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Spectral limits for disordered semiconductors and their interfaces
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A spectral limit theorem is proved for semiconducting systems without crystal periodicity, gen-

eralizing earlier theorems involving model Hamiltonians for amorphous semiconductors and substi-

tutional alloys. The theorem treats the combined effects of substitutional chemical disorder, bond-

strength fluctuations, and noncrystalline topology. The allowed one-electron spectrum is shown to
be contained in the union of the one-electron spectra associated with a collection of hypothetical
bulk Hamiltonians corresponding to the various bond types in the system. Applications to simple
models representative of the Al„Gal „As-GaAs interface, the Si grain boundary, and amorphous Si
and GaAs are discussed.

Theorems which place rigorous bounds on one-electron
spectra of model tight-binding Hamiltonians have proved
useful in understanding the properties of both chemically'
and topologically disordered systems. Such theorems
have been of two types. The first type applies only to
chemically disordered alloys with random single-site ener-
gies on an ordered lattice. The spectrum of the alloy is
found to be a subset of the union of the spectra of the bulk
constituents. The second type explores the effects of topo-
logical disorder and neglects chemical disorder. Within a
restricted tight-binding model for a semiconductor, it is
shown that the size of the band gap is independent of the
connectivity of the lattice, provided that all interatomic
bond strengths, intra-atomic couplings, and single-site en-
ergies have their bulk crystal values. Bounds can also be
placed on the effects of bond-strength fluctuations.

In this paper we prove a more genera1 theorem which
applies to systems containing both chemical and topologi-
cal disorder. This theorem is proved for a model Hamil-
tonian for sp -bonded systems such as semiconductors,
having the form
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stituents and the interatomic distances. Recent extended
x-ray-absorption fine-structure (EXAFS) studies have
shown that the latter can have a significant variation even
in substitutional alloys.

Before stating and proving the theorem, we wish to ob-
serve that the spectral limits obtained using it will not, in
general, agree quantitatively with those obtained in realis-
tic calculations performed using techniques such as the
self-consistent pseudopotential and empirical tight-
binding methods. First, A is not accurate enough to
provide a precise description of real systems. The restric-
tion to nearest-neighbor hopping, for example, precludes
the possibility of obtaining accurate semiconductor band
structures for periodic systems and excludes the effects of
dihedral angle fluctuations ' in amorphous systems.
Furthermore, in noncrystalline systems the bond angles
are expected to vary about their crystalline values. ' The
variations should cause V", in the second term of (I) to de-
pend on i and i in addition to n; this is not accounted for
in the theorem. Second, as will be seen below, the theorem
does not discriminate sensitively between varying atomic
configurations. For example, the spectral limits it
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n, i ) denotes an sp hybrid lobe at the
atomic site n with its direction specified by the index i (cf.
Fig. I). In the last term n denotes the nearest-neighbor
atom to that at the site n in the direction defined by the
lobe i. The atoms do not necessarily constitute a crystal-
line lattice; the connectivity of the lattice could, for exam-
ple, correspond to five- and seven-membered rings, which
are believed to be present in amorphous semiconductors.
The e" are single-site energies, while V& couple different
sp lobes on the same atom and determine the s-p splitting
in the solid. The variation of the e" and Vl from site to
site corresponds to the inclusion of different types of

nn, .'
atoms. Finally, V2

' is the nearest-neighbor bond
strength, which is determined by the chemistry of the con-

FICx. 1. Schematic illustration of model Hamiltonian [cf. Eq.
(I)]. Atoms are denoted by n and sp hybrid lobes by i V~ and.
V2 are intra-atomic and interatomic couplings, respectively.
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predicts for a single weakened bond are identical to those
for a cluster of weakened bonds, while the two systems are
physically expected to have quite different spectral limits.
This drawback is also present in the earlier theorems.

The theorem states that

Spec A & U Spec ~',
(p)

where

Spec A =[E„'(A),E„'~(A )] U [E, '(A ),E,' "(A )],
with similar definitions for Spec H". Here E, ", ""are the
valence- and conduction-band lower and upper edges. The
union in Eq. (2) is over all bond types present in A; a
bond type p is defined by a pair of lobes

I
m, j& and

I mj,j& pointing at each other and the associated energy
??1?n ~

parameters E, e ', V&, V] ', and Vz ' . Given a bond
type p we associate with it a bulk Hamiltonian H" ob-
tained by replicating p-type bonds to form a zinc-blende
lattice, i.e.,

included in order to ensure that

which is easily verified by direct diagonalization of the
secular determinants at I, where the band extrema lie.

Since each bond type in A corresponds to an H", and
therefore each molecule in A, ~ corresponds to an H",~,

we have

Spec mm. i=- Uspec Hm,
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Therefore, with the use of (5), (4) will be proved if we can
demonstrate that

To prove (7), we define
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where Si and S2 represent the two fcc sublattices of a
zinc-blende lattice.

Proving the theorem is equivalent to showing that
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For X=(), ~(A, ) is equal to A, i and has isolated molecu-
lar levels, while for A. =1, A (A, ) is equal to Pi and has ful-

ly developed valence and conduction bands; the i=I'
terms in (9) cancel the single-site energy shifts in Pi

Let gi(k) be an eigenstate of A (A, ) with energy Ei(A, ) in

either the valence or conduction band. Then by first-order
perturbation theory
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Each of these Hamiltonians contains no intra-atomic cou-
plings and therefore consists of isolated two-level mole-
cules. The shift in the single-site energies in the H, iis'

To prove (4) we begin by defining two additional Hamil-
tonians associated with A and the H", respectively,
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This matrix has three eigenvalues at zero and one at
4Vi &0, and therefore by a well-known theorem of linear
algebra,

Using (10), we then have
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so thai

Ei(1) (Ei(0) for each l .

Since Ei(0) is an eigenvalue of A ~,i, it follows that
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according to whether / is in the valence band or the con-
duction band. Then (7), and therefore (4), are proved.

The technique used to prove (4') is essentially parallel to
the above and will not be described further.

We now describe some applications of the theorem to
physical systems. Despite the simplicity of ihe model
used the theorem contains enough physical ingredients to
elucidate the most important factors which determine the
band gap of a disordered system. For example, the rela-
tion of the gap of A to the local bond characteristics em-
bodied in the A'& emphasizes the importance of short-
range order versus long-range order in determining the
band gap. " Furthermore, although the theorem as stated
says nothing about the magnitude of the density of states
in various energy ranges, one may be able to obtain a qual-
itative description of the electronic structure associated
with A by assigning weights to the corresponding H" in
accordance with physical intuition. Thereby one can
discriminate between gaps, pseudogaps, and nongaps.
Thus the theorem can provide physical insight without
elaborate calculations provided accurate calculations or
experiments on closely related systems exist.

(a) Al Ga, „As—GaAs interface. We will assume that
no Al —Al, Ga—Ga, As —As, or Al —Ga bonds are formed,
which would appear to be a reasonable assumption in view
of the large energy penalty involved in forming such
bonds. We will also assume that no bonds are weakened.
Then the theorem states thai whether or not the interface
is abrupt, and independent of the orientation of the inter-
face, the spectrum of A is contained in the union of the
spectra of a GaAs bulk Hamiltonian and an AlAs bulk
Hamiltonian. Since the A1As band gap contains that of
the GaAs, ' it follows that there are no states inside the
GaAs gap. This conclusion is compatible with realistic
band-structure results' for abrupt A1As-GaAs interfaces,
which showed no states inside the GaAs gap, and with ex-

0
periments on broadened (-100 A) Al Ga& „As-GaAs in-
terfaces, ' which showed a very low density (less than
5X 10' cm ) of gap states, presumably associated with
defects.

(b) Si grain boundary We make n. o specific assump-
tions regarding the interface geometry, but take the e" and
the V& to be constant and allow the bond strengths Vz to
vary. Then the H" which determine the spectrum of ~
are all identical to a bulk Si Hamiltonian, except that they
have different values of V2. The H" with the smallest
value of V2 will then determine the limits of the allowed
spectrum. If this value of V2 is only slightly less than the
bulk value, then the band gap of the associated H" will be

slightly smaller than the bulk band gap and there will be
no states at or near midgap. If, on the other hand, there
are values of Vq much smaller than the bulk value, then
the allowed spectrum of A will include the entire band
gap. These results provide a framework for interpreting
experimental data on interface states at Si grain boun-
daries. With the use of I-V characteristics an interface
state density of roughly 10' cm, or roughly one for
every thousand interface atoms, at energies within a few
tenths of an eV of midgap, has been measured. ' The
spectral-limit-theorem results would suggest, in agreement
with the usual interpretation, that these levels are due to a
small density of severely weakened or broken bonds; even
a large density of slightly weakened bonds would only be
expected to produce tails near the band edges.

This case illustrates the above-mentioned inability of
the theorem to sensitively discriminate between varying
atomic configurations. For severely weakened bonds the
theorem allows the whole gap to be filled in nearly uni-
formly, which would be correct if the weakened bonds
formed large clusters. In contrast, the physical system has
a density of states strongly peaked near midgap, presum-
ably corresponding to isolated weakened bonds.

(c) Amorphous Si and GaAs. In these systems we will
I

assume that all of the e", V&, and V2
' are equal to th ir

bulk-crystal values and focus on the possible effects of the
changes in connectivity associated with the amorphous
structure. For Si, all of the HI' are then equivalent to a
bulk Si Hamiltonian, even if the structure contains five-
and seven-membered rings. The band gap of the amor-
phous structure is then at least as large as that of the bulk
crystal, in agreement with earlier theorems. The same
analysis holds for GaAs, provided that no Ga—Ga or
As —As bonds are present (then there are of course no
five- or seven-membered rings); as mentioned earlier, the
density of such bonds is expected to be small from ener™
getic considerations. If one takes the possibility of such
bonds into account, then the H" corresponding to Ga—Ga
or As —As bonds have spectra which fill in the GaAs band
gap, consistent with the intuitive expectation that such
bonds should cause gap states. '
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