode
distortion, as well as for Cu, and is not affected by the ap-

proximations made in Sec. IIC (i.e., replacing Ap(?,é)

~with Ap(F,éO) in the Hellmann-Feynman force integral



28 SYMMETRIC LATTICE DISTORTIONS AROUND DEEP-LEVEL . ..

and using an empirical valence-force potential for the
host). (i) In the fully relaxed equilibrium configuration,
the outward displacement of the four nearest-neighbor
atoms is estimated to be 0.6 a.u. (13.5% of the bond
length) for the vacancy and 0.45 a.u. (10% of the bond
length) for Si:Cu. The displacement of the next-nearest
neighbors is in both cases only around + of the displace-
ment of the first shell. It was also found that the dis-
placement of the nearest neighbors is surprisingly insensi-
tive to whether the other shells are allowed to relax or not.
(iii) Insight into the mechanism behind the outward dis-
tortion could be gained and a simple picture emerged: It
was found that the reduction in the anisotropic part of the
charge-density caused by the defect gives rise to a strong
force acting in the outward direction away from the de-
fect. Since a strongly anisotropic charge density in the
neighborhood of each atom is the fingerprint of covalent
bonding, we thus arrived at the simple picture that it is
the weakening of the bonds caused by the defect-induced
deficiency in the number of valence electrons that mainly
drives the outward distortion, especially for the silicon va-
cancy. (iv) According to this picture, the larger equilibri-
um distortion of the surrounding lattice caused by the va-
cancy (~20% difference when comparing distortion am-
plitudes of the four nearest neighbors) could be explained
by the presence of the extra valence electron around the

4517

Cu atom, which is trying to heal the broken bonds.
Finally, a few words about some possible weaknesses of
the calculation. We wish to emphasize that the approxi-
mations made in Sec. II C rightly can be questioned, since
we have made no attempts to justify them. The only
reason for making the approximations is of course that
they permit a substantial simplification of an otherwise
computationally very demanding problem. Note, howev-
er, that the lowest-order terms omitted in Ap( f’,a) are of
the form (f{’—ﬁo)'ﬁp(Ap( 7,Q) and that the error in the
driving forces due to the omitted terms goes to zero as the
distortion becomes small. The approximations thus give
us an opportunity to obtain in a simple way a first-order
estimate of the amplitude of the relaxation around an im-
purity, which is an essentially unexplored quantity for the
deep impurity problem. Since the approximations may
mainly affect the amplitude of the distortion, we do not
expect the main conclusions concerning the outward
direction of the distortion and the physical mechanism
driving the distortion (Sec. IV A) to be affected by them.
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