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Interacting electrons in two-dimensional Landau levels: Results for small clusters

S. M. Girvin and Terrence Jach
Surface Science Division, National Bureau of Standards, Washington, D.C 202. 34

{Received 15 June 1983)

We study the two-dimensional electron gas in a quantizing magnetic field for the cases of
Coulomb and harmonic interactions among the electrons. Numerical solutions for the quantum
states of clusters of up to five electrons show that the strength of the excitation gap is a strongly os-
cillating function of the density not unlike what is observed in the anomalous quantum Hall effect.
We present analytic results for the case of harmonic interactions and show that the variational wave
function recently proposed by Laughlin for the Coulomb problem is in fact an exact eigenstate of
the harmonic problem.

I. INTRODUCTION II. COULOMB INTERACTIONS

The recent discovery of the quantum Hall effect' and
the anomalous quantum Hall effect has attracted consid-
erable attention to the physics of Landau levels in two di-
mensions. The central observation is a quantization of
the Hall resistivity in the form

where i is a quantum number. There is also a concomi-
tant strong decrease in the dissipation at the Hall plateaus:

Before delving into the quantum dynamics it is useful
to consider the classical limit. If one assembles a cluster
of electrons, their mutua1 Coulomb repulsion would nor-
mally cause them to fly apart, converting the electrostatic
potential energy into kinetic energy. In the presence of a
strong magnetic field, however, the particles simply orbit
around one another, moving perpendicularly to the local
electric field. If one considers the semiclassical motion of
a quantum wave packet one finds the quantum drift velo-
city

2l
vg ———V VXB, (3)

It is generally believed that both these effects have their
origin in the existence of a gap in the excitation spectrum
of the system. For integral values of the quantum number
i this gap is associated with the density of states gap (or
mobility gap) between the Landau levels. In the
anomalous quantum Hall effect values of the Hall resis-
tivity are observed which require i to be a rational fraction
of the form i =p/q with q odd. This occurs when the
chemical potential lies inside the lowest Landau level and
the fractional filling of the level is i. Iri the absence of in-
teractions the Landau level is highly degenerate and one
does not expect an excitation gap. The existence of such a
gap must presumably be due to some collective many-
body effect arising from the interaction of the particles.
The nature of this state is presently under active investiga-
tion.

In order to understand many-body correlations it is
necessary to understand the severe effect of the magnetic
field on the particle dynamics —both classically and quan-
tum mechanically. The magnetic field so severely restricts
the dynamics that it is possible to exactly diagonalize the
quantum Hamiltonian for small numbers of particles (pro-
vided that Landau-level mixing is neglected). This fact
was first pointed out by Bychov, Iordanskii, and
Eliashberg' and subsequently discussed by Laughlin. "

It is the purpose of this paper to report on some addi-
tional investigations into the dynamics of small groups of
electrons in Landau levels with intentions of providing
further clues to the origin of the anomalous quantum Hall
effect.

where V is the potential energy, 8 =B/
~

B ~, and I is the
magnetic length, l' =Ac/e8. This is precisely the same as
the classical E)&B drift law [the powers of fi in (3) cancel
out].

The existence of periodic or quasiperiodic classical
motion suggests discrete bound states for the quantum
case. The reason one can obtain bound states with a
repulsive potential is related to the degeneracy of the Lan-
dau level. The degeneracy arises because the kinetic ener-
gy is a constant independent of momentum. Hence it is
impossible for the stored potential energy to be released
into kinetic energy and the particles remain bound togeth-
er despite their repulsion.

Let us now examine the quantum mechanics in more
detail. We will deal exclusively with the lowest spin state
of the lowest Landau level. In the symmetric gauge with
vector potential

, (x13y yBx ), —— (4)

the one-body eigenfunctions are'o" (in units where I = l)

(x y)=(2m2 m!) ' (x iy) e " +& ' ~,—
where m is a non-negative integer. The (z component of
the) angular momentum of this state is —m. positive an-
gular momenta are not allowed because the B L term in
the Hafniltonian makes them energetically unfavorable
(i.e., they correspond to higher Landau levels). The
neglect of Landau-level mixing allows a profound simpli-
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FICr. 1. Coulomb ground-state energy vs total angular
momentum for clusters of X =3, 4, and 5 particles (in units of
e2/el).

fication which makes it possible to exactly diagonalize the
Hamiltonian for small numbers of particles because the
number of basis states becomes finite. We take as basis
states Slater determinants of the 1(~. Because the
Coulomb interaction conserves total angular momentum
and because the individual angular momenta all have the
same sign, the total number of allowed configurations is
severely restricted. For example, with three particles
(N =3) with total angular momentum three (I. =3) there

FIG. 2. Excitation gap vs total angular momentum. Note
that the spacing between peaks satisfies AL =X.

is only one state. It is made up of the one-particle states
with m =0, l, 2. No other combinations are allowed. This
is a striking example of the severe restriction of the
dynamics by the magnetic field.

The discrete Hamiltonian matrix may be evaluated
knowing the matrix element of the Coulomb potential

M(m, n, k)—:J d r~ J d r2$" +k(r~)f*„k(r2)
2

X p (r~)1t„(r2), (6)
6'T (2

where e is the dielectric constant. In units where
e /el = I we have the result

m m+k n @pe

M(m, n, k)= g g g
a=o P=O y=O

m+k n n —k

P y a P+y—1)k+a—P
2

where ( ) is the binomial coefficient. The corresponding
exchange matrix element may be found from

M„(m, n, k)=M(m, n, n —m —k) .

It is now straightforward to automatically generate the
basis states for a given N and I., evaluate the Hamiltonian
matrix, and then find the energy eigenfunctions and eigen-
values. For the small clusters which we consider here the
rank of II is under two hundred and it is therefore un-
necessary to resort to any special diagonalization schemes.

In Fig. 1 we plot the ground-state energy Eo (in units of
e /el) versus angular momentum for N=3, 0, and 5
(compare this with the results in Ref. 5). As the angular
momentum increases the particles move further apart and
the ground-state energy decreases. This decrease is not
smooth however. One can see breaks in the curve at
L =3,6,9, 12, . . . for X =3, for example. This structure is
made much clearer if we examine the first excitation ener-

gy A=Ej —Eo, which is shown in Fig. 2. Here we see
strong periodic modulation of 6 as a function of angular
momentum. For certain "magic numbers" in L the exci-
tation gap rises dramatically.

%'e now consider the question of extrapolating these re-

hL =X. (10)
Laughlin has recently made an interesting suggestion for
the form of the ground-state wave function and the ele-
mentary excitations. It is interesting to note that the an-
gular momentum carried by these excitations obeys Eq.
(10).

III. HARMONIC INTERACTIONS

The periodic structure in the excitation gap displayed in
Fig. 2 and the appearance of magic numbers is reminis-

2~~+" 1' r~2 (™+"'[2(m+n —a —y) j!(a+y)!X
[m!n!(m +k)!(n —k)!](m +n —a+ y)!

(7)

I

suits for small numbers of particles to the thermodynamic
limit. The relationship between filling factor v and total
angular momentum in a large homogeneous system is

N(N —1)
2L

Laughlin" has noted that applying this for a small system
with N =3, I. =9 gives v= —,'. We can see from Fig 2.
that L, =9 is indeed one of the magic numbers for X =3.
On the other hand, so is L =6, which gives v= —,', a value
which is not observed experimentally.

In this same context we note that the spacing between
peaks in the excitation gap obeys the rule
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cent of nuclear shell structure ideas. One of the standard
shell-model potentials' involves harmonic interactions
among the particles. This has the virtue of being exactly
soluble. Despite the fact that an attractive harmonic po-
tential is completely unlike the repulsive Coulomb interac-
tion, some interesting results may be obtained from con-
sideration of this model.

%'e begin with the Hamiltonian
2

N
1 eA(r, ) P N

H=g P+ +—g ~r; —r
2m c 2

i(J

where i is a particle label and we again make use of the
symmetric gauge. One can either view this as N two-
dimensional oscillators coupled together or as one 2N-
dimensional oscillator. In any case it is exactly soluble.
Again restricting ourselves to the lowest Landau level, the
kinetic energy term is a constant for all the states and so
may be ignored. We are left with only the potential ener-

gy which may be written (in units where fico, = 1)

These operators diagonalize v

v =Nb 1b1

and the Hamiltonian (12) becomes

V =AN(L b—ib, +N —1) .

(20)

(21)

It is straightforward to verify that

bib�&

is simply the an-
gular momentum of the center of mass so that L —b 1b1 is
the internal angular momentum. One sees that the energy
levels are evenly spaced as would be expected for a har-
monic system.

Having found the energy eigenvalues, how do we find
the eigenvectors? The problem of antisymmetrization im-
mediately arises. We have found the normal coordinates
for the problem but we cannot simply make up a Slater
determinant from functions of the normal coordinates.
This is because the wave function must be antisymmetric
under interchange of the particle coordinates not the nor-
mal coordinates. This is a standard difficulty which
comes up in nuclear physics' and is well understood. For
the present problem the appropriate states may be readily
generated. Define the operators

V=A.(VO —u),

where A.=l Alfico, and

N —1
Vo ——N L+

2

ai ai

(12)

(13)
Since b1 is symmetric under particle exchange, the gt
operators have the same behavior as the original a ~ opera-
tors under particle exchange. Furthermore, g; is nothing
more than a; with its center of mass part projected out.
Thus with the use of (20)

v= a;aJ .
t)J

Here a; is the raising operator for the ith particle defined
by (dropping the particle label):

(16
1

ax =pa+ z && ~

U(g; )
~

0) =0 . (23)

(gi) ' (gi)

This results from the fact that the g operators do not af-
fect the center of mass motion. This means that we can
construct any eigenstate from determinants of these opera-
tors

1

az ——p„+ 2 lp (18) ~p)=(bi) ' (gi) ' [0) (24)

There is a second type of ladder operator which mixes
Landau levels. In arriving at the above results we have re-
placed terms containing these operators by their expecta-
tion value in the lowest Landau level.

Since Vo and v commute we now need only diagonalize
v. This is easily done by defining the vectors

W, = (1,1, 1, . . . , 1),1

N

(1,—1,0, . . . , 0),
2

(1,1, —2,0, . . . , 0),1

6

(1,1, 1, —3,0, . . . , 0),1

12

etc. Now define new operators

b; = g W;(j)aj~ .
J

These states are properly antisymmetric and have eigen-
value

X
E =AN g m;+N —1 (25)

It should be noted that not all these states are linearly in-
dependent because of the constraint

(26)

In typical nuclear physics problems ignoring this con-
straint leads to "spurious states" in which the center of
mass is oscillating. ' Because of the simplicity of the
present problem we are able to explicitly project out the
center of mass motion. The analog of the spurious states
is that some of the correct states appear more than once in
the enumeration (causing the lack of linear independence).

We are now in a position to compare the exact Coulomb
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eigenfunctions and the exact harmonic eigenfunctions.
This is most easily done by generating the unitary matrix

(27)

where Pt is an harmonic eigenfunction and gt is a
Coulomb eigenfunction. Consider now as an example the
case N =3, L =9. There are a total of seven states (when
the center of mass degree of freedom is included). It turns
out that except for a 2 & 2 submatrix one obtains

where z; =x; —iy; .If m is an odd integer, then g is prop-
erly antisymmetric and it turns out that the filling factor
is v= 1/m. Taking note of the raising operator relation

at
~
m, &=(m;+1)'~'~ m, +I& (30)

and noting the single-particle wave function given by (5),
we see that we have the representation in this basis

5;j ——5;j (28) 1

2
so the states are identical. Given conservation of angular
momentum and center of mass motion, this result implies
that there are very few allowed states of a given internal
angular momentum and in many cases for small L, the
states are unique. ' This again illustrates the severe re-
strictions placed on the dynamics by the magnetic field.
One can understand this result from the following semi-
classical picture: Despite the dissimilarity of the Coulomb
and harmonic forces, the semiclassical trajectories are very
similar. The particles rotate around each other in closed
orbits with the only difference being in the direction of the
motion and the speed as a function of the radius. For a
harmonic potential the particles travel at a constant angu-
lar velocity independent of radius (hence the equispaced
quantum levels). For the Coulomb potential the speed de-
creases with radius.

These considerations suggest that the overlap of the
harmonic and Coulomb eigenstates will fall off rapidly
with increasing X. This is indeed the case. For the simple
example of the N =3, L =9 case the 2 X 2 nondiagonal
submatrix of S arises from the fact that the two highest
harmonic states are degenerate (because there are two dif-
ferent states with the same internal angular momentum).
Thus the submatrix of S is arbitrary (and could be chosen
to be diagonal). These degeneracies proliferate with in-
creasing X and I. and so the harmonic states probably do
not form a useful basis for the Coulomb problem. Of
course, this does not mean that some particular linear
combination of degenerate harmonic states cannot be a
close approximation to the Coulomb ground state.

With this in mind we now discuss the very interesting
suggestion put forth by Laughlin for an approximate
Coulomb ground-state wave function

But using (22), we have

lo&= /(8, ' —g') 10&
j,k

j&k

(33)

Hence Laughlin's state, which is an approximate ground
state for the Coulomb problem, is an exact eigenstate of
the harmonic problem

IV. CONCLUSION

Following Bychov et al. ' and Laughlin, " we have in-
vestigated by various analytical and numerical means the
properties of small clusters of electrons in two-
dimensional Landau levels. We have tried to present a
physical picture, based on semiclassical considerations, of
the great restriction placed on the dynamics of these sys-
tems by the magnetic field. Our main numerical result is
that the lowest excitation energy gap is found to be a
strongly modulated function of the total angular momen-
tum (approximately inverse density). These considerations
may shed some light on the reason for the existence of an
excitation gap in the thermodynamic limit at certain spe-
cial densities as is apparently necessary to explain the
anomalous quantum Hall effect.
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