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We report the results of a variational calculation for the hydrogenic-impurity ground state in a
multiple —quantum-well structure consisting of alternating slabs of GaAs and Gal „Al As. Calcu-
lations have been carried out with the assumption that the impurity envelope wave function spread-
ing beyond the next-nearest-neighbor GaAs wells is negligible. Impurity envelope wave functions
have been plotted for some typical GaAs well and Ga& Al As barrier thicknesses to find the ex-
tent of wave-function spreading. The binding energy is found to vary substantially as a function of
the barrier thickness. C.alculations are performed for the variations of the binding energy as a func-
tion of the well thickness and also as a function of the barrier thickness. The main peak in the im-
purity binding energy in superlattices with equal well and barrier thickness is shifted towards a
thickness larger than that in single-well systems. A secondary peak appears at a very small thick-
ness, which arises because the model includes only three wells. The results of the present calcula-
tion in various limiting cases agree with previous results.

I. INTRODUCTIQN

The recent advances in crystal-growth techniques such
as molecular-beam epitaxy and metal-organic chemical-
vapor deposition (MOCVD) have made possible the
growth of systems consisting of alternate layers of two
different lattice-matched semiconductors with very pre-
cisely controlled thicknesses and sharp interfaces. Such
one-dimensional periodic structures are generally referred
to as superlattices. Numerous studies have been devoted
to various aspects of the electronic states associated with
such systems. ' Among the superlattices grown, so far, the
GaAs-Ga1 „Al„As system is the simplest and the most
extensively studied. The band gap of Ga& Al„As in-
creases with the concentration x of aluminum. Thus there
exists a dlscontlnulty of the band edges Rt the GRAs-
Ga& Al As interfaces. The conduction-band-edge
discontinuity is about 85% of AFg; the band-gap differ-
ence between bulk Ga~ Al As and GaAs. The valence-
band-edge discontinuity is about 15% of EEg. As a re-
sult, the electrons and holes in a GaAs layer find them-
selves in approximately rectangular potential wells for
sharp interfaces.

Studies of the shallow impurity states in such quantum
wells have recently begun with the work of Bastard. He
calculated the ground-state binding energy of a hydrogen-
ic shallow impurity in the GaAS quantum well. In that
calculation the potential barrier height in the
Ga& „Al„As regions was taken to be infinite. He finds
that the binding energy increases as the well size (i.e., the
CiaAs layer thickness) is reduced. Mailhiot, Chang, and
McGill' (MCM) have done an extensive calculation for
the binding energies, wave functions, and their variations
with well thickness, impurity position, etc. , for realistic
finite potential-barrier height, contrary to Bastard s infin-
ite barrier height. They also include the effects due to dif-
ferent effective electronic masses and dielectric constants
in GRAS and Ga1 Al„As layers. They have found that

the binding energy goes through a maximum as the well
size is reduced instead of continuously increasing as is
found in the infinite-barrier calculation. Greene and Ba-
jaj' (CiB) have also performed a similar calculation for im-
purities at the center of a quantum well. Both of the
groups, MCM and GB, have calculated some excited-state
binding energies.

In all of the previous calculations it has been assumed
that the Ga& „Al„As layers are thick enough to confine
the wave functions so that they do not spill over to the ad-
jacent GaAs quantum wells. Calculations were performed
with this assumption for an impurity in a quantum well
with two semi-infinite Ga& „Al As barriers on each side
of the well. Superlattices are made with layer thickness
ranging from a few monolayers to about 400 A. Most at-
tention has been focused on systems with aluminum con-
centration x of Ga& Al„As less than 0.45. In this con-
centration range the band gap is direct at the I point.
The spreading of' the impurity envelope wave functions
depends on the potential barrier height as well as the bar-
rier thickness. In general wave functions spread more to
the adjacent wells if the barrier height or the thickness is
reduced. Thus the previous calculations with single-well
approximation are not adequate for thin superlattices, or
even for moderately thick superlattices but with small
aluminum concentrations. This is evident from the
wave-function plot of MCM. ' In this situation we feel
that it is desirable to perform a calculation which should
be valid for thin or small barrier-height superlattices. The
present paper, to our knowledge, is the first report of such
a calculation. In this calculation we consider for simplici-
ty the impurity to be at the center of a well. Assuming
that the spread of the wave functions to the next-nearest-
neighbor wells of the one containing the impurity, the cal-
culation has been performed with only one well on each
side of the well under consideration. Wave functions have
been plotted along the axis of the superlattice to see the
extent of wave-function penetration into the next-nearest-
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wells and barriers. These plots are intended to give a feel-
ing for how thin a superlattice the present model may be
valid.

In Sec. II we derive the spectrum of the impurity
ground-state energy with respect to the lowest subband in
a multiple —quantum-well structure. Main results are
presented in Sec. III. A summary and discussion of the
results are presented in Sec. IV.

II. GROUND-STATE ENERGY CALCULATION
IN A MUI.TIPI.E—qUANTUM-WEI. I.

I.et us for definiteness consider a donor impurity atom
at the center of a quantum well of thickness L=2a. The
calculation may be valid for hydrogenic acceptor states as
well in an approximate way since the valence-band degen-
eracy in GaAs is lifted by the presence of the barriers. Al-
though for a complete calculation for acceptor states a
multiband effective-mass calculation may be necessary.
We consider impurities which may be described by the
hydrogenic —effective-mass theory (HEMT). A detailed
discussion on the validity of HEMT in bulk materials has
been given by Pantelides. For shallow donor states in
GaAs, HEMT is known to be valid to a high degree of ac-
curacy. We assume that the spread of the impurity en-

velope wave functions to the next-nearest-neighbor quan-
tum wells is negligible. Thus we consider the following
model for the periodic potential along the axis (z axis)
normal to the interfaces of the superlattice with sharp in-
terfaces (see Fig. 4):

t

Vo if a (
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z

(
(a +b ro3a +b (

(
z

(
( a)

z (1)
0 if 0& ~z

~

&a or a+b & ~z
~

&3a+b .

The GaAs well thickness is 2a and the Ga& „Al„As bar-
rier thickness is b. The barrier height Vo is obtained from
the 85% (15%) rule of the band-gap discontinuity b.Eg
for donor (acceptor) states for aluminum concentration
x &0.45, such that the band gap is direct at the I point
and AEg is given by

EEL ——1.155x +0.37x (2)

in eV. According to HEMT the Hamiltonian for the im-
purity at the center of a quantum well in a superlattice is

2

H = —P' — + V(z) . (3)
27

The Hamiltonian is written in a dimensionless form so
that all energies are measured in units of the effective
Rydberg A*=m*e "/2R e and all distances are measured
in units of the effective Bohr radius a' =I e/m e, where
m and e are the electronic effective mass and the dielec-
tric constant, respectively, of GaAs. There are slight
differences in the effective masses and dielectric constants
of GaAs and Ga& „Al„As. Note that we have neglected
these small differences in the Hamiltonian. Since the im-
purity binding energies are measured with respect to the
lowest subband energy we need to solve for the ground-
state energy corresponding to the Hamiltonian given by
Eq. (1) without the Coulomb term. Since H is even under
reflection against the x-y plane, for the impurity at the
center, parity is conserved. We are interested in the

ground-state energy. So we consider the even-parity solu-
tion of H without the Coulomb term. This may be writ-
ten as

cosaz if 0 &z &a
Ae~'+Be ~' if a &z &a+b
C cosaz+a sinaz if a +b &z & 3a +b
I'e-&' if 3a+b &z & ~ .

The quantities a and p are given by

a=V'Zo and P=&Zo —Vo

where Eo is the eigenenergy of an electron in the potential
given by Eq. (1). By matching the wave function at the
interfaces z =a, a+b, and 3a+b, the eigenenergies Eo
can be shown to be given by the solution of the transcen-
dental equation

a tan(aa) =p',
where

p'= p
ae-@*—We
ae-++we+

The smallest solution Eo of Eq. (6) gives the lowest sub-
band energy. To solve for Eo we have to know the ratio
of the coefficients 2 and B in terms of a and P. They are
obtained from the wave function and its derivative match-
ing at the interfaces and are given explicitly in the Appen-
dix. At this point it may be pointed out that these simple
matching conditions are valid for simple superlattices like
GaAs-Ga& „Al„As. ' For other superlattices like GaSb-
InAs, where there is a common energy region between the
conduction band of one material and the valence band of
the other, or where there is a large difference in the two
material parameters, more complex matching conditions
as well as wave functions may become necessary. In the
limiting case of b ~ oo, it can be easily shown that Eq. (1)
reduces to the well-known transcendental equation
atanaa =p for a square well. In the other limiting case
of b~0, Eq. (6) reduces correctly to a tan3aa =p, which
corresponds to a well of thickness equal to 3 times that of
a single well. Once Eo is known, the coefficients 3, B, C,
D, and I' (and hence 4, ) are known. These are also writ-
ten down in the Appendix.

Following Bastard's procedure for a single infinite
quantum well we consider the trial function for the
ground state of the full Hamiltonian 0 as

with
—r/A,c=e t

where A, is the single variational parameter and N is the
normalization constant. 4, is the ground-state eigenfunc-
tion of H without the Coulomb potential and 4, is the
ground-state eigenfunction of H without V(z). The varia-
tional ground-state binding energy E (a, b) is given by

E =Eo —min(e
~

H
~
e) .



S. CHAUDHURI 28

The normalization constant N and the expectation values of the operators of H are as follows:

N = [Ip(0)+Ip(a)+2A Ji(p)+2B Ji( —p)+.4ABJi(0)+(C +D )I2(0)+(C —D )Ii(a)V'2

+2CDK~(a) +2F2J&( —p) ] (9a)

(qi
~

—V'
~
4) = I/k +2irN (a [Ip(0) —Ip(a)]+2P [A Ji(P)+B Ji( —P) —2ABJi(0)]

+a'[(C'+D')I, (0)+(D'—C')I, (a) —2CDK, (a)]+2p'F'J, ( —p)

+—
I aMp(a }—2P[A'Pi(P} —B'Pi( —P}]

—a[(D —C )M2(a)+2CDL2(a)]+2pF P, ( —p)}),
(ip

~
( 2/r)

~

4—) = —4irN [Qp(0)+Qp(a)+2A Si(p)+2B Si( —p)+4ABSi(0)+(C +D )Q2(0)

+ (O' —D')Q, (a)+2CDR, (a)+2F'S, ( —p)],
(4'

i
V(z)

i
4) =4rrN Vp[A Ji(p)+B Ji( —p)+2ABJi(0)+F J3( —p)] .

(9c)

(9d)

The integrals I„(a),J„(P),K„(a),I~(a), M„(a},P„(P), Q„(a), R„(a), and S„(P) are defined in the Appendix. The sub-
scripts of the integrals denote the region of integration. The subscript "0" stands for the central half-well (O~a), 1

stands for the region a to a +b, 2 for a +b to 3a +b, and 3 for 3a +b to ao.
In the single —quantum-well limit (i.e., b +co ), the—quantities of Eq. (9) reduce to the following explicit forms:

r

1 2 ~i a cos(2aa) a 1 al, sin(2aa) 2a 2

(1+a I, ) & (1+a A. ) & 1+a 1, 2(1+a A, ) A, 1+a2&2
—1/2

cos (aa) 2a 1

1+PA. A, 1+PA,
&+ + (10a)

(0'
~

—V
~

'I') = +a — e ' 1+ sin(2aa)
1 2

m.N ai, 2, gg 2a

2 -2u+ cos (aa)e ~ 1+(p+ I/A)2a+ A. —
2 Pk, +1

1+a A, (1+a A, ) 2a

(1+pg)' 1+pA,
(lob)

(e
~

( —2/r)
~

q ) = —~N'X' 1+ —e -"'" 1+1+a A, 1+a A,

2 3 2mN A cos (aa i ii.v 1+ 2a + 1

2(PA, +1) A, 1+PA,

a sin(2aa) 2P z~p+i~i~,
1+P~+ (10c)

(lod)

From Eq. (10) it can be easily shown that in the limit of
infinite barrier height (i.e., Vp~oo} the normalization
constant and the expectation value for the Hamiltonian
reduce correctly to the corresponding expressions obtained
by Bastard. Now, for the general case of multiple-
quantum wells, (4

~

H
~
%} can be easily computed from

Eq. (9) and its minimization with respect to A, leads to the
desired binding energy through Eq. (8).

III. RESULTS

We display results for two barrier heights correspond-
ing to aluminum concentrations x=0.1 and 0.4. Figure 1

shows the binding energy as a function of the barrier
thickness b, with the well thickness I. as a parameter.
Here we present a physical argument towards the under-
standing of the behavior of the binding energy as a func-

tion of b. We remind the reader that the variational
ground-state binding energy is the difference between the
lowest eigenvalue Eo without the impurity potential and
the variational energy Ei (=min. (0'~H ~'Il)). If the
wave function is squeezed towards the impurity ion, both
Eo and E& increase, but the increase in E& would be less
than the increase in Eo due to the attractive Coulomb po-
tential in H. Thus an increase in the barrier thickness
from zero tends to more strongly localize the wave func-
tion around the impurity ion and thereby increases the
binding energy. Gn the other hand, for finite barrier
height Vo, increase in the barrier thickness from zero adds
a repulsive term in the energy due to the wave-function
penetration in the barrier thus reducing the binding ener-
gy. The relative magnitudes of these two competing ef-
fects, which depend on the values of L and Vp, determine
the behavior of E as a function of b. If the wave function
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FIG. 3. Binding energy for the hydrogenic-impurity ground state as a function of the GaAs layer thickness when the GaAs and
Ga& „Al„As layer thicknesses are equal for alloy compositions x=0.1, 0.2, 0.3, and 0.4 of Ga& „Al„As.

is already strongly localized around the impurity (e.g. ,
when L is small), the repulsive term added in the energy
due to an increase in b is more than the small increase in
binding due to further localization of the wave function.
Of course, when b is large enough it helps in more locali-
zation, and the binding energy increases again approach-
ing the value corresponding to a single-quantum well.
This is exactly what we see in Fig. 1. For large mell thick-
ness, since there is very little localization, an increase in b
always increases the binding energy. Thus there is no val-
ley in the curves for larger L, values. Note that in Fig.
1(b) (Vo-768'), the minimum of the curve correspond-
ing to L, =0.4 occurs at a smaller b value than the corre-
sponding curve of Fig. 1(a) (Vo-17K'). Also for L= 1,
binding energy corresponding to the curve of x=0.4 in-
creases monotonically with b unlike the corresponding
curve for x=0.1 These observations are understandable
from the argument given above.

Figures 2(a) and 2(b) present the binding energy as a
function of the well thickness with the barrier thickness as
a parameter for x=0.1 and 0.4, respectively. As men-
tioned earlier, the limiting case of b~0 is just the case of
a single-quantum well with the well thickness being equal
to 3L,. The other limiting case of bazoo also becomes a
single well with thickness L,. An inspection shows that
the b = oo curve can be obtained from the b=0 curve by
threefold expansion of the abscissa of the latter. A dip in
the curve for b=0.5 is again in accordance with the argu-

ment given in the previous paragraph.
Figure 3 presents the binding energy as a function of

the well thickness equal to the barrier thickness with the
alloy composition as a parameter. This figure shows in-
teresting results for superlattices with equal well and bar-
rier thicknesses. The dotted lines represent the binding
energies corresponding to a single-quantum well. We note
that the binding energies obtained from the present calcu-
lation exhibit minima at around the well thickness where
single-well energies have maxima. By the same argument
given before, this type of general behavior is expected
since the single-well wave functions are most strongly lo-
calized for the well thickness corresponding to maximum
binding. The primary peak is shifted towards a thickness
larger than that in the single-well system. The other max-
ima at very small thickness values are due to the fact that
in our model we have assumed semi-infinite barriers
beyond the adjacent wells. These secondary maxima are
not expected to occur in very thin real superlattices with a
large number of alternating layers.

Figures 4(a) and 4(b) show the wave functions for
L =b=0.5 and 0.1, respectively. An inspection of the
wave functions shows the validity of our simple model for
the multiple —quantum-well systems, at least up to the di-
mensions L =b=0.5, since the wave functions do not
spread to the next-nearest-neighbor wells. For very thin
superlattices (L -0.1), of course, our approximation of in-
corporating only the adjacent wells breaks down.
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IV. SUMMARY AND MSCUSSION

We have calculated the ground-state-energy spectrum of
hydrogenic-impurity atoms with respect to the first sub-
band in GaAs-Ga& „Al„As multiple-quantum wells.
Variations of the ground-state binding energy of an im-
purity atom at the center of the quantum well are studied
as a function of the well thickness as well as the barrier
thickness. Wave functions are plotted for some typical
values of well and barrier thicknesses.

To see how good the simple-product-type function [Eq.
(7)] is as the trial function, we have compared our results
in the single-well limit (b = ao ) with those of GB, whose
wave functions containing a large number variational pa-
rameters are expanded in a Gaussian-type basis set. The

binding energies of their calculation are found to differ
from ours only by less than 4%. With the simplicity of
the present wave function containing only a single varia-
tional parameter, it may be considered a good trial func-
tion.

We have neglected in our model the contributions aris-
ing from the difference in the effective masses and the
dielectric constants in the two semiconductors and from
the image forces. ' By neglecting these contributions GB
obtain binding energies which differ from those of MCM
by only a few percent. The present calculation gives bind-
ing energies in the single-mell limit less than those of GB
by &4% but very close to those of MCM. The reason
that our results are close to those of MCM in this limit,
even though we do not use different material parameters
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and do not include image forces, may be that the binding
energies obtained by the simple-product-type trial func-
tions are (at most) a few percent less than those obtained
by the trial functions of GB (and possibly of MCM with
equal parameters for the two semiconductors) and this
reduction happens to be close to the contributions arising
from the different material parameters and. image forces.
Thus, in the single-well limit, the above-mentioned contri-
butions are at most a few percent. Since, for thin super-
lattices, more wave functions are in GaAs than in the
Ga& Al„As compared to single-well systems, these con-
tributions may be even smaller. As the wells come closer
to each other in a real multiple —quantum-well system, the
subband levels are broadened gradually to form mini
bands. But since our model consists of only three wells,
we have neglected this effect. Although in principle one
should include this broadening as well as the effects men-
tioned earlier to perform a calculation which should be
valid for very thin superlattices, we feel that for superlat-
tices with realistic dimensions the present model should be
valid to predict the main features of the problem.

At present we cannot compare our results with any ex-
periment, although there exists an experimental study of
the variation of binding energy as a function of the well

thickness. ' The impurity was an acceptor, probably car-
bon. For carbon, the binding energy differs substantially
( —14 meV) from that predicted by HEMT. So, first of
all, our results which are valid only for hydrogenic impur-
ities cannot be compared with experimental values.
Secondly, even if the acceptor is assumed to be hydrogen-
ic, since the well sizes were greater than -2.5a, the bind-
ing energies corresponding to a multiple-quantum well are
approximately equal to those corresponding a single well.
However, we believe that with thin superlattices of dimen-
sions available at present, it should be possible to see the
variations in binding energy as a function of well or bar-
rier thickness predicted by the present calculation. Be-
cause of the small effective electronic mass the multiple-
well effects would be more pronounced for donors than
for acceptors.
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APPENDIX

The transcendental Eq. (6) is obtained from the matching conditions at z =a, namely,

cos(aa)=He+Be , —asin(aa)=pAe~' pBe— (Al)

The ratio 2 /8 as a function of a and p is obtained from the wave-function matching conditions at other interfaces as
r r

C ~e @~3~+—b) acos[a(3a+b)]+Psin[a(3a+b)]
a sin[a(3a +b)] pcos[—a(3a +b)]

(A2)

p( b) p
—2p'Q t+)b—2p(Q +b)

e '+
8 2P

r

cos[a(a +b)] sin[a(a +b)] C
—asin[a(a+b)] acos[a(a+b)] D

Solving Eq. (6) for Eo, the coefficients for the wave function are calculated from Eqs. (Al) and (A2). The integrals in-
volved in the normalization and the expectation value of the Hamiltonian are defined as the following:

I„(a}=.
—2Z/A, 4 4a aA.z + cos(2az) + aAz + +

2
sin(2az)

Z Z

(A3)

where z„and z„) are the lower and the upper z-coordinate values of the nth and (n + 1)th regions, respectively (e.g., for
n =0, zo ——0, z) ——a, etc.). The quantity b, is defined as

6=4(a +1/k ), (A4)

2(pA, —1)spy, zk X pk
2 2(PA, —1) 4 (PA, —1) Z=Z

n

cos—+s1n

sin~ —cosX a=I

e last equation means that &„(a) is obtained from I„(a)by replacing cos by sin and sin by —cos in I„(a}.We have
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e
—Zz/2.

25
2z 4/A, —4a So./A,cos(2az) + 2az + sin(2az) (A7)

COS~SlI1
M„(a)=Ln

p (p) 2(P—I/2. )z

4(P—1/A. ) 2(P—1/A, )

r

2 cos2AzQ„(a)= e " — +2a sin(2az)
2h

(A9)

(A10)

COS~Sly
Rn(a) =Q„ Sin —+ —COS (A11)

(p) (e2(P—(/A, )z) n+(
4(P—1/k) (A12)
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